
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 15121–15134
December 6-10, 2023 ©2023 Association for Computational Linguistics

A linear time approximation of Wasserstein distance
with word embedding selection

Sho Otao1 and Makoto Yamada2

1Kyoto University, Japan
2Okinawa Institute of Science and Technology, Japan

sho.otao@ml.ist.i.kyoto-u.ac.jp, makoto.yamada@oist.jp

Abstract

Wasserstein distance, which can be computed
by solving the optimal transport problem, is a
powerful method for measuring the dissimilar-
ity between documents. In the NLP commu-
nity, it is referred to as word mover’s distance
(WMD). One of the key challenges of Wasser-
stein distance is its computational cost since it
needs cubic time. Although the Sinkhorn algo-
rithm is a powerful tool to speed up to compute
the Wasserstein distance, it still requires square
time. Recently, a linear time approximation of
the Wasserstein distance including the sliced
Wasserstein and the tree-Wasserstein distance
(TWD) has been proposed. However, a linear
time approximation method suffers when the
dimensionality of word vectors is high. In this
study, we propose a method to combine feature
selection and tree approximation of Wasser-
stein distance to handle high-dimensional prob-
lems. More specifically, we use multiple word
embeddings and automatically select useful
word embeddings in a tree approximation of
Wasserstein distance. To this end, we approxi-
mate Wasserstein distance for each word vector
by tree approximation technique, and select the
discriminative (i.e., large Wasserstein distance)
word embeddings by solving an entropic reg-
ularized maximization problem. Through our
experiments on document classification, our
proposed method achieved high performance.

1 Introduction

Wasserstein distance, which is obtained by solv-
ing the optimal transport problem, is a powerful
method for measuring the distance between distri-
butions and is used in natural language processing
to measure dissimilarity between documents (Kus-
ner et al., 2015; Huang et al., 2016; Yurochkin et al.,
2019; Yokoi et al., 2020; Sato et al., 2022). Kus-
ner et al. (2015) proposed word mover’s distance
(WMD), which uses word vectors to compute the
ground metric of the Wasserstein distance and can
measure dissimilarity between documents using

Wasserstein distance. More specifically, given a
word embedding and the frequency of the words in
each document, WMD is formulated as an optimal
transport problem in the word embedding space.

Although the optimal transport problem can be
solved using a linear programming algorithm, it
requires cubic computational time with respect to
the number of samples. Cuturi (2013) proposed
to introduce the entropy regularization to the opti-
mal transport problem, which can be solved with a
square computational time with respect to the num-
ber of samples by the Sinkhorn algorithm. How-
ever, the Sinkhorn algorithm is too slow for prac-
tical application in tasks such as natural language
processing, that involve a large number of words.
The tree-Wasserstein distance (TWD) is a method
to measure the distance between distributions using
a tree structure, which can approximate Wasser-
stein distance with a linear computational time
with respect to the number of nodes in the tree
(Indyk and Thaper, 2003; Le et al., 2019; Back-
urs et al., 2020; Sato et al., 2020; Takezawa et al.,
2021, 2022; Yamada et al., 2022; Chen et al., 2022).
As a method for constructing tree structures, In-
dyk and Thaper (2003) proposed Quadtree, which
constructs a tree by recursively partitioning the
original space. In addition, Le et al. (2019) used
hierarchical clustering to construct a tree. Existing
approaches successfully approximate the original
optimal transport problems. However, when the
dimensionality of the vectors (e.g., word vectors)
is high, their performance can be degraded due to
the curse of dimensionality.

To address high-dimensional problems, robust
variants of optimal transport for high-dimensional
data have recently been proposed (Paty and Cu-
turi, 2019; Petrovich et al., 2022). Paty and Cuturi
(2019) proposed the subspace robust Wasserstein
distances (SRW), which projects data into a sub-
space and considers optimal transport in the sub-
space. Petrovich et al. (2022) proposed feature-
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robust optimal transport (FROT), which measures
distances between distributions with group feature
selection when feature groups are given as prior
information. Since SRW and FROT alternately
solve the feature selection optimization problems
and the optimal transport problem with either lin-
ear programming or the Sinkhorn algorithm, they
do not scale to large datasets. Therefore, applying
these techniques to NLP tasks such as document
classification that involve large amounts of data is
difficult.

In this study, we propose the tree-Wasserstein
distance with group feature selection (TWD-GFS)
to combine feature selection and TWD to han-
dle high-dimensional problems and scale to large
datasets. We consider a setting in which some
distributions are given as training data to select dis-
criminative feature groups in advance. TWD-GFS
first constructs a tree structure for each of the given
feature groups (i.e., word embeddings), and its out-
put is the weighted sum of the TWD calculated
using each tree. The weight for each feature group
can be obtained by solving an entropic regularized
maximization problem using the distribution of the
training data. After training, TWD-GFS can mea-
sure distances with selected features much faster
than SRW and FROT. Through the synthetic ex-
periments, we show that our proposed method can
select discriminative features in a high-dimensional
setting with a large number of noise features. Then,
through the real experiment, we consider multiple
word embeddings as feature groups and confirmed
the performance of TWD-GFS on word embedding-
based document classification tasks with word em-
bedding selection.
Contributions: Our contributions are as follows:

• We propose a fast TWD-based method to se-
lect discriminative feature groups and measure
distances between distributions.

