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Abstract
Eye movements in reading play a crucial role
in psycholinguistic research studying the cog-
nitive mechanisms underlying human language
processing. More recently, the tight coupling
between eye movements and cognition has also
been leveraged for language-related machine
learning tasks such as the interpretability, en-
hancement, and pre-training of language mod-
els, as well as the inference of reader- and
text-specific properties. However, scarcity of
eye movement data and its unavailability at
application time poses a major challenge for
this line of research. Initially, this problem
was tackled by resorting to cognitive models
for synthesizing eye movement data. How-
ever, for the sole purpose of generating human-
like scanpaths, purely data-driven machine-
learning-based methods have proven to be more
suitable. Following recent advances in adapt-
ing diffusion processes to discrete data, we pro-
pose SCANDL, a novel discrete sequence-to-
sequence diffusion model that generates syn-
thetic scanpaths on texts. By leveraging pre-
trained word representations and jointly em-
bedding both the stimulus text and the fixation
sequence, our model captures multi-modal in-
teractions between the two inputs. We evalu-
ate SCANDL within- and across-dataset and
demonstrate that it significantly outperforms
state-of-the-art scanpath generation methods.
Finally, we provide an extensive psycholin-
guistic analysis that underlines the model’s
ability to exhibit human-like reading behav-
ior. Our implementation is made available at
https://github.com/DiLi-Lab/ScanDL.

1 Introduction

As human eye movements during reading pro-
vide both insight into the cognitive mechanisms
involved in language processing (Rayner, 1998)
and information about the key properties of the
text (Rayner, 2009), they have been attracting in-
creasing attention from across fields, including cog-
nitive psychology, experimental and computational

Figure 1: Human scanpath vs. SCANDL.

psycholinguistics, and computer science. As a re-
sult, computational models of eye movements in
reading experienced an upsurge over the past two
decades. The earlier models are explicit compu-
tational cognitive models designed for fundamen-
tal research with the aim of shedding light on i)
the mechanisms underlying human language com-
prehension at different linguistic levels and ii) the
broader question of how the human language pro-
cessing system interacts with domain-general cog-
nitive mechanisms and capacities, such as working
memory or visual attention (Reichle et al., 2003;
Engbert et al., 2005; Engelmann et al., 2013). More
recently, traditional and neural machine learning
(ML) approaches have been adopted for the predic-
tion of human eye movements (Nilsson and Nivre,
2009, 2011; Hahn and Keller, 2016; Wang et al.,
2019; Deng et al., 2023b) which, in contrast to cog-
nitive models, do not implement any psychological
or linguistic theory of eye movement control in
reading. ML models, in turn, exhibit the flexibil-
ity to learn from and adapt to any kind of reading
pattern on any kind of text. Within the field of ML,
researchers have not only begun to create synthetic
scanpaths but also, especially within NLP, to lever-
age them for different use cases: the interpretability
of language models (LMs) (Sood et al., 2020a; Hol-
lenstein et al., 2021, 2022; Merkx and Frank, 2021),
enhancing the performance of LMs on downstream
tasks (Barrett et al., 2018; Hollenstein and Zhang,
2019; Sood et al., 2020b; Deng et al., 2023a),
and pre-training models for all kinds of inference
tasks concerning reader- and text-specific proper-
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ties (e.g., assessing reading comprehension skills or
L2 proficiency, detecting dyslexia, or judging text
readability) (Berzak et al., 2018; Raatikainen et al.,
2021; Reich et al., 2022; Haller et al., 2022b; Hahn
and Keller, 2023). For these NLP use cases, the
opportunity to generate large amounts of synthetic
scanpaths is crucial for two reasons: first, real hu-
man eye movement data is scarce, and its collection
is resource intensive. Second, relying on real hu-
man scanpaths entails the problem of not being
able to generalize beyond the respective dataset, as
gaze recordings are typically not available at infer-
ence time. Synthetic scanpaths resolve both issues.
However, generating synthetic scanpaths is not a
trivial task, as it is a sequence-to-sequence problem
that requires the alignment of two different input se-
quences: the word sequence (order of words in the
sentence), and the scanpath (chronological order of
fixations on the sentence).

In this paper, we present a novel discrete
sequence-to-sequence diffusion model for the gen-
eration of synthetic human scanpaths on a given
stimulus text: SCANDL, Scanpath Diffusion condi-
tioned on Language input (see Figure 1). SCANDL
leverages pre-trained word representations for the
text to guide the model’s predictions of the location
and the order of the fixations. Moreover, it aligns
the different sequences and modalities (text and
eye gaze) by jointly embedding them in the same
continuous space, thereby capturing dependencies
and interactions between the two input sequences.

The contributions of this work are manifold:
We (i) develop SCANDL, the first diffusion model
for simulating scanpaths in reading, which outper-
forms all previous state-of-the-art methods; we (ii)
demonstrate SCANDL’s ability to exhibit human-
like reading behavior, by means of a Bayesian psy-
cholinguistic analysis; and we (iii) conduct an ex-
tensive ablation study to investigate the model’s
different components, evaluate its predictive ca-
pabilities with respect to scanpath characteristics,
and provide a qualitative analysis of the model’s
decoding process.

2 Related Work

Models of eye movements in reading. Two com-
putational cognitive models of eye movement con-
trol in reading have been dominant in the field dur-
ing the past two decades: the E-Z reader model (Re-
ichle et al., 2003) and the SWIFT model (Engbert
et al., 2005). Both models predict fixation location

and duration on a textual stimulus guided by lin-
guistic variables such as lexical frequency and pre-
dictability. While these explicit cognitive models
implement theories of reading and are designed to
explain empirically observed psycholinguistic phe-
nomena, a second line of research adopts a purely
data-driven approach aiming solely at the accurate
prediction of eye movement patterns. Nilsson and
Nivre (2009) trained a logistic regression on manu-
ally engineered features extracted from a reader’s
eye movements and, in an extension, also the stim-
ulus text to predict the next fixation (Nilsson and
Nivre, 2011). More recent research draws inspi-
ration from NLP sequence labeling tasks. For in-
stance, Hahn and Keller (2016, 2023) proposed an
unsupervised sequence-to-sequence architecture,
adopting a labeling network to determine whether
the next word is fixated. Wang et al. (2019) pro-
posed a combination of CNNs, LSTMs, and a CRF
to predict the fixation probability of each word
in a sentence. A crucial limitation of these mod-
els is their simplifying the dual-input sequence
into a single-sequence problem, not accounting
for the chronological order in which the words
are fixated and thus unable to predict important
aspects of eye movement behavior, such as regres-
sions and re-fixations. To overcome this limitation,
Deng et al. (2023b) proposed Eyettention, a dual-
sequence encoder-encoder architecture, consisting
of two LSTM encoders that combine the word se-
quence and the fixation sequence by means of a
cross-attention mechanism; their model predicts
next fixations in an auto-regressive (AR) manner.

Diffusion models for discrete input. Ap-
proaches to apply diffusion processes to discrete
input (mainly text) comprise discrete and contin-
uous diffusion. Reid et al. (2022) proposed an
edit-based diffusion model for machine translation
and summarization whose corruption process hap-
pens in discrete space. Li et al. (2022) and Gong
et al. (2023) both proposed continuous diffusion
models for conditional text generation; whereas the
former adopted classifiers to impose constraints on
the generated sentences, the latter conditioned on
the entire source sentence. All of these approaches
consist of uni-modal input being mapped again to
the same modality.

3 Problem Setting

Consider a scanpath f rw = ⟨f1, . . . , fN ⟩, which
represents a sequence of N fixations generated by
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Figure 2: Discrete input representation of the concatenation x of sentence xwand scanpath xf . Each element of the
sequence x is represented by a triple of word index xidx, BERT input ID xbert, and position index xpos.

reader r while reading sentence w. Here, fj de-
notes the location of the jth fixation represented
by the linear position of the fixated word within
the sentence w (word index). The goal is to find
a model that predicts a scanpath f given sentence
w. We evaluate the model by computing the mean
Normalized Levenshtein Distance (NLD) (Leven-
shtein, 1965) between the predicted and the ground
truth human scanpaths. Note that several readers
r can read the same sentence w. In the follow-
ing, we will denote the scanpath by f instead of
f rw if the reader or sentence is unambiguous or the
(predicted) scanpath is not dependent on the reader.

4 SCANDL

Inspired by continuous diffusion models for text
generation (Gong et al., 2023; Li et al., 2022), we
propose SCANDL, a diffusion model that synthe-
sizes scanpaths conditioned on a stimulus sentence.

