@inproceedings{bylinina-etal-2023-connecting,
title = "Connecting degree and polarity: An artificial language learning study",
author = "Bylinina, Lisa and
Tikhonov, Alexey and
Garmash, Ekaterina",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.938",
doi = "10.18653/v1/2023.emnlp-main.938",
pages = "15168--15177",
abstract = "We investigate a new linguistic generalisation in pre-trained language models (taking BERT Devlin et al. 2019 as a case study). We focus on degree modifiers (expressions like slightly, very, rather, extremely) and test the hypothesis that the degree expressed by a modifier (low, medium or high degree) is related to the modifier{'}s sensitivity to sentence polarity (whether it shows preference for affirmative or negative sentences or neither). To probe this connection, we apply the Artificial Language Learning experimental paradigm from psycholinguistics to a neural language model. Our experimental results suggest that BERT generalizes in line with existing linguistic observations that relate de- gree semantics to polarity sensitivity, including the main one: low degree semantics is associated with preference towards positive polarity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bylinina-etal-2023-connecting">
<titleInfo>
<title>Connecting degree and polarity: An artificial language learning study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Bylinina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexey</namePart>
<namePart type="family">Tikhonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Garmash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate a new linguistic generalisation in pre-trained language models (taking BERT Devlin et al. 2019 as a case study). We focus on degree modifiers (expressions like slightly, very, rather, extremely) and test the hypothesis that the degree expressed by a modifier (low, medium or high degree) is related to the modifier’s sensitivity to sentence polarity (whether it shows preference for affirmative or negative sentences or neither). To probe this connection, we apply the Artificial Language Learning experimental paradigm from psycholinguistics to a neural language model. Our experimental results suggest that BERT generalizes in line with existing linguistic observations that relate de- gree semantics to polarity sensitivity, including the main one: low degree semantics is associated with preference towards positive polarity.</abstract>
<identifier type="citekey">bylinina-etal-2023-connecting</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.938</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.938</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>15168</start>
<end>15177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Connecting degree and polarity: An artificial language learning study
%A Bylinina, Lisa
%A Tikhonov, Alexey
%A Garmash, Ekaterina
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F bylinina-etal-2023-connecting
%X We investigate a new linguistic generalisation in pre-trained language models (taking BERT Devlin et al. 2019 as a case study). We focus on degree modifiers (expressions like slightly, very, rather, extremely) and test the hypothesis that the degree expressed by a modifier (low, medium or high degree) is related to the modifier’s sensitivity to sentence polarity (whether it shows preference for affirmative or negative sentences or neither). To probe this connection, we apply the Artificial Language Learning experimental paradigm from psycholinguistics to a neural language model. Our experimental results suggest that BERT generalizes in line with existing linguistic observations that relate de- gree semantics to polarity sensitivity, including the main one: low degree semantics is associated with preference towards positive polarity.
%R 10.18653/v1/2023.emnlp-main.938
%U https://aclanthology.org/2023.emnlp-main.938
%U https://doi.org/10.18653/v1/2023.emnlp-main.938
%P 15168-15177
Markdown (Informal)
[Connecting degree and polarity: An artificial language learning study](https://aclanthology.org/2023.emnlp-main.938) (Bylinina et al., EMNLP 2023)
ACL