• Through synthetic experiments, we show that
our proposed method can select discriminative
features in a high-dimensional setting with a
large number of noise features.

• Through real experiments with document clas-
sification tasks, we consider multiple word
embeddings as a feature group and show our
proposed method with word embedding selec-
tion achieved high performance.

Notation: In the following sections, we write 1n

for a n-dimensional vector with all ones, and Σn

for a n-dimensional probability simplex.

2 Related works

In this section, we introduce Wasserstein distance,
tree-Wasserstein distance, and optimal transport
with feature selection.

2.1 Wasserstein distance
Given two set of d-dimensional vectors in eu-
clidean spaces X = (x1, ...,xn) ∈ Rd×n,Y =
(y1, ...,ym) ∈ Rd×m and two weights a ∈
Σn,b ∈ Σm, we consider two discrete distribu-
tions µ =

∑n
i=1 aiδxi , ν =

∑m
j=1 bjδyj . The p-

Wasserstein distance, which measures the distance
between µ and ν, is defined as follows:

Wp(µ, ν)=


 min
Π∈U(µ,ν)

n∑

i=1

m∑

j=1

πijc(xi,yj)
p




1
p

,

where c(xi,yj) is a cost between xi and yj , Π is
the transport plan, and U(µ, ν) is the following set
of transport plans.

U(µ, ν)={Π ∈ Rn×m
+ : Π1m = a,Π⊤1n = b}.

This optimization problem is referred to as the
optimal transport problem (Villani, 2009; Peyré and
Cuturi, 2019). The optimal transport problem can
be solved using a linear programming algorithm,
however, it requires O(n3)(n = m) computational
time. Cuturi (2013) introduced entropy regulariza-
tion into the optimal transport problem, which can
be solved in O(nm) computational time using the
Sinkhorn algorithm.

2.2 Tree-Wasserstein distance
Tree-Wasserstein distance (TWD) (Indyk and
Thaper, 2003; Le et al., 2019) approximates the
1-Wasserstein distance on a tree structure in a lin-
ear time for the number of nodes in the tree. Given
a tree T = (V,E) where V and E are the sets of
nodes and edges, and a tree metric dT , the TWD
between two distributions µ and ν supported by T
is defined as follows:

WdT (µ, ν) =
∑

e∈E
we|µ(Γ(ve))− ν(Γ(ve))|,

where e is an edge, we ∈ R+ is a weight of the
edge e, ve is a node on the far side from the root of
edge e, and Γ(ve) is a set of nodes belonging to a
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subtree whose root is node ve. Moreover, Takezawa
et al. (2021) proposed a matrix-form formulation
of TWD.

Because TWD is computed using a given tree,
the tree metric must represent the metric of the orig-
inal space well. The tree metric is determined by a
tree structure and edge weights, and several meth-
ods to construct them have been proposed. First, In-
dyk and Thaper (2003) proposed Quadtree, which
is constructed by recursively dividing an original
space into 2d regions, and the edge weights are
2−l(e) where l(e) is the depth of the edge e. Sub-
sequently, Le et al. (2019) proposed an algorithm
based on clustering. This tree is constructed by re-
cursively clustering data with farthest-point cluster-
ing, and the edge weights are the distances between
the cluster centers in the original space. We call
this algorithm Clustertree.

Initial values must be provided for the center
point of the split in Quadtree and the cluster cen-
ters in Clustertree, so they involve the disadvan-
tage that the randomness of these initializations
can significantly change the tree structure. Tree-
sliced Wasserstein distance (TSW) (Le et al., 2019),
which uses multiple trees constructed based on dif-
ferent initializations, is defined as follows:

TSW (µ, ν) =
1

T

T∑

t=1

WdT (t)
(µ, ν),

where WdT (t)
(µ, ν) is TWD calculated on a tree t,

and T is the number of trees. TSW can mitigate
the effects of these initialization problems.

2.3 Optimal transport with feature selection

Wasserstein distance is highly dependent on a cost
function c. Therefore, discriminative features with
large distances between points are useful for cal-
culating the Wasserstein distance. Based on this
idea, robust variants of optimal transport for high-
dimensional data, which measures distances be-
tween distributions while selecting discriminative
features, have been proposed in recent years (Paty
and Cuturi, 2019; Petrovich et al., 2022). These
methods select discriminative features that max-
imize the distance of distributions and measure
distances in a selected feature space. Paty and
Cuturi (2019) proposed subspace robust Wasser-
stein distances (SRW), which projects data into
a discriminative subspace and computes optimal
transport problem in the subspace. Also, Petrovich

et al. (2022) proposed feature-robust optimal trans-
port (FROT), which measures distances based on
selected feature groups when the information of
feature groups is given.

3 Proposed method

In this section, we describe a problem setting con-
sidered in this research, our proposed method and
a comparison between our approach and existing
techniques.

3.1 Problem settings

We suppose that the features of x ∈ Rd are
separated by F groups x = (x(1)⊤ , ...,x(F )⊤)⊤

where x(f) ∈ Rdf and
∑F

f=1 df = d. Even if
no prior information on feature groups is given,
each feature can be considered as a single group.
We write the set of N vectors used in construct-
ing the tree as X = (x1, ...,xN ) ∈ Rd×N .
In document classification tasks, X is a set of
word vectors of all words in a dataset. We can
rewrite X as (X(1)⊤ , ...,X(F )⊤)⊤, where X(f) =

(x
(f)
1 , ...,x

(f)
N ) ∈ Rdf×N . For example, x(1)

i is a
word2vec, and x

(2)
i is a Glove vector when consid-

ering multiple word embeddings as feature groups.
In this study, we consider a setting in which some

distributions (i.e., documents) {µi}Mi=1 are given
as training data for group feature selection. M is
the number of available distributions. This setting
is natural for the experiments with the k-nearest
neighbor method in Section 5. Note that the labels
of distributions are not given.