4.1 Discrete Input Representation

SCANDL uses a discrete input representation for
both the stimulus sentence and the scanpath. First,
we subword-tokenize the stimulus sentence w =
⟨w1, . . . , wM ⟩ using the pre-trained BERT Word-
Piece tokenizer (Devlin et al., 2019; Song et al.,
2021). We prepend special CLS and append special
SEP tokens to both the sentence and the scanpath
in order to obtain the stimulus sequence xw =
⟨wCLS , w1, . . . , wM , wSEP ⟩ and a corresponding
fixation sequence xf = ⟨fCLS , f1, . . . , fN , fSEP ⟩.
We introduce these special tokens in order to sepa-
rate the two sequences and to align their beginning
and ending. The two sequences are concatenated
along the sequence dimension into x = xw ⊕ xf .
An example of the discrete input x is depicted in
Figure 2 (blue row). We utilize three features to
provide a discrete representation for every element
in the sequence x. The word indices xidx align fix-
ations in xf with words in xw, and align subwords
in xw originating from the same word (yellow row
in Figure 2). Second, the BERT input IDs xbert,

derived from the BERT tokenizer (Devlin et al.,
2019), refer to the tokenized subwords of the stim-
ulus sentence for xw, while consisting merely of
PAD tokens for the scanpath xf , as no mapping be-
tween fixations and subwords is available (orange
row in Figure 2). Finally, position indices xpos cap-
ture the order of words within the sentence and the
order of fixations within the scanpath, respectively
(red row in Figure 2).

4.2 Diffusion Model

A diffusion model (Sohl-Dickstein et al., 2015)
is a latent variable model consisting of a forward
and a reverse process. In the forward process, we
sample z0 from a real-world data distribution and
gradually corrupt the data sample into standard
Gaussian noise zT̃ ∼ N (0, I), where T̃ is the
maximal number of diffusion steps. The latents
z1, . . . , zT̃ are modeled as a first-order Markov
chain, where the Gaussian corruption of each in-
termittent noising step t ∈ [1, . . . , T̃ ] is given by
zt ∼ q(zt|zt−1) = N (

√
1− βtzt−1, βtI), where

βt ∈ (0, 1) is a hyperparameter dependent on t.
The reverse distribution p(zt−1|zt) gradually re-
moves noise to reconstruct the original data sample
z0 and is approximated by pθ.

4.3 Forward and Backward Processes

In the following, we describe SCANDL’s projec-
tion of the discrete input into continuous space, its
forward noising process q and reverse denoising
process pθ (all depicted in Figure 3), as well as
architectural details and diffusion-related methods.

4.3.1 Forward Process: Embedding of
Discrete Input in Continuous Space

Following Gong et al. (2023), our forward
process deploys an embedding function
EMB (·) : NM+N+4 → R(M+N+4)×d that maps
from the discrete input representation into continu-
ous space, where N and M denote the number of
fixations and words, respectively, and d is the size
of the hidden dimension. This embedding learns
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Figure 3: The embedding layer, the forward process (noising) and the reverse process (denoising) of SCANDL.

a joint representation of the subword-tokenized
sentence xw and the fixation sequence xf . More
precisely, the embedding function EMB(x) :=
EMBidx(xidx) + EMBbert(xbert) + EMBpos(xpos)
is the sum of three independent embedding
layers (see Figure 7 in Appendix C). While the
word index embedding EMBidx and the position
embedding EMBpos are learned during training,
the pre-trained BERT model embedding EMBbert

is frozen. It maps the input IDs to pre-trained
BERT embeddings (Devlin et al., 2019) and adds
semantic meaning to the sentence. Only the word
index embedding EMBidx is corrupted by noise
during the forward process; this embedding is what
the model has to learn. The other two embeddings
remain unnoised.

Embedding the discrete input x into continu-
ous space using our embedding function EMB(·)
allows for a new transition z0 ∼ qϕ(z0|x) =
N (EMB(x), β0I) to extend the original forward
Markov chain, where z0 is the first latent variable
at noising step t = 0 and qϕ is the parametrized
embedding step of the forward process. Note that
this initial latent variable z0 is not only a projection
of the discrete data x into continuous space, i.e.
EMB(x), but is actually sampled from a normal
distribution that is centered around EMB(x).

4.3.2 Forward Process: Partial Noising
Let z0 := zw0 ⊕ zf0 be an initial latent variable,
where zw0 refers to the sentence subsequence and
zf0 to the fixation subsequence. Each subsequent
latent zt ∈ [z1, . . . , zT ] is given by zt := zwt ⊕ zft ,
where zwt remains unchanged, i.e., zwt = zw0 ,

and zft is noised, i.e., zft ∼ q(zft | zft−1) =
N (

√
1− βtz

f
t−1, βtI), with 1 ≤ t ≤ T , where

T is the amount of noise, and 1 ≤ T ≤ T̃ , where
T̃ is the maximal number of diffusion steps.1 This
partial noising (Gong et al., 2023) is crucial, as the
sentence on which a scanpath is conditioned must
remain uncorrupted.

4.3.3 Backward Process: Denoising
During the denoising process, a parametrized
model fθ learns to step-wise reconstruct z0 by de-
noising zT . Due to the first-order Markov property,
the joint probability of all latents can be factor-
ized as pθ(z0:T ) = p(zT )

∏T
t=1 pθ(zt−1|zt). This

denoising process is modeled as pθ(zt−1|zt) ∼
N (µθ(zt, t),Σθ(zt, t)), where µθ(·) and Σθ(·)
are the model’s fθ predicted mean and variance
of the true posterior distribution q(zt−1|zt). The
optimization criterion of the diffusion model is
to maximize the marginal log-likelihood of the
data log p(z0). Since directly computing and maxi-
mizing log p(z0) would require access to the true
posterior distribution q(zt−1|zt), we maximize the
variational lower bound (VLB) of log p(z0) as a
proxy objective, defined in Equation 1. However,
as SCANDL involves mapping the discrete input
into continuous space and back, the training ob-
jective becomes the minimization of LSCANDL, a
joint loss comprising three components, inspired
by Gong et al. (2023). LSCANDL is defined in Equa-
tion 2, where fθ is the parametrized neural network
trained to reconstruct z0 from zT (see Section 4.5).

1Note that T can be 0 (see Section 4.5); if T = 0, the
model learns to reconstruct x from z0 ∼ N (EMB(x), β0I).
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VLB := Eq(z1:T |z0)

[
log

p (zT ) pθ (z0 | z1)
q (zT | z0)

+
T∑

t=2

log
pθ (zt−1 | zt)
q (zt−1 | zt, z0)

]
(1)

argmin
θ

LSCANDL = argmin
θ




T∑

t=2

∥fθ (zt, t)− z0∥22
︸ ︷︷ ︸

LVLB

+ ∥EMB(x)− fθ(z1, 1)∥22︸ ︷︷ ︸
LEMB

− log pθ(x|z0)︸ ︷︷ ︸
Lround




(2)

The first component LVLB is derived from the VLB
(see Appendix G for a detailed derivation), and
aims at minimizing the difference between ground-
truth z0 and the model prediction fθ (zt, t). The
second component LEMB measures the difference
between the model prediction fθ (zt, t) and the
embedded input.2 The last component Lround cor-
responds to the reverse embedding, or rounding
operation, which pipes the continuous model pre-
diction through a reverse embedding layer to obtain
the discrete representation.

4.4 Inference

At inference time, the model fθ needs to con-
struct a scanpath on a specific sentence w. Specif-
ically, to synthesize the scanpath and condition
it on the embedded sentence EMB(xw), we re-
place the word index embedding of the scanpath
EMBidx(x

f
idx) with Gaussian noise, initializing it

as x̃f
idx ∼ N (0, I). We then concatenate the new

embedding ẼMB(xf ) = x̃f
idx + EMBbert(x

f
bert) +

EMBpos(x
f

pos) with EMB(xw) to obtain the model
input zT̃ . The model fθ then iteratively denoises
zT̃ into z0. At each denoising step t, an anchoring
function is applied to zt that serves two different
purposes. First, it performs rounding on zt (Li
et al., 2022), which entails mapping it into discrete
space and then projecting it back into continuous
space so as to enforce intermediate steps to com-
mit to a specific discrete representation. Second,
it replaces the part in zt−1 that corresponds to the
condition xw with the original EMB(xw) (Gong
et al., 2023) to prevent the condition from being
corrupted by being recovered by the model fθ. Af-
ter denoising zT̃ into z0, z0 is piped through the
inverse embedding layer to obtain the predicted
scanpath x̂f .

4.5 Model and Diffusion Parameters

Our parametrized model fθ consists of an encoder-
only Transformer (Vaswani et al., 2017) comprising

2Recall that EMB(x) ̸= z0, as z0 ∼ N (EMB(x), β0I).

12 blocks, with 8 attention heads and hidden dimen-
sion d = 256. An extra linear layer projects the
pre-trained BERT embedding EMBbert to the hid-
den dimension d. The maximum sequence length is
128, and the number of diffusion steps is T̃ = 2000.
We use a sqrt noise schedule (Li et al., 2022) to sam-
ple βt = 1−

√
t

T̃+s
, where s = 0.0001 is a small

constant corresponding to the initial noise level.
To sample the noising step T ∈

[
0, 1, . . . , T̃

]
, we

employ importance sampling as defined by Nichol
and Dhariwal (2021).

5 Experiments

To evaluate the performance of SCANDL against
both cognitive and neural scanpath generation
methods, we perform a within- and an across-
dataset evaluation. All models were implemented
in PyTorch (Paszke et al., 2019), and trained for
80,000 steps on four NVIDIA GeForce RTX 3090
GPUs. For more details on the training, see Ap-
pendix A. Our code is publicly available at https:
//github.com/DiLi-Lab/ScanDL.

5.1 Datasets

We use two eye-tracking-while-reading corpora to
train and/or evaluate our model. The Corpus of
Eye Movements in L1 and L2 English Reading
(CELER, Berzak et al., 2022) is an English sen-
tence corpus including data from native (L1) and
non-native (L2) English speakers, of which we only
use the L1 data (CELER L1). The Zurich Cognitive
Language Processing Corpus (ZuCo, Hollenstein
et al., 2018) is an English sentence corpus compris-
ing both “task-specific” and “natural” reading, of
which we only include the natural reading (ZuCo
NR). Descriptive statistics for the two corpora in-
cluding the distribution of reading measures and
participant demographics can be found in Section B
of the Appendix.
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5.2 Reference Methods

We compare SCANDL with other state-of-the-art
approaches to generate synthetic scanpaths includ-
ing two well-established cognitive models, the E-Z
reader model (Reichle et al., 2003) and the SWIFT
model (Engbert et al., 2005), and one machine-
learning-based model, Eyettention (Deng et al.,
2023b). Moreover, we include a human baseline,
henceforth referred to as Human, that measures
the inter-reader scanpath similarity for the same
sentence. Finally, we compare the model with two
trivial baselines. One is the Uniform model, which
simply predicts fixations iid over the sentence, and
the other one, referred to as Train-label-dist model,
samples the saccade range from the training label
distribution (Deng et al., 2023b).

5.3 Evaluation Metric

To assess the model performance, we compute the
Normalized Levenshtein Distance (NLD) between
the predicted and the human scanpaths. The Lev-
enshtein Distance (LD, Levenshtein, 1965) is a
similarity-based metric quantifying the minimal
number of additions, deletions and substitutions
required to transform a word-index sequence S of
a true scanpath into a word-index sequence Ŝ of
the model-predicted scanpath. Formally, the NLD
is defined as NLD(S, Ŝ) = LD/max(|S|, |Ŝ|).

5.4 Hyperparameter Tuning

To find the best model-specific and training-specific
hyperparameters of SCANDL, we perform triple
cross-validation on the New Reader/New Sentence
setting (for the search space, see Appendix A).

5.5 Within-Dataset Evaluation

For the within-dataset evaluation, we perform 5-
fold cross-validation on CELER L1 (Berzak et al.,
2022) and evaluate the model in 3 different settings.
The results for all settings are provided in Table 1.

New Sentence setting. We investigate the
model’s ability to generalize to novel sentences
read by known readers; i.e., the sentences in the
test set have not been seen during training, but the
readers appear both in the training and test set.

Results. SCANDL not only outperforms the
previous state-of-the-art Eyettention (Deng et al.,
2023b) as well as all other reference methods by a
significant margin, but even exceeds the similarity
that is reached by the Human baseline.

New Reader setting. We test the model’s ability
to generalize to novel readers; the test set consists
of scanpaths from readers that have not been seen
during training, although the sentences appear both
in training and test set.

Results. Again, our model both improves over
the previous state-of-the-art, the cognitive models,
as well as over the Human baseline. Even more, the
model achieves a greater similarity on novel readers
as compared to novel sentences in the previous
setting.

New Reader/New Sentence setting. The test set
comprises only sentences and readers that the
model has not seen during training to assess the
model’s ability to simultaneously generalize to
novel sentences and novel readers. Of the within-
dataset settings, this setting exhibits the most out-
of-distribution qualities.

Results. Again, SCANDL significantly outper-
forms the previous state-of-the-art. Again, in con-
trast to previous approaches and in line with the
other settings, SCANDL attains higher similarity
as measured in NLD than the Human baseline.

5.6 Across-Dataset Evaluation

To evaluate the generalization capabilities of
our model, we train it on CELER L1 (Berzak
et al., 2022), while testing it across-dataset on
ZuCo NR (Hollenstein et al., 2018). Although the
model has to generalize to unseen readers and sen-
tences in the New Reader/New Sentence setting, the
hardware setup and the presentation style includ-
ing stimulus layout of the test data are the same,
and the readers stem from the same population. In
the Across-Dataset evaluation, therefore, we not
only examine the model’s ability to generalize to
novel readers and sentences, but also to unfamiliar
hardware and presentation style.

Results. The results for this setting can also
be found in Table 1. SCANDL outperforms all
reference models, and achieves similarity with a
true scanpath on par with the Human baseline.

5.7 Ablation Study

In this section, we investigate the effect of omit-
ting central parts of the model: SCANDL without
the position embedding EMBpos and the pre-trained
BERT embedding EMBbert, and SCANDL with-
out the sentence condition (unconditional scanpath
generation). Additionally, we also consider the
two previously prevalent noise schedules, the linear
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Model New Sentence New Reader New Reader/New Sentence Across-Dataset
Uniform 0.779 ± 0.002† 0.781 ± 0.003† 0.782 ± 0.005† 0.802
Train-label-dist 0.672 ± 0.003† 0.672 ± 0.004† 0.674 ± 0.005† 0.723
E-Z Reader 0.619 ± 0.005† 0.620 ± 0.006† 0.622 ± 0.006† 0.667
SWIFT 0.607 ± 0.004† 0.608 ± 0.006† 0.607 ± 0.006† 0.703
Eyettention 0.580 ± 0.002† 0.580 ± 0.004† 0.578 ± 0.006† 0.697
SCANDL 0.516 ± 0.006 0.509 ± 0.014 0.515 ± 0.014 0.647
Human 0.538 ± 0.006 0.536 ± 0.004 0.538 ± 0.006 0.646 ± 0.002

Table 1: We report NLD ± standard error for all settings. The dagger † indicates models significantly worse than the
best model. In the New Sentence, New Reader, and New Reader/New Sentence settings, models are evaluated using
five-fold cross-validation. In the Across-Dataset setting, the model is trained on CELER L1 and tested on ZuCo NR.

Ablation case NLD ↓
SCANDL (original) 0.515 ± 0.014
Cosine 0.514 ± 0.018
Linear 0.519 ± 0.020
W/o condition 0.667 ± 0.015
W/o EMBbert and EMBpos 0.968 ± 0.002

Table 2: Ablation study. We report NLD ± standard
error for 5-fold cross-validation in the New Reader/New
Sentence setting.

(Ho et al., 2020) and the cosine (Nichol and Dhari-
wal, 2021) noise schedules (for their definition, see
Appendix C.2). All ablation cases are conducted in
the New Reader/New Sentence setting.

Results. As shown in Table 2, omitting all em-
beddings except for the word index embedding
results in a significant performance drop, as well
as training SCANDL on unconditional scanpath
generation. Moreover, changing the sqrt to a lin-
ear noise schedule does not enhance performance,
while there is a slight increase in performance for
the cosine noise schedule. However, this perfor-
mance difference between the sqrt and the cosine
schedule is statistically not significant.3

6 Investigation of Model Behavior

6.1 Psycholinguistic Analysis
We further assess SCANDL’s ability to exhibit
human-like gaze behavior by investigating psy-
cholinguistic phenomena observed in humans.
We compare the effect estimates of three well-
established psycholinguistic predictors — word
length, surprisal and lexical frequency effects — on
a range of commonly analyzed reading measures
— first-pass regression rate (FPR), skipping rate
(SR), first-pass fixation counts (FFC) and total fixa-
tion counts (TFC) — between human scanpaths on
the one hand and synthetic scanpaths generated by
SCANDL and our reference methods on the other

3p = 0.68 in a paired t-test.

hand.4 Effect sizes are estimated using Bayesian
generalized linear-mixed models with reading mea-
sures as target variables and psycholinguistic fea-
tures as predictors; logistic models for FPR and
SR, Poisson models for FFC and TFC. For the hu-
man data, we fit random intercepts.5 We compute
posterior distributions over all effect sizes using
brms (Bürkner, 2017), running 4 chains with 4000
iterations including 1000 warm-up iterations.