3.2 Tree-Wasserstein distance with group
feature selection

For high-dimensional vectors, the performance of
TWD can be degraded due to the curse of dimen-
sionality. The existing feature-robust optimal trans-
port methods SRW (Paty and Cuturi, 2019) and
FROT (Petrovich et al., 2022) alternately solve
the optimal transport problem with a high cost
and the feature selection optimization problem.
Hence, they cannot scale to large datasets which
involve large amounts of words. Then, we propose
tree-Wasserstein distance with group feature selec-
tion (TWD-GFS) to combine feature selection and
TWD to handle high-dimensional problems and
scale to large datasets.

TWD-GFS constructs F trees using each feature
group X(f)(1 ≤ f ≤ F ), and then outputs the
weighted sum of F TWDs with learned weights
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w∗ ∈ ΣF as the distance of distributions. TWD-
GFS between µ and ν is defined as follows:

F∑

f=1

w∗
fWdTf

(µ, ν), (1)

where Tf is the tree constructed by using the fea-
ture group f and WdTf

(µ, ν) is TWD between two
distributions µ, ν using Tf .

As well as SRW (Paty and Cuturi, 2019) and
FROT (Petrovich et al., 2022), we learn weights to
maximize (1), distances between distributions. The
learned parameter w∗ requires that the weight wf

corresponding to the discriminative feature group
f be larger. We create an index-pair set Ω from
the available distributions {µi}Mi=1, and learn w by
solving the following problem:

w∗=arg max
w∈ΣF

∑

(i,j)∈Ω





F∑

f=1

wfWdTf
(µi, µj)



 . (2)

To simplify the notation, we define ϕΩ ∈ RF as
follows:

ϕΩ =




∑
(i,j)∈ΩWdT1

(µi, µj)
...∑

(i,j)∈ΩWdTF
(µi, µj)


 ,

where f th dimension of ϕΩ is the sum of TWDs
calculated for Ω using the tree Tf . By using ϕΩ,
we can rewrite (2) as follows:

w∗ = arg max
w∈ΣF

w⊤ϕΩ,

where w∗ is a one-hot vector with a value of 1 for
one dimension with the largest value in ϕΩ and
0 for the other dimensions. However, we some-
times want more than one useful feature group.
Then, we introduce the entropic regularization
H(w) = −∑F

f=1wf (logwf − 1) and consider
the following problem such that w∗ is no longer a
one-hot vector:

w∗ = arg max
w∈RF

w⊤ϕΩ + ηH(w) (3)

s.t. w⊤1F = 1,

where η ≥ 0 is a hyperparameter. The smaller η,
the closer w∗ is to a one-hot vector, and the larger
η, the closer w∗ is to a vector where all values
are 1/F . Note that H(w) naturally satisfies the
nonnegative constraint. Since H(w) is a strongly

Algorithm 1 Weight learning algorithm.

Input: The set of points separated by feature
groups X = (X(1)⊤ , ...,X(F )⊤)⊤ ∈ Rd×N ,
the training index-pair set Ω, the hyperparame-
ter η ∈ R.

Output: w∗ ∈ RF

1: Construct (T1, ..., TF ) by using each feature
group.

2: Calculate TWD for Ω using each tree and make

ϕΩ =




∑
(i,j)∈ΩWdT1

(µi, µj)
...∑

(i,j)∈ΩWdTF
(µi, µj)


 .

3: Set w∗
f as

exp

(
(ϕΩ)f

η

)

∑F
k=1 exp

(
(ϕΩ)k

η

)(1 ≤ f ≤ F ).

concave function, the constrained optimization of
(3) is a concave maximization and the optimal so-
lution of (3) is uniquely obtained as follows:

w∗
f =

exp
(
(ϕΩ)f

η

)

∑F
k=1 exp

(
(ϕΩ)k

η

) . (4)

This derivation is given in Appendix A.
Given the points X = (X(1)⊤ , ...,X(F )⊤)⊤ ∈

Rd×N , the index-pair set Ω, and the hyperparame-
ter η ∈ R, we obtain w∗ according to Algorithm
1. After learning w∗, we measure the distances of
the distributions by (1) using F trees constructed
during training.

3.3 Comparison with other methods

In this subsection, we compare our proposed ap-
proach with existing methods from two points of
view.

Optimal transport with feature selection SRW
(Paty and Cuturi, 2019) and FROT (Petrovich et al.,
2022) do not select features in advance and instead
optimize for feature selection while solving the op-
timal transport problem, which increases their com-
putational time. TWD-GFS selects feature groups
using some distributions in advance, so no addi-
tional optimization is required after training. There-
fore, TWD-GFS can measure distances between
distributions much faster than SRW and FROT after
training. The training time of TWD-GFS depends
on the time required to compute TWD, so it is fast
and does not have a high cost. In addition, TWD-
GFS uses multiple distributions as training data,
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(a) Synthetic 10 distributions. (b) The approximation performance of TWD with noise features.