Results. We present the posterior distributions
of the effect estimates obtained for the four read-
ing measures in the New Reader/New Sentence set-
ting in Figure 4 and in Table 7 of the Appendix.
We observe that across all reading measures and
psycholinguistic predictor variables, SCANDL ex-
hibits effects that are most consistent with the hu-
man data. On the one hand, the qualitative pat-
tern, i.e., the sign of the estimates, for SCANDL-
scanpaths is identical to the pattern observed in the
human data, outperforming not only previous state-
of-the-art (SOTA) models such as Eyettention, but
even the two arguably most important cognitive
models of eye movements in reading, E-Z reader
and SWIFT. On the other hand, also the quantita-
tive pattern, i.e., the estimated size of each of the
effects, exhibited by ScanDL are most similar to
the ones observed in humans.

6.2 Emulation of Reading Pattern Variability

To assess whether SCANDL is able to emulate the
different reading patterns and their variability typ-
ical for human data, we compare the true and the
predicted scanpaths in the New Reader setting of
both datasets with respect to the mean and standard
deviation of a range of commonly analyzed read-
ing measures: regression rate, normalized fixation

4Full results plots, including the (psycholinguistically ir-
relevant) Uniform and Train-label-dist baselines, can be found
in Fig. 8 of the Appendix.

5For more details on the reading measures, computation
of the predictors and model specification, see Appendix D.
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Figure 4: Comparison of posterior effect estimates for
psycholinguistic phenomena on reading measures be-
tween original and predicted scanpaths. Lines represent
a 95% credible interval, means are denoted by dots.

count, progressive and regressive saccade length,
skipping rate, and first-pass count (see Table 8 in
the Appendix for a detailed definition).

Results. As depicted in Figure 5 and Table 9 in
the Appendix, the scanpaths generated by SCANDL
are similar in diversity to the true scanpaths for
both datasets. Not only is SCANDL’s mean value
of each reading measure close to the true data, but,
crucially, the model also reproduces the variability
in the scanpaths: for instance, in both datasets, the
variability is big in both the true and the predicted
scanpaths for regressive saccades, and is small in
both true and predicted scanpaths with regards to
progressive saccade lengths and first-pass counts.

Figure 5: Reading measures of true and predicted scan-
paths by SCANDL of the CELER and ZuCo datasets.

We also inspect the model’s ability to approxi-
mate reader-specific patterns. To this end, we aver-
age the above analyzed reading measures over all
scanpaths of a reader, and compute the correlation

with this reader’s mean NLD. The analysis sug-
gests that SCANDL more easily predicts patterns
of readers with shorter scanpaths and a low propor-
tion of regressions. Exact numbers are displayed
in Table 10 in the Appendix.

6.3 Qualitative Differences Between Models
To investigate whether SCANDL and the baseline
models exhibit the same qualitative pattern in their
predictive performance, that is, whether they gen-
erate good (or poor) predictions on the same sen-
tences, we compute the correlations between the
mean sentence NLDs of SCANDL and each of the
reference models. The correlations are all signifi-
cant, ranging from 0.36 (SWIFT) to 0.41 (Eyetten-
tion), though neither very strong nor wide-spread
(see Table 11 in the Appendix). For a more detailed
inspection of each model’s ability to predict certain
reading patterns (scanpath properties), we compute
the correlations between the above-introduced read-
ing measures (see Section 6.2) of a true scanpath
and the NLD of its predicted counterpart for all
models, in the New Reader/New Sentence setting.

Results. All models exhibit a significant positive
correlation between the NLD and both the regres-
sion rate and the normalized fixation count (see Ta-
ble 12 in the Appendix): long scanpaths with many
regressions and a high relative number of fixations
result in predictions with a higher NLD (i.e., are
more difficult). Further, models of the same type,
that is the two ML-based models SCANDL and
Eyettention on the one hand, and the two cognitive
models E-Z reader and SWIFT on the other hand,
exhibit very similar patterns. Overall, the cogni-
tive models have much stronger correlations than
the ML-based models. In particular, E-Z reader
and SWIFT exhibit a large positive correlation for
first-pass counts, meaning that they struggle with
scanpaths with a high number of first-pass fixations
on the words, while both SCANDL and Eyettention
have correlations close to zero, indicating that they
cope equally well for scanpaths with high or low
first-pass counts. In sum, while the cognitive mod-
els appear to be overfitting to specific properties
of a scanpath, SCANDL and Eyettention seem to
generalize better across patterns.

6.4 Investigation of the Decoding Progress
We further examine the denoising process of
SCANDL to determine at which step the Gaussian
noise is shaped into the embeddings representing
the word IDs of the scanpath. Figure 6 depicts three
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t-SNE plots (Hinton and Roweis, 2002) at different
steps of the decoding process. Only during the last
200 denoising steps do we see an alignment be-
tween the words in the sentence and the predicted
fixations on words in the scanpath, and a clear sep-
aration between these predicted fixations and the
predicted PAD tokens. At the very last denoising
step, all PAD tokens are mapped to a small number
of spatial representations.

Figure 6: t-SNE plots of the continuous model output
ẑt at different steps of the 2000-step denoising process.
Step 1999 refers to the last iteration (all noise removed).

7 Discussion

The experimental results show that our model estab-
lishes a new state-of-the-art in generating human-
like synthetic eye movement patterns across all
investigated evaluation scenarios, including within-
and across-dataset settings. Indeed, the similarity
of the model’s synthetic scanpaths to a human scan-
path even exceeds the similarity between two scan-
paths generated by two different human readers on
the same stimulus. This indicates that the model
learns to mimic an average human reader, abstract-
ing away from reader-specific idiosyncrasies.6 In-
terestingly, the model’s performance is better in
the New Reader than in both the New Sentence and
New Reader/New Sentence setting, which stands
in stark contrast to previous research which iden-
tified the generalization to novel readers as the

6This is further supported by the NLD not changing when
computed as average NLD between a SCANDL scanpath and
all human scanpaths on the same sentence in the test set.

main challenge (Reich et al., 2022). Further-
more, SCANDL’s SOTA performance in the Across-
Dataset setting, attaining parity with the human
baseline, corroborates the model’s generalizabil-
ity. This generalizability is further underlined by
the model emulating the variability in reading pat-
terns observed in the human data, even when being
evaluated across-dataset.

The omission of the positional embedding and
the pre-trained BERT embedding in the ablation
study highlights their importance — the fact that
discarding them yields a worse performance than
omitting the sentence condition, in which case
the model still receives the positional embedding,
stresses the importance of sequential information,
which is lost to a transformer model if not explic-
itly provided. Moreover, removing the sentence-
condition also emphasizes the importance of the
linguistic information contained in the sentence.
Overall, the ablation study emphasizes the impor-
tance of modeling scanpath prediction as a dual-
nature problem.

In contrast to cognitive models, SCANDL was
not designed to exhibit the same psycholinguistic
phenomena as human readers. However, our psy-
cholinguistic analysis demonstrates that SCANDL
nevertheless captures the key phenomena observed
in human readers which psycholinguistic theories
build on. Even more, in contrast to the cognitive
models, it appears to overfit less to certain read-
ing patterns. These findings not only emphasize
the high quality of the generated data, but also
open the possibility to use SCANDL when design-
ing psycholinguistic experiments: the experimental
stimuli can be piloted by means of simulations with
SCANDL to potentially detect unexpected patterns
or confounds and address them before conducting
the actual experiment with human readers. Fur-
ther, we can use SCANDL for human-centric NLG
evaluations using synthetic scanpaths.

8 Conclusion

We have introduced a new state-of-the-art model
for scanpath generation called SCANDL. It not only
resolves the two major bottlenecks for cognitively
enhanced and interpretable NLP, data scarcity and
unavailability at inference time, but also promises
to be valuable for psycholinguistics by producing
high quality human-like scanpaths. Further, we
have extended the application of diffusion models
to discrete sequence-to-sequence problems.
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Limitations

Eye movement patterns in reading exhibit a high de-
gree of individual differences between readers (Ku-
perman and Van Dyke, 2011; Jäger et al., 2020;
Haller et al., 2022a, 2023). For a generative model
of scanpaths in reading, this brings about a trade-
off between group-level predictions and predictions
accounting for between-reader variability. The fact
that SCANDL outperforms the human baseline in
terms of NLD indicates that it learns to emulate an
average reader. Whereas this might be the desired
behavior for a range of use case scenarios, it also
means that the model is not able to concomitantly
predict the idiosyncrasies of specific readers. We
plan to address this limitation in future work by
adding reader-specific information to the model.

Relatedly, since our model has been trained and
evaluated on a natural reading task, it remains un-
clear as to what extent it generalizes to task-specific
datasets, which arguably might provide more in-
formative scanpaths for the corresponding NLP
downstream task. As for the reader-specific exten-
sion of the model, this issue might be addressed by
adding the task as an additional input condition.

On a more technical note, a major limitation of
the presented model is its relatively high computa-
tional complexity in terms of run time and memory
at inference time (see Section A.2 in the Appendix).

Moreover, the metric used for model evaluation,
the Normalized Levensthein Distance, might not
be the ideal metric for evaluating scanpaths. Other
metrics that have been used to measure scanpath
similarity — MultiMatch (Jarodzka et al., 2010)
and ScanMatch (Cristino et al., 2010) — have been
questioned in terms of their validity in a recent
study (Kümmerer and Bethge, 2021); both metrics
have systematically scored incorrect models higher
than ground-truth models. A better candidate to
use in place of the Normalized Levenshtein Dis-
tance might be the similarity score introduced by
von der Malsburg et al. (2015), which has been
shown to be sensitive to subtle differences between
scanpaths on sentences that are generally deemed
simple. However, the main advantage of this met-
ric is that it takes into account fixation durations,
which SCANDL, in its current version, is unable to
predict.

This inability to concomitantly predict fixation
durations together with the fixation positions is
another shortcoming of our model. However, we
aim to tackle this problem in future work.

Finally, we would like to emphasize that, al-
though our model is able to capture psycholinguis-
tic key phenomena of human sentence processing,
it is not a cognitive model and hence does not claim
in any way that its generative process simulates or
resembles the mechanisms underlying eye move-
ment control in humans.

Ethics Statement

Working with human data requires careful ethical
consideration. The eye-tracking corpora used for
training and testing follow ethical standards and
have been approved by the responsible ethics com-
mittee. However, in recent years it has been shown
that eye movements are a behavioral biometric char-
acteristic that can be used for user identification, po-
tentially violating the right of privacy (Jäger et al.,
2020; Lohr and Komogortsev, 2022). The pre-
sented approach of using synthetic data at deploy-
ment time considerably reduces the risk of poten-
tial privacy violation, as synthetic eye movements
do not allow to draw any conclusions about the
reader’s identity. Moreover, the model’s capabil-
ity to generate high-quality human-like scanpaths
reduces the need to carry out eye-tracking experi-
ments with humans across research fields and ap-
plications beyond the use case of gaze-augmented
NLP. Another possible advantage of our approach
is that by leveraging synthetic data, we can over-
come limitations associated with the availability
and representativeness of real-world data, enabling
the development of more equitable and unbiased
models.

In order to train high-performing models for
downstream tasks using gaze data, a substantial
amount of training data is typically required. How-
ever, the availability of such data has been limited
thus far. The utilization of synthetic data offers
a promising solution by enabling the training of
more robust models for various downstream tasks
using gaze data. Nonetheless, the adoption of this
approach raises important ethical considerations,
as it introduces the potential for training models
that can be employed across a wide range of tasks,
including those that may be exploited for nefar-
ious purposes. Consequently, there exists a risk
that our model could be utilized for tasks that are
intentionally performed in bad faith.
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Appendix for SCANDL: A Diffusion Model for
Generating Synthetic Scanpaths on Texts
A Parameters and Hyperparameters

A.1 Diffusion-specific Hyperparameters
Hyperparameters concerning SCANDL or the noising process include the number of encoder blocks, the
number of attention heads in each attention layer, the hidden dimension of the transformer, the noise
schedule, the schedule sampling, the number of diffusion steps, and the input sequence length. We set
the number of diffusion steps to be T̃ = 2, 000, the input sequence length to 128, and opt for importance
sampling (Nichol and Dhariwal, 2021) as concerns the schedule sampling. The other hyperparameters
are determined during hyperparameter tuning; the search space as well as the best values can be found in
Table 3.

Concerning the noise schedules specifically, we list and define the ones we investigate below:
• linear noise schedule: βt = 10−4 ∗ (1− i) + 0.02 ∗ i, with i = t−1

T̃−1
,

• sqrt noise schedule: βt = 1−
√

t
T̃+s

, where s is a constant corresponding to the starting noise level,
which we set to s = 0.0001,

• cosine noise schedule: βt =
f(t)
f(0) , with f(t) = cos( t/T̃+0.008

1.008 ∗ π
2 )

2,

• truncated cosine noise schedule: βt =
f(t)
f(0) , with f(t) = cos( t/T̃+0.008

1.008 ∗ π
2 )

2,
• truncated linear noise schedule: βt = (10−4 + 0.01) ∗ (1− i) + (0.02 + 0.01) ∗ i, with i = t−1

T̃−1
.

We uniformly sample 60 model configurations that are evaluated in a triple cross-validation manner in
the New Reader/New Sentence setting, and we employ the normalized Levenshtein Distance (Levenshtein,
1965) as selection criterion.

Parameter Search space Best value
Number of encoder blocks {2, 4, 8, 12, 16} 12
Number of attention heads {2, 4, 8, 12, 16} 8
Hidden dimension d {128, 256, 512, 768} 256
Noise schedule {linear, sqrt, cosine, truncated cosine, truncated linear} sqrt

Table 3: Parameters and search space used for hyperparameter tuning.

A.2 Training-specific Hyperparameters
We train SCANDL for 80,000 learning steps in a parallel manner over 4 NVIDIA GeForceRTX 3090
GPUs using the AdamW optimizer (Loshchilov and Hutter, 2019), a learning rate of 1e-4, and a batch
size of 64.

A.3 Training Time, Inference Time, Parameters
SCANDL consists of about 130 million trainable parameters7, with an exception for the ablation case
of SCANDL without EMBbert and EMBpos and the ablation case without the sentence condition, which
both consist of about 22 million trainable parameters. Training the above-mentioned configuration of
SCANDL for 80,000 learning steps takes about 8 hours. The inference/decoding is done on one NVIDIA
GeForceRTX 3090 GPU and takes about 75 minutes for 2200 sentences, which is around 2 seconds per
sentence.

B Datasets

As regards reader-specific demographic information in CELER (Berzak et al., 2022), there are 69 L1
English speakers in CELER, of which 38 are female and 28 are male, one identifying as “other” and two

7130,855,296 parameters
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not divulging their gender. The mean age is 26.3 ± 6.7 years. Participants were recruited via a variety
of sources, such as mailing lists, advertisements on social media, or message boards. With respect to
ZuCo (Hollenstein et al., 2018), there are 12 participants, of which 5 are female and 7 male, all native
English speakers between the ages of 25 and 51, with a mean age of 35 ± 9.8 years.

Descriptive statistics for the two corpora used in our experiments can be found in Table 4. Descriptive
statistics on mean reading measures values in the L1 part of CELER Berzak et al. (2022) can be found in
Table 5

# Unique # Words per
Dataset Eye-tracker (sampling freq.) sentences sentence # Readers
CELER L1 (Berzak et al., 2022) EyeLink 1000 (1000 Hz) 5456 11.2 ± 3.6 69
ZuCo NR (Hollenstein et al., 2018) EyeLink 1000 Plus (500 Hz) 700 19.6 ± 9.8 12

Table 4: Descriptive statistics of the two eye-tracking corpora used for model training and evaluation,
CELER (Berzak et al., 2022) and ZuCo (Hollenstein et al., 2018). The number of words per sentence is re-
ported using the mean ± standard deviation.

Measure Value
Number of fixations per word 1.3 ± 0.1

Saccade length in chars 8.5 ± 0.4
Skip rate 0.36 ± 0.02

Regression rate 0.24 ± 0.01

Table 5: Mean eye movement measures with 95 % confidence intervals of the L1 speakers in CELER Berzak et al.
(2022).

C Implementation Details

C.1 Embedding Figure

Figure 7 shows the embedding function EMB(x) (·) : NM+N+4 → R(M+N+4)×d that maps from the
discrete input representation into continuous space, where d is the size of the hidden dimension. This
embedding learns a joint representation of the subword-tokenized sentence xw and the fixation sequence
xf . More precisely, the embedding function EMB(x) := EMBidx(xidx) + EMBbert(xbert) + EMBpos(xpos)
is the sum of three independent embedding layers.