Figure 1: The approximation performance of TWD with added noise features for synthetic 10 distributions.

which has the advantage of selecting useful fea-
ture groups in common across the entire dataset
compared to SRW and FROT.

TWD with learning tree structures and edge
weights TWD-GFS learns only tree weights and
uses Quadtree and Clustertree as trees. Several
methods have been proposed to learn tree structures
and edge weights (Takezawa et al., 2021; Yamada
et al., 2022; Chen et al., 2022), and the problem set-
ting used in these methods differs from that of our
proposed approach. First, Takezawa et al. (2021)
proposed a method to learn task-specific tree struc-
tures when the distributions and the labels of the
distributions are given as training data. Because
we consider the settings where the labels of the
distributions are not available, this method cannot
be applied in our problem setting. Subsequently,
Yamada et al. (2022) and Chen et al. (2022) pro-
posed the methods to learn edge weights or tree
structures and approximate the 1-Wasserstein dis-
tance accurately. These methods use all features,
making it difficult to apply them to our settings in
which the original data contains unnecessary fea-
tures. In future research, we expect these methods
to be combined with feature selection.

4 Synthetic experiments

In this section, we show that our proposed method
can select the correct feature groups in high-
dimensional settings with a lot of noise features.

In this experiment, we first created 10 distribu-
tions in two dimensions as shown in Figure 1a.
Each distribution contained 20 points and followed
a separate multidimensional normal distribution,
the covariance matrix of which was an identity ma-

trix and the mean of which was randomly sampled
from a uniform distribution U(−20, 20) in each
dimension. We can consider 10C2 = 45 pairs of
distributions. Next, we added some noise features
sampled from U(−20, 20) equal to the data range.
For example, when the number of the noise features
is 10, the number of all features is 2+10 = 12. We
calculated two lists, including a list of distances of
45 distribution pairs computed with 1-Wasserstein
distance for two-dimensional data, and a list of dis-
tances of 45 distribution pairs computed with TWD
for the data containing noise features. In Figure 1b,
we show the Pearson correlation coefficient (PCC)
between these lists when noise features were added.
Figure 1b shows that PCC worsened as the num-
ber of noise features increased for both Quadtree
and Clustertree, so TWD cannot approximate 1-
Wasserstein distance on an original dimension well
in the noisy settings due to the curse of dimension-
ality.

Selecting useful features is important in the high-
dimensional setting with a large number of noise
features as described above. We show that our
proposed method can correctly select the original
two-dimensional features among all features. In
the following experiment, the number of noise fea-
tures was 20 and the total number of all features
was 22, and we let x0, x1 be the original features
and x2, ..., x21 be the noise features. Suppose that
the feature groups as prior information are given as
[(0, 1), (2, 3), ..., (20, 21)], where two features are
given as a single group and the number of groups
is 11. We learned weights using Algorithm 1 and
checked the values of w∗. As input to Algorithm 1,
the data X were all 22-dimensional points belong-
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ing to 10 distributions, the index-pair set as training
data was Ω = {(0, 1), (0, 2), ..., (8, 9)}(|Ω| = 45),
which was all pairs of distributions, and the hy-
perparameter η was set to 0.1 in both of Quadtree
and Clustertree. We chose the small hyperparame-
ter because we know the true feature group in the
synthetic data, and it is reasonable to expect bet-
ter results with the small regularization parameter,
which makes the learned weights closer to a one-
hot vector. As a result, for both methods, the value
of the weight corresponding to the feature group
(0, 1) became more than 0.99, and other weight val-
ues were less than 0.01. These results indicate that
our proposed method correctly selected the original
two-dimensional features using the training data.

5 Real experiments

In this section, we evaluate the performance of
our proposed method through word embedding-
based document classification experiments on real
datasets. We used five open datasets1, including
BBCSPORT, TWITTER, AMAZON, CLASSIC,
and RECIPE. Each dataset has five splits of train-
ing and test data. The detail of the datasets is given
in Appendix B. We used the k-nearest neighbor
(k-NN) algorithm and evaluated its performance in
terms of the average of the test error rate computed
for each split. Moreover, we discuss the computa-
tional time of TWD-GFS and other methods with
optimal transport in Appendix E.

5.1 Word embeddings

The performance of document classification using
optimal transport depends on word embeddings,
and using the appropriate word embedding is very
important. The experiments in (Kusner et al., 2015)
showed that the performance of WMD on each
dataset differed depending on different word em-
bedding models and training corpora. In this study,
we consider using multiple word embeddings in-
stead of single word embedding to obtain good
performance across all datasets. A lot of meth-
ods to get a more useful word embedding from
given word embeddings have been proposed (Yin
and Schütze, 2016; Ghannay et al., 2016; Bolle-
gala et al., 2018; Bollegala and Bao, 2018), and
the concatenation of different word embeddings
for each word is often used as a powerful baseline
method. However, given the high dimensionality of
the concatenated word vector, performance may be

1https://github.com/mkusner/wmd

degraded due to the curse of dimensionality. Hence,
we can consider group feature selection with our
proposed method to select important word vectors
from the concatenated word vector. As a baseline
method to avoid the curse of dimensionality of the
concatenated word vector, we used PCA. The re-
sults of this experiment showed that our proposed
method with Clustertree achieved the best perfor-
mance among the methods using the concatenated
word vector. The results also demonstrated that
our proposed method achieved high performance
across all datasets.

5.2 Other feature-robust methods

We additionally compare our proposed method
with other feature-robust methods. We mentioned
FROT (Petrovich et al., 2022) and SRW (Paty and
Cuturi, 2019) as feature-robust methods. However,
FROT needs about 30 times and SRW needs about
800 times more than TWD-GFS as shown in Figure
5 in Appendix E. Thus, applying FROT and SRW
to document classification tasks is practically diffi-
cult. Therefore, we conducted experiments using
FROT on BBCSPORT, TWITTER, and RECIPE,
which are relatively small datasets. FROT is based
on group feature selection, so we used concate-
nated word embeddings and considered five word
embeddings as feature groups for FROT as well as
our proposed method.

5.3 Experimental settings

As a model of word embeddings, we used
word2vec2 (Mikolov et al., 2013), Glove3 (Pen-
nington et al., 2014), and fastText4 (Bojanowski
et al., 2017; Mikolov et al., 2018). These pretrained
models are publicly available, including versions
trained on different corpora. In this experiment,
we used five different pretrained models as shown
in Table 1. All of these word vectors were 300-
dimensional. Derived from the model and corpus,
we denote the five word embeddings as word2vec,
Glove(crawl), Glove(wiki), fastText(crawl), and
fastText(wiki), respectively.

We denote the concatenated word vectors and
the concatenated word vectors with PCA as Concat
and Concat(PCA) respectively. Concat had 1500 di-
mensions and we reduced Concat(PCA) from 1500
to 300 dimensions by PCA. Before using PCA, we

2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://fasttext.cc/docs/en/english-vectors.

html
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Model Corpus Vocabulary Vector length

word2vec Google News 3M 300

Glove
Common Crawl 2.2M 300
Wikipedia 2014 + Gigaword 5 400K 300

fastText Common Crawl 2M 300
(w/o subword) Wikipedia 2017, UMBC webbase corpus and statmt.org news 1M 300

Table 1: Pretrained word embeddings used in the real experiment.

first standardized word vectors. We used TSW with
three trees for the evaluation of baseline methods:
Concat, Concat (PCA), and five word embeddings.

As the hyperparameters, we decided the number
of index-pair set Ω to 10000, and the candidate
values of η to [0.01, 0.05, 0.1, 0.5, 1.0]. For Ω, we
randomly selected 10000 pairs of documents from
the training dataset. Because we considered a prob-
lem setting in which we cannot use the labels of
the distribution in training, we did not perform any
validation for η and instead determined the best
value based on the experimental results for each η.

We implemented Quadtree, Clustertree, and
TSW with reference to the public implementation5

of Yamada et al. (2022). Also, we used the pub-
lic implementation6 of Petrovich et al. (2022) for
FROT and set all hyperparameters to the default
ones of this implementation. Besides, we used the
public implementation7 for k-NN without valida-
tion of k. We evaluated all methods using Intel
Xeon CPU E5-2690 v4 (2.60GHz).

5.4 Preprocessing

In our proposed approach, the distances between
points in the feature groups must be measured on
the same scale. TWD-GFS learns the weights ac-
cording to the magnitude of TWD calculated for
each feature group and TWD is highly dependent
on the scale of the distance between points, so this
preprocessing step is required. In this experiment,
we calculated the distances between all words and
divided each word vector by the average of the
distances for each word embedding. With this pre-
processing, the distances between points in each
word embedding have an average of 1, and their
scales are aligned.

We explain other preprocessing required for us-
ing multiple word embeddings in Appendix C.

5https://github.com/oist/treeOT
6https://github.com/Mathux/FROT
7https://github.com/mkusner/wmd

5.5 Results

The performance for different η In Figure 2,
we show the test error rates of TWD-GFS for dif-
ferent η in Quadtree and Clustertree on the TWIT-
TER, CLASSIC, and RECIPE datasets. We show
the results for other datasets in Appendix D. We
concluded that the best hyperparameter across all
datasets was η = 1.0 for Quadtree and η = 0.1
for Clustertree, respectively. We show the mean of
weights learned with the best η on five splits for
each dataset in Figure 3. Figure 2 shows that the
performance with Quadtree improved as the value
of η increased. This result indicates that TWD-
GFS with Quadtree performed better when each
word vector was equally weighted, as shown in
Figure 3a. When constructing Quadtree, the re-
gions to be divided increase exponentially as the
dimension of the original space increases. Then,
each word vector is assigned to a different region,
so the distance between each word on the tree is
approximately equal. Therefore, the distances be-
tween distributions were approximately equal for
each word embedding, and group feature selection
based on distances did not work. Figure 2 also
shows that the performance with Clustertree for
η = 0.1 was higher than that for η = 1.0. Un-
like Quadtree, this result indicates that selecting
word embeddings with Clustertree, as shown in
Figure 3b, performed better than treating all word
embeddings equally. In addition, the test error rate
for η = 0.01 was large for the four datasets ex-
cept CLASSIC. The learned weights with η = 0.01
were close to the one-hot vector, so almost only one
word embedding was selected, which rendered the
performance unstable due to the randomness of the
initialization when constructing the tree. Moreover,
Figure 3b shows that Glove(crawl) and Glove(wiki)
were useful word embeddings across all datasets.