Figure 7: Embeddings of the discrete input representations.

C.2 Ablation: Noise Schedules

For the ablation study, compare the sqrt noise schedule (Li et al., 2022) with the linear noise schedule (Ho
et al., 2020) and the cosine noise schedule (Nichol and Dhariwal, 2021). The definitions of these noise
schedules can be found in Table 6.
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Noise schedule Definition

Sqrt βt = 1−
√

t
T̃+s

, with s = 0.0001

Linear βt = 10−4 ∗ (1− i) + 0.02 ∗ i, with i = t−1
T̃−1

Cosine βt =
f(t)
f(0) , with f(t) = cos( t/T̃+0.008

1.008 ∗ π
2 )

2

Table 6: Noise schedules used for SCANDL and the ablation study.

D Psycholinguistic Analysis

D.1 Reading Measures and Predictors
D.1.1 Reading Measures
The reading measures used for the psycholinguistic analysis are defined as follows:

• first-pass regression rate (FPR; binary): 1 if a regression was initiated for a given word when visiting
it the first time, else 0.

• Skipping rate (SR; binary): 1 if the word was skipped when visited for the first time.
• first-pass fixation counts (FFC): Number of consecutive fixations on a word when visiting it the first

time.
• total fixation counts (TFC): Total number of fixations on a given word.

D.1.2 Psycholinguistic Predictors
The psycholinguistic predictors were computed as follows:

• Lexical frequency: Frequencies were extracted using the python library wordfreq:
https://github.com/rspeer/wordfreq

• Suprisal: For each token wjk in a given sentence j, surprisal is defined as − log p(wjk | wj<k). We
extracted surprisal values from the GPT-2 language model gpt-xl provided by Hugging Face (Rad-
ford et al., 2019).

D.2 Model specification
We model the reading measures y using Bayesian generalized linear models – logistic regression models
for the binary reading measures (skipping rate and first-pass regression rate), Poisson regression models
for the count-based reading measures (total fixation counts and first-pass fixation counts). The predictors
are word lenght (wl), lexical frequeny (freq) and surprisal (surp). For the human data, we include random
intercepts for subjects.

yij = g (β0 + β0i + β1 wlj + β2 freqj + β3 surpj) (3)

where yij refers to the reading measure of subject i for the jth word in a given sentence. β0 represents
the global intercept, and β0i the random intercept for subject i. g(·) denotes the linking function:
g(z) = ln z

1−z for the binary measures, with yij following a Bernoulli distribution; and g(z) = log z for
the count-based measures, with yij following a Poisson distribution. For the predicted data, we fit the
same model, but without by-subject random intercepts. As priors, we use the brms standard priors.

D.3 Full Results
In addition to the figures in the main part, Fig. 8 contains shows posterior effect estimates for all
baselines. Summary statistics (mean and Bayesian 95%-credible intervals) of the effect estimate posterior
distributions in the New Reader/New Sentence setting can be found in Table 7.
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Measure Model Mean 95% CI

le
xi

ca
lf

re
qu

en
cy

SR

Human 0.07 [0.05, 0.08]
ScanDL 0.21 [0.18, 0.24]
Eyettention −0.03 [−0.06,−0.01]
E-Z reader −0.08 [−0.11,−0.05]
SWIFT −0.07 [−0.10,−0.04]
Train-label-dist −0.04 [−0.07,−0.01]

FPR

Human −0.11 [−0.13,−0.09]
ScanDL −0.26 [−0.34,−0.19]
Eyettention −0.05 [−0.09,−0.01]
E-Z reader 0.09 [−0.02, 0.19]
SWIFT −0.16 [−0.29,−0.03]
Train-label-dist −0.11 [−0.16,−0.05]
Uniform −0.03 [−0.11, 0.06]

TFC

Human −0.12 [−0.13,−0.12]
ScanDL −0.20 [−0.21,−0.18]
Eyettention −0.02 [−0.03,−0.01]
E-Z reader 0.03 [0.01, 0.05]
SWIFT 0.03 [0.01, 0.05]
Train-label-dist 0.03 [0.02, 0.05]
Uniform 0.19 [0.17, 0.22]

FFC

Human −0.07 [−0.08,−0.06]
ScanDL −0.17 [−0.19,−0.15]
Eyettention −0.01 [−0.03, 0.00]
E-Z reader 0.03 [0.01, 0.05]
SWIFT 0.03 [0.01, 0.05]
Train-label-dist 0.04 [0.02, 0.06]
Uniform 0.17 [0.14, 0.20]

su
rp

ri
sa

l

SR

Human −0.23 [−0.24,−0.21]
ScanDL −0.25 [−0.29,−0.22]
Eyettention −0.11 [−0.14,−0.08]
E-Z reader −0.04 [−0.07,−0.01]
SWIFT −0.02 [−0.05, 0.01]
Train-label-dist −0.15 [−0.18,−0.12]
Uniform −0.26 [−0.30,−0.22]

FPR

Human −0.04 [−0.06,−0.02]
ScanDL −0.10 [−0.14,−0.05]
Eyettention −0.12 [−0.15,−0.08]
EZ reader −0.39 [−0.53,−0.25]
SWIFT −0.55 [−0.71,−0.40]
Train-label-dist −0.04 [−0.09, 0.01]
Uniform −0.08 [−0.15, 0.00]

TFC

Human 0.10 [0.09, 0.10]
ScanDL 0.08 [0.06, 0.09]
Eyettention 0.03 [0.01, 0.04]
E-Z reader −0.01 [−0.03, 0.01]
SWIFT −0.03 [−0.05,−0.01]
Train-label-dist 0.13 [0.11, 0.14]
Uniform 0.36 [0.34, 0.39]

FFC

Human 0.08 [0.07, 0.08]
ScanDL 0.08 [0.06, 0.09]
Eyettention 0.04 [0.02, 0.05]
E-Z reader −0.01 [−0.03, 0.01]
SWIFT −0.03 [−0.05,−0.01]
Train-label-dist 0.11 [0.09, 0.13]
Uniform 0.33 [0.30, 0.36]
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Measure Model Mean 95% CI

w
or

d
le

ng
th

SR

Human −0.95 [−0.97,−0.93]
SCANDL −0.64 [−0.68,−0.60]
Eyettention −0.34 [−0.37,−0.31]
E-Z reader −0.23 [−0.26,−0.20]
SWIFT −0.19 [−0.23,−0.16]
Train-label-dist 0.08 [0.05, 0.11]
Uniform 0.13 [0.08, 0.18]

FPR

Human 0.35 [0.34, 0.37]
SCANDL 0.41 [0.36, 0.45]
Eyettention 0.23 [0.19, 0.26]
E-Z reader 0.39 [0.28, 0.50]
SWIFT 0.12 [0.00, 0.24]
Train-label-dist −0.02 [−0.07, 0.03]
Uniform 0.10 [0.02, 0.18]

TFC

Human 0.24 [0.24, 0.25]
SCANDL 0.18 [0.17, 0.20]
Eyettention 0.10 [0.08, 0.11]
E-Z reader 0.13 [0.11, 0.15]
SWIFT 0.14 [0.12, 0.16]
Train-label-dist −0.08 [−0.09,−0.06]
Uniform −0.25 [−0.29,−0.22]

FFC

Human 0.21 [0.20, 0.22]
SCANDL 0.16 [0.14, 0.17]
Eyettention 0.09 [0.07, 0.10]
E-Z reader 0.13 [0.11, 0.15]
SWIFT 0.14 [0.12, 0.16]
Train-label-dist −0.07 [−0.09,−0.05]
Uniform −0.23 [−0.27,−0.19]

Table 7: Posterior distributions of effect sizes for three psycholinguistic predictors—lexical frequency, surprisal
and word length—in the New Reader/New Sentence setting. Estimates were computed via Bayesian generalized
linear models. We report means and 95%-credible intervals [2.5%; 97.5%] for three psycholinguistic effects on
four reading measures extracted from the fixation sequences.

15530



Figure 8: Comparison of posterior effect estimates for psycholinguistic phenomena on reading measures between
original and predicted scanpaths. Lines represent a 95% credible interval, means are denoted by dots.
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E Emulation of Reading Pattern Variability

Reading measure Definition
Regression rate The average probability of a word in the sentence to be the starting point of a regression
Normalized fixation count The average number of fixations in a sentence
Progressive saccade length The average length of progressive saccades
Regressive saccade length The average length of regressive saccades
Skipping rate The average probability of a word to be skipped
First-pass count The average number of fixations on a word during the first-pass reading of the sentence

Table 8: Definition of reading measures used for the investigation of the reading pattern predictability across readers
and the predictability patterns across models.

Reading measure CELER ZuCo
mean ± sd (true) mean ± sd (SCANDL) mean ± sd (true) mean ± sd (SCANDL)

First pass count 0.91 ± 0.21 0.90 ± 0.19 0.84 ± 0.21 0.73 ± 0.25
Normalized fixation count 1.24 ± 0.50 1.03 ± 0.30 1.15 ± 0.45 0.83 ± 0.34
Progr. saccade length 2.00 ± 0.60 1.75 ± 0.63 2.72 ± 1.06 2.00 ± 0.60
Regr. saccade length 2.55 ± 2.16 1.82 ± 2.24 4.44 ± 3.58 2.44 ± 3.05
Skipping rate 0.29 ± 0.13 0.27 ± 0.12 0.42 ± 0.16 0.41 ± 0.18
Regression rate 0.14 ± 0.10 0.08 ±0.07 0.15 ± 0.09 0.07 ± 0.07

Table 9: Mean and standard deviation of the reading measures of true and predicted scanpaths of both the
CELER (Berzak et al., 2022) and ZuCo (Hollenstein et al., 2018) datasets.

Reading measure CELER ZuCo
First-pass fixation count .08 -.39
Normalized fixation count .52∗∗∗ .07
Progr. saccade length .48∗∗∗ .77∗∗

Regr. saccade length .32∗∗ .04
Skipping rate .22 .70∗

Regression rate .62∗∗∗ .75∗∗

Table 10: Pearson correlations between reader’s mean NLD and mean reading measures. Statistically significant
correlations are marked with an asterisk. ∗∗∗)p ≤ 0.001,∗∗) p ≤ 0.01,∗) p ≤ 0.05.
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Baseline Pearson corr. coef.
Eyettention .41∗∗∗

Uniform .41∗∗∗

Traindist .39∗∗∗

E-Z Reader .37∗∗∗

SWIFT .36∗∗∗

Table 11: Pearson correlations between the mean sentence NLDs of SCANDL and every baseline model. Statistically
significant correlations are marked with an asterisk. ∗∗∗)p ≤ 0.001,∗∗) p ≤ 0.01,∗) p ≤ 0.05.

F Model-Specific Predictability Patterns

Model Reading measure Pearson corr.

SCANDL

Normalized fixation count 0.38∗∗∗

Regression rate 0.31∗∗∗

Progressive saccade length 0.31∗∗∗

Skipping rate 0.24∗∗∗

Regressive saccade length 0.22∗∗∗

First-pass fixation count 0.03

Eyettention

Progressive saccade length 0.31∗∗∗

Normalized fixation count 0.25∗∗∗

Regression rate 0.19∗∗∗

Skipping rate 0.18∗∗∗

Regressive saccade length 0.18∗∗∗

First-pass fixation count 0.02

E-Z reader

Normalized fixation count 0.69∗∗∗

First-pass fixation count 0.46∗∗∗

Regression rate 0.45∗∗∗

Regressive saccade length 0.16∗∗∗

Progressive saccade length 0.01
Skipping rate −0.2∗∗∗

SWIFT

Normalized fixation count 0.71∗∗∗

First-pass fixation count 0.49∗∗∗

Regression rate 0.47∗∗∗

Regressive saccade length 0.16∗∗∗

Progressive saccade length −0.02
Skipping rate −0.24∗∗∗

Traindist

Normalized fixation count 0.33∗∗∗

Regression rate 0.22∗∗∗

Progressive saccade length 0.2∗∗∗

Regressive saccade length 0.2∗∗∗

First-pass fixation count 0.16∗∗∗

Skipping rate 0.01

Uniform

Normalized fixation count 0.55∗∗∗

First-pass fixation count 0.41∗∗∗

Regression rate 0.37∗∗∗

Regressive saccade length 0.23∗∗∗

Progressive saccade length 0.03
Skipping rate −0.23∗∗∗

Table 12: Pearson correlations between the NLD of a predicted scanpath and reading measures of the corresponding
true scanpath, for SCANDL and the baselines. Statistically significant correlations are marked with an asterisk.
∗∗∗)p ≤ 0.001,∗∗) p ≤ 0.01,∗) p ≤ 0.05.
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G Derivation of Objective

In this section we derive the component LVLB (Equation 1) of the model’s training objective LSCANDL
from the variational lower bound (Equation 2). This derivation closely follows the one given by Luo
(2022).

The diffusion posterior is defined as

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1). (4)

Each forward transition in the noising process follows a first-order Markov property by being dependent
only on the immediately preceding latent, and it is written as

q(zt|zt−1) = N (
√
αtzt−1, (1− αt)I). (5)

The joint distribution of all latents of a diffusion model is then given by

p(z0:T ) = p(zT )
T∏

t=1

pθ(zt−1|zt), (6)

where p(zT ) = N (0, I).
A diffusion model can be optimized by maximizing the log-likelihood of the data log p(z0), which is

equivalent to maximizing the variational lower bound (VLB):
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log p(z0) = log

∫
p (z0:T ) dz1:T (7)

= log

∫
p (z0:T ) q (z1:T | z0)

q (z1:T | z0)
dz1:T (8)

= logEq(z1:T |z0)

[
p (z0:T )

q (z1:T | z0)

]
(9)

≥ Eq(z1:T |z0)

[
log

p (z0:T )

q (z1:T | z0)

]
(Jensen’s Inequality) (10)

= Eq(z1:T |z0)

[
log

p (zT )
∏T

t=1 pθ (zt−1 | zt)∏T
t=1 q (zt | zt−1)

]
Equations 4, 6 (11)

= Eq(z1:T |z0)

[
log

p (zT ) pθ (z0 | z1)
∏T

t=2 pθ (zt−1 | zt)
q (z1 | z0)

∏T
t=2 q (zt | zt−1)

]
(12)

= Eq(z1:T |z0)

[
log

pθ (zT ) pθ (z0 | z1)
q (z1 | z0)

+ log
T∏

t=2

pθ (zt−1 | zt)
q (zt | zt−1, z0)

]
(13)

= Eq(x1:T |x0)


log p (xT ) pθ (x0 | x1)

q (x1 | x0)
+ log

T∏

t=2

pθ (xt−1 | xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)


 (14)

= Eq(z1:T |z0)

[
log

p (zT ) pθ (z0 | z1)
q (z1 ∤ z0)

+ log
q (z1 ∤ z0)
q (zT | z0)

+ log
T∏

t=2

pθ (zt−1 | zt)
q (zt−1 | zt, z0)

]
(15)

= Eq(z1:T |z0)

[
log

p (zT ) pθ (z0 | z1)
q (zT | z0)

+
T∑

t=2

log
pθ (zt−1 | zt)
q (zt−1 | zt, z0)

]
(16)

= Eq(z1:T |z0) [log pθ (z0 | z1)] + Eq(z1:T |z0)

[
log

p (zT )

q (zT | z0)

]
+

T∑

t=2

Eq(z1:T |z0)

[
log

pθ (zt−1 | zt)
q (zt−1 | zt, z0)

]
(17)

= Eq(z1|z0) [log pθ (z0 | z1)] + Eq(zT |z0)

[
log

p (zT )

q (zT | z0)

]
+

T∑

t=2

Eq(zt,zt−1|z0)

[
log

pθ (zt−1 | zt)
q (zt−1 | zt, z0)

]
(18)

=
Eq(z1|z0) [log pθ (z0 | z1)]︸ ︷︷ ︸

reconstruction term

−DKL (q (zT | z0) ∥p (zT ))︸ ︷︷ ︸
prior matching term

−
(19)

T∑

t=2

Eq(zt|z0) [DKL (q (zt−1 | zt, z0) ∥pθ (zt−1 | zt))]︸ ︷︷ ︸
denoising matching term

] (20)

The denoising matching term contains KL Divergence terms (Csiszar, 1975) between the true denoising
transition q (zt−1 | zt, z0) and the approximated transition pθ (zt−1 | zt). For our learned distribution
pθ to match the ground-truth distribution q as closely as possible, the denoising matching term has to
be minimized. However, the summation term has a high optimization cost, which is why we make
optimization tractable by leveraging the Gaussian transition via Bayes rule:

q (zt−1 | zt, z0) =
q (zt | zt−1, z0) q (zt−1 | z0)

q (zt | z0)
, (21)

where q (zt | zt−1, z0) = q (zt | zt−1) = N
(√

αtzt−1, (1− αt) I
)

and, applying the reparametrization
trick, zt =

√
αtzt−1+

√
1− αtϵ with ϵ ∼ N (0, I) and zt−1 =

√
αt−1zt−2+

√
1− αt−1ϵ with ϵ ∼

N (0, I). The form of q (zt | z0) is derived by repeatedly applying the reparametrization trick. Let there
be 2T noise variables {ϵ∗t , ϵt}Tt=0

iid∼ N (0, I). A sample zt ∼ q (zt | z0) can be re-written as:
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zt =
√
αtzt−1 +