Comparison to the tree-based methods Next,
we compared the performance of TWD-GFS
against the tree-based methods comprising five
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Figure 2: The test error rates in the k-NN of our proposed method for each η. We write the mean of five splits and
the standard deviation in parentheses.

(a) Quadtree (η = 1.0)

(b) Clustertree (η = 0.1)

Figure 3: The mean of weights learned on five splits using our proposed method.

word embeddings, Concat, and Concat(PCA). The
results are shown in Table 2. The performance of
TWD-GFS is written only η = 1.0 for Quadtree
and η = 0.1 for Clustertree. At first, we found that
the best word embedding depends on the dataset
and the method of tree construction, and that each
word embedding performed best on at least one
item. From this result, it may be expected that
using these five word embeddings would perform
better across the dataset. Also, we found that the
performance of fastText(wiki) with Quadtree on
AMAZON is considerably worse than other combi-
nations of word embeddings of datasets. On AMA-
ZON, the tree does not effectively approximate
the original Euclidean space due to outlier words
represented using fastText(wiki), making its per-
formance worse. Using multiple word embeddings
may also be expected to mitigate such challenges
depending on a specific word embedding.

TWD-GFS with Quadtree did not significantly
outperform Concat and Concat(PCA) because, as
already mentioned, group feature selection did
not work and each word embedding is equally

weighted. TWD-GFS with Clustertree achieved
higher performance than Concat and Concat(PCA)
on all datasets. These results show that our pro-
posed method with Clustertree can select useful
features and mitigate the curse of dimensionality
better than simple dimensionality reduction. Also,
TWD-GFS with Clustertree achieved the best per-
formance among all word embeddings with Clus-
tertree on CLASSIC and RECIPE. For the other
dataset, TWD-GFS with Clustertree achieved high
average performance while the performance dif-
fered for each word embedding. For example with
Clustertree, fastText(wiki) achieved the best per-
formance on BBCSPORT, but performed poorly
on AMAZON and CLASSIC. The performance
of TWD-GFS was slightly worse than that of
fastText(wiki) in BBCSPORT, but is considerably
higher on AMAZON and CLASSIC.

On the other hand, the performance of TWD-
GFS with Clustertree is lower than that with
Quadtree on TWITTER and CLASSIC, despite
Quadtree not being effective for feature selection.
These results are primarily influenced by TWD’s
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Quadtree Clustertree

BBCSPORT TWITTER AMAZON CLASSIC RECIPE BBCSPORT TWITTER AMAZON CLASSIC RECIPE
word2vec 3.7 ± 0.9 28.6 ± 0.9 10.4 ± 0.4 4.0 ± 0.5 42.9 ± 1.1 3.3 ± 0.7 29.4 ± 0.9 11.1 ± 0.6 8.8 ± 1.5 42.5 ± 0.6
Glove(crawl) 4.2 ± 1.1 28.6 ± 0.5 10.6 ± 0.3 3.9 ± 0.6 42.7 ± 1.1 4.0 ± 0.8 29.5 ± 1.3 10.3 ± 0.3 5.1 ± 0.6 42.5 ± 0.6
Glove(wiki) 3.9 ± 0.7 28.1 ± 0.6 10.3 ± 0.3 4.0 ± 0.5 42.6 ± 1.0 3.9 ± 0.8 28.5 ± 1.0 10.4 ± 0.2 4.7 ± 0.5 42.4 ± 0.5
fastText(crawl) 3.8 ± 1.0 28.1 ± 0.7 10.4 ± 0.4 4.0 ± 0.6 42.8 ± 1.0 3.5 ± 0.8 29.5 ± 1.4 12.1 ± 0.8 6.9 ± 0.9 42.2 ± 0.9
fastText(wiki) 4.1 ± 0.5 28.7 ± 0.8 19.5 ± 2.4 4.2 ± 0.4 43.0 ± 0.8 3.2 ± 0.6 28.7 ± 1.1 12.7 ± 0.5 7.1 ± 0.6 42.4 ± 0.6

Concat 3.8 ± 0.8 28.6 ± 0.9 10.5 ± 0.4 4.0 ± 0.5 42.5 ± 1.0 3.8 ± 0.5 29.7 ± 0.9 10.6 ± 0.2 4.6 ± 0.3 42.2 ± 0.3
Concat (PCA) 4.2 ± 1.3 28.6 ± 0.8 10.8 ± 0.2 3.9 ± 0.6 42.6 ± 1.0 3.6 ± 0.8 29.5 ± 1.1 11.1 ± 0.2 4.8 ± 0.9 42.1 ± 0.3
TWD-GFS(η = 0.1) - - - - - 3.5 ± 1.2 29.1 ± 1.3 10.5 ± 0.2 4.3 ± 0.7 41.8 ± 0.6
TWD-GFS(η = 1.0) 3.8 ± 1.2 29.0 ± 0.7 10.8 ± 0.7 3.9 ± 0.6 42.6 ± 0.7 - - - - -

Table 2: Test error rates of all tree-based methods in the k-NN. The lowest test error rate in each dataset is shown in
bold. We write only η = 1.0 for Quadtree and η = 0.1 for Clustertree.

BBCSPORT TWITTER RECIPE

Concat 3.8 ± 0.5 29.7 ± 0.9 42.2 ± 0.3
Concat (PCA) 3.6 ± 0.8 29.5 ± 1.1 42.1 ± 0.3
TWD-GFS 3.5 ± 1.2 29.1 ± 1.3 41.8 ± 0.6

FROT 3.6 ± 0.7 29.1 ± 0.5 41.9 ± 1.0

Table 3: Test error rates of FROT and three Clustertree-
based methods in the k-NN. The error rates of
Clustertree-based methods are the same as in Table 2.

inherent performance characteristics rather than the
effectiveness of feature selection. Prior studies on
TWD (Le et al., 2019; Takezawa et al., 2021; Ya-
mada et al., 2022; Chen et al., 2022) have shown
that the effectiveness of Quadtree and Clustertree
varies depending on datasets and tasks. In our ex-
periments on TWITTER and CLASSIC, we found
that Quadtree outperforms Clustertree for other
baseline methods as well as TWD-GFS. It is impor-
tant to achieve higher performance than the base-
line using the same tree construction method.

Comparison to the feature-robust method Fi-
nally, we checked the performance of FROT.
We show the performance of FROT with the
Clustertree-based methods in Table 3. The per-
formance of FROT is slightly higher than Concat
and Concat (PCA) with Clustertree, which are our
baseline methods, and comparable to TWD-GFS
with Clustertree. This result shows that the effec-
tiveness of the feature selection of TWD-GFS with
Clustertree is equivalent to FROT. We emphasize
that TWD-GFS can achieve the equivalent perfor-
mance of FROT with much lower computational
time.

6 Conclusion

In this study, we proposed TWD-GFS to com-
bine TWD and group feature selection to handle
high-dimensional problems in the tree approxima-
tion of the Wasserstein distance. Unlike existing
feature-robust methods of optimal transport with

high computational costs, TWD-GFS can scale to
large datasets owing to the rapid computation of
TWD. TWD-GFS can select discriminative feature
groups by solving the entropic regularized maxi-
mization problem. Through synthetic experiments,
we showed that our proposed method can select dis-
criminative features in a high-dimensional setting
with a large number of noise features. Through
real experiments, we considered multiple word
embeddings as a feature group and applied TWD-
GFS to word embedding selection. We confirmed
that TWD-GFS with clustering-based trees outper-
formed the methods using concatenating word em-
beddings and achieved high performance across all
datasets.

Limitations

Our proposed approach involves two major limi-
tations. First, TWD-GFS cannot perform group
feature selection if training data is not provided.
We can apply TWD-GFS to k-NN because train-
ing data is given, but cannot apply it to some tasks
such as unsupervised semantic textual similarity
(STS) tasks in which training data is not available.
Second, the larger the number of feature groups,
the more time is required to construct trees. In our
real experiments, we used five word embedding,
which did not require a large amount of time for
constructing trees. If we had used one hundred
word embeddings, for example, it would take 20
times longer to construct trees. When the train-
ing data is given and the number of given feature
groups is not too large, TWD-GFS can be used as
a fast and powerful tool for group feature selection
and measuring the dissimilarity of documents.
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A The optimal solution of (3)

In this section, we prove that the optimal solution
of the constrained concave maximization problem
(3) becomes (4).

Proof. We define λ ∈ R as the lagrange multiplier
and define L(w) as follows:

L(w) = w⊤ϕΩ + ηH(w) + λ(w⊤1F − 1)

= w⊤ϕΩ − η
F∑

f=1

wf (logwf − 1)

+ λ(w⊤1F − 1).

Taking the derivative of L(w) with wf , we get

∂L(w)

∂wf
= (ϕΩ)f − η(logwf + 1− 1) + λ.

Setting ∂L(w)
∂wf

= 0, we get

η logwf = (ϕΩ)f + λ.

Solving for wf , we get

wf = exp

(
(ϕΩ)f

η

)
exp

(
λ

η

)
.

From w⊤1F = 1, we get

exp

(
λ

η

)
=

1
∑F

f=1 exp
(
(ϕΩ)f

η

) .

From the above results, the optimal solution w∗
f

becomes as follows:

w∗
f =

exp
(
(ϕΩ)f

η

)

∑F
k=1 exp

(
(ϕΩ)f

η

) .

Therefore, this is equal to (4).

B Dataset details

Table 4 shows the dataset details that include the
number of documents, the number of unique words
(bag-of-words dimension), and the average number
of unique words in one document.

name doc num BOW dim. avg words

BBCSPORT 737 13243 117
TWITTER 3108 6344 9.9
AMAZON 8000 42063 45.0
CLASSIC 7093 24277 38.6
RECIPE 4370 5708 48.5

Table 4: The datasets used for real experiments.

C Preprocessing for using multiple word
embeddings

In this section, we explain two preprocessing for
using multiple word embeddings in the experiments
of document classification.

First, because the number of words in the vocab-
ulary covered by each word embedding is different,
we deleted words that were not covered by each
word embedding and performed document classi-
fication with the deleted vocabulary. In Concat,
Concat(PCA), and our proposed method, we used
only the common part of the vocabulary covered by
the five word embeddings and removed the other
words. This preprocessing tends to disadvantage
the word embeddings with a small vocabulary and
our proposed method, but we confirmed that this
preprocessing did not affect performance on the
document classification tasks.

Second, we deleted apostrophes in a word for
the word embeddings other than word2vec. The
four word embeddings other than word2vec cover
few words containing apostrophes. However, they
cover the words with apostrophes removed in many
cases. For example, "we’ve", a contraction of "we
have", is not covered by four word embeddings
other than word2vec, but "weve" without the apos-
trophe is covered by all word embeddings. There-
fore, we deleted apostrophes in a word for the word
embeddings other than word2vec to increase the
available vocabulary.

D Additional experimental results

We show additional experimental results of docu-
ment classification in Figure 4.
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Figure 4: The test error rates in the k-NN of our proposed method for each η. We write the mean of five splits and
the standard deviation in parentheses.

E Computational time

In this section, we discuss the computational time
of TWD-GFS in terms of inference and training.

E.1 Inference time

First, we discuss the computational time of mea-
suring between distributions. We compared TWD-
GFS (Quadtree and Clustertree) with Wasserstein
distance solved by the Sinkhorn algorithm (Cuturi,
2013) and existing feature-robust methods that in-
clude FROT (Petrovich et al., 2022) and SRW (Paty
and Cuturi, 2019). We used a matrix-form formula-
tion proposed in (Takezawa et al., 2021) for TWD
and implemented Quadtree and Clustertree with
reference to the public implementation8 of Yamada
et al. (2022). We used the Python optimal transport
(POT) package9 for the Sinkhorn algorithm. We
used the public implementation of Petrovich et al.
(2022) for FROT10 and Paty and Cuturi (2019) for
SRW11. Both SRW and FROT alternately solve
optimal transport problems and feature selection
optimization problems, and we used the Sinkhorn
algorithm as their inner solver of optimal trans-
port problems. As a word embedding, we used
1500-dimensional vectors concatenating five word
embeddings as well as used in document classifi-
cation tasks. We gave five word embeddings as
feature groups to TWD-GFS and FROT and set a
subspace dimension of SRW to 300. We evaluated
all methods on NVIDIA RTX A6000 GPU.

8https://github.com/oist/treeOT
9https://pythonot.github.io/index.html

10https://github.com/Mathux/FROT
11https://github.com/francoispierrepaty/

SubspaceRobustWasserstein

We show the average computational time to com-
pare 500 documents with one document for all
datasets in Figure 5. We randomly sampled pairs
of one document and 500 documents 50 times and
measured the average computational time. We
wrote a time relative to TWD-GFS with Quadtree
above each bar. We show the same results sepa-
rately for each method in Figure 6 to facilitate un-
derstanding of the differences for datasets in each
method. Figure 5 shows that the computational
time of TWD-GFS is almost the same whether
Quadtree or Clustertree is used and faster than
other methods on all datasets. FROT and SRW
are much slower than TWD-GFS, so we confirmed
that applying existing feature-robust methods with
the Sinkhorn algorithm to a large dataset is difficult.
In particular, SRW is very slow because it uses an
eigenvalue decomposition as its inner solver for
dimensionality reduction. Figure 6 shows there are
slight differences in the computational time depend-
ing on datasets in each method. The computational
time of TWD-GFS depends on the number of all
unique words (BOW) in each dataset and that of the
other methods depends on the number of unique
words in a document. We confirmed the similar ten-
dency in Figure 6. For example, because RECIPE
has the smallest BOW dimension and many words
in one document, TWD-GFS on RECIPE requires
a low computational time and the other methods on
it require a relatively high computational time.

E.2 Training time

Second, we discuss the computational time of tree
construction and training (calculating TWD) for
TWD-GFS. We call Step 1 of Algorithm 1 as tree
construction, and Step 2 as training. We used the
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same experimental settings as in Section 5 and
recorded the computational time on one of the
five splits of training and test data. The results of
Quadtree and Clustertree are shown in Table 5 and
Table 6, respectively. The computational time for
training is small because the calculation of TWD
is fast. On the other hand, the computational time
for tree construction seems large at first glance, but
it is reasonable because we can reuse constructed
trees for inference while we need to make a cost
matrix for every inference in other methods.

Next, we discuss how the computational time
of tree construction and training scales different
datasets and feature groups. As shown in Table
5 and Table 6, the whole training time is reason-
able even when dealing with large datasets, such as
AMAZON. Though the cost of tree construction,
which is a large part of the whole training time, de-
pends on the BOW dimension of the dataset, we can
apply our proposed approach to large datasets in
practical scenarios. On the other hand, the compu-
tational time for tree construction is proportionate
to the number of feature groups. Therefore, TWD-
GFS may face difficulties when confronted with an
extensive number of feature groups, as highlighted
in the Limitations section. Exploring alternative
approaches for constructing trees that are not depen-
dent on the number of feature groups is identified
as a potential avenue for future research.
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Figure 5: The average computational time to compare 500 documents with one document. The time relative to
TWD-GFS with Quadtree is written above each bar.

Figure 6: The average computational time to compare 500 documents with one document separately for each
method. The values are the same as in Figure 5.

BBCSPORT TWITTER AMAZON CLASSIC RECIPE

Tree construction 82.0 32.7 293.1 144.0 36.5
Training 4.4 1.8 3.1 2.6 3.0
Tree const. + Training 86.4 34.5 296.2 146.6 39.5

Table 5: The computational time [seconds] for tree construction and training for Quadtree.

BBCSPORT TWITTER AMAZON CLASSIC RECIPE

Tree construction 48.4 23.4 139.3 84.2 25.1
Training 4.6 1.8 3.1 2.6 2.7
Tree const. + Training 53.0 25.2 142.4 86.8 27.8

Table 6: The computational time [seconds] for tree construction and training for Clustertree.
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