√
1− αtϵ

∗
t−1 (22)

=
√
αt

(√
αt−1zt−2 +

√
1− αt−1ϵ

∗
t−2

)
+
√
1− αtϵ

∗
t−1 (23)

=
√
αtαt−1zt−2 +

√
αt − αtαt−1ϵ

∗
t−2 +

√
1− αtϵ

∗
t−1 (24)

= √
αtαt−1zt−2 +

√
√
αt − αtαt−1

2
+
√

1− α2
t ϵt−2

(25)

=
√
αtαt−1zt−2 +

√
αt − αtαt−1 + 1− αtϵt−2 (26)

=
√
αtαt−1zt−2 +

√
1− αtαt−1ϵt−2 (27)

= . . . (28)

=

√√√√
t∏

i=1

αiz0 +

√√√√1−
t∏

i=1

αiϵ0 (29)

=
√
ᾱtz0 +

√
1− ᾱtϵ0 (30)

∼ N
(√

ᾱtz0, (1− ᾱt) I
)

(31)

q (zt−1 | zt, z0) can now be obtained by substituting into the Bayes’ expansion from Equation 21:
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q (zt−1 | zt, z0) = q (zt | zt−1, z0) q (zt−1 | z0)
q (zt | z0) (32)

=
N (

√
αtzt−1, (1− αt) I)N (

√
ᾱt−1z0, (1− ᾱt−1) I)

N
(√

ᾱtz0, (1− ᾱt) I
) (33)

∝ exp

{
−
[
(zt −√

αtzt−1)
2

2 (1− αt)
+

(zt−1 −
√
ᾱt−1z0)

2

2 (1− ᾱt−1)
−

(
zt −

√
ᾱtz0

)2

2 (1− ᾱt)

]}
(34)

= exp

{
−1

2

[
(zt −√

αtzt−1)
2

1− αt
+

(zt−1 −
√
ᾱt−1z0)

2

1− ᾱt−1
−

(
zt −

√
ᾱtz0

)2

1− ᾱt

]}
(35)

= exp

{
−1

2

[(
−2

√
αtztzt−1 + αtz

2
t−1

)

1− αt
+

(
z2t−1 − 2

√
ᾱt−1zt−1z0

)

1− ᾱt−1
+ C (zt, z0)

]}
(36)

∝ exp

{
−1

2

[
−2

√
αtztzt−1

1− αt
+

αtz
2
t−1

1− αt
+

z2t−1

1− ᾱt−1
− 2

√
ᾱt−1zt−1z0
1− ᾱt−1

]}
(37)

= exp

{
−1

2

[(
αt

1− αt
+

1

1− ᾱt−1

)
z2t−1 − 2

(√
αtzt

1− αt
+

√
ᾱt−1z0

1− ᾱt−1

)
zt−1

]}
(38)

= exp

{
−1

2

[
αt (1− ᾱt−1) + 1− αt

(1− αt) (1− ᾱt−1)
z2t−1 − 2

(√
αtzt

1− αt
+

√
ᾱt−1z0

1− ᾱt−1

)
zt−1

]}
(39)

= exp

{
−1

2

[
αt − ᾱt + 1− αt

(1− αt) (1− ᾱt−1)
z2t−1 − 2

(√
αtzt

1− αt
+

√
ᾱt−1z0

1− ᾱt−1

)
zt−1

]}
(40)

= exp

{
−1

2

[
1− ᾱt

(1− αt) (1− ᾱt−1)
z2t−1 − 2

(√
αtzt

1− αt
+

√
ᾱt−1z0

1− ᾱt−1

)
zt−1

]}
(41)

= exp



−1

2

(
1− ᾱt

(1− αt) (1− ᾱt−1)

)
z2t−1 − 2

(√
αtzt

1−αt
+

√
αt−1z0

1−ᾱt−1

)

1−ᾱt

(1−αt)(1−ᾱt−1)

zt−1





 (42)

= exp




−1

2

(
1− ᾱt

(1− αt) (1− ᾱt−1)

)

z

2
t−1 − 2

(√
αtzt

1−αt
+

√
ᾱt−1z0

1−ᾱt−1

)
(1− αt) (1− ᾱt−1)

1− ᾱt
zt−1







(43)

= exp



−1

2


 1

(1−αt)(1−ᾱt−1)
1−ᾱt




[
z2t−1 − 2

√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) z0

1− ᾱt
zt−1

]
 (44)

∝
N (

√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) z0

1− ᾱt︸ ︷︷ ︸
µq(zt,z0)

,
(1− αt) (1− ᾱt−1)

1− ᾱt
I
)

︸ ︷︷ ︸
Σq(t)

(45)

(46)

Therefore, each step zt−1 ∼ q (zt−1 | zt, z0) is normally distributed, with mean µq (zt, z0) and variance
Σq(t). Following Equation 45, the variance can be written as σ2

q (t)I, where

σ2
q (t) =

(1− αt) (1− ᾱt−1)

1− ᾱt
. (47)

As all α terms are given a priori by the noise schedule, the variance can be immediately computed. The
mean, however, must be parametrized, as it is a function of zt, hence µθ (zt, t). Since we choose the
variances of the two distributions to match exactly, we can optimize the KL Divergence by minimizing
the difference between the means of the two distributions:
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argmin
θ

DKL (q (zt−1 | zt, z0) ∥pθ (zt−1 | zt)) (48)

= argmin
θ

DKL (N (zt−1;µq,Σq(t)) ∥N (µθ,Σq(t))) (49)

= argmin
θ

1

2

[
log

|Σq(t)|
|Σq(t)|

− d+ tr
(
Σq(t)

−1Σq(t)
)
+ (µθ − µq)

T Σq(t)
−1 (µθ − µq)

]
(50)

= argmin
θ

1

2

[
log 1− d+ d+ (µθ − µq)

T Σq(t)
−1 (µθ − µq)

]
(51)

= argmin
θ

1

2

[
(µθ − µq)

T Σq(t)
−1 (µθ − µq)

]
(52)

= argmin
θ

1

2

[
(µθ − µq)

T (
σ2
q(t)I

)−1
(µθ − µq)

]
(53)

= argmin
θ

1

2σ2
q(t)

[
∥µθ − µq∥22

]
(54)

This means that we want to optimize µθ (zt, t) so that it matches µq (zt, z0), which is defined as

µq (zt, z0) =

√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) z0

1− ᾱt
, (55)

and µθ (zt, t) is defined as

µθ (zt, t) =

√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) ẑθ (zt, t)

1− ᾱt
, (56)

where ẑθ (zt, t) is parametrized by our transformer model fθ that is trained to predict z0 from zt. We
henceforth denote ẑθ (zt, t) by fθ (zt, t), where fθ is our transformer model and fθ (zt, t) is the model
prediction ẑ0 for ground-truth z0. The objective is then simplified to:

argmin
θ

DKL (q (zt−1 | zt, z0) ∥pθ (zt−1 | zt)) (57)

= argmin
θ

DKL (N (µq,Σq(t)) ∥N (µθ,Σq(t))) (58)

= argmin
θ

1

2σ2
q(t)

[∥∥∥∥
√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) fθ (zt, t)

1− ᾱt
−

√
αt (1− ᾱt−1) zt +

√
ᾱt−1 (1− αt) z0

1− ᾱt

∥∥∥∥
2

2

]

(59)

= argmin
θ

1

2σ2
q(t)

[∥∥∥∥
√
ᾱt−1 (1− αt) fθ (zt, t)

1− ᾱt
−

√
ᾱt−1 (1− αt) z0

1− ᾱt

∥∥∥∥
2

2

]
(60)

= argmin
θ

1

2σ2
q(t)

[∥∥∥∥
√
ᾱt−1 (1− αt)

1− ᾱt
(fθ (zt, t)− z0)

∥∥∥∥
2

2

]
(61)

= argmin
θ

1

2σ2
q(t)

ᾱt−1 (1− αt)
2

(1− ᾱt)
2

[
∥fθ (zt, t)− z0∥22

]
(62)

This means that maximizing the VLB can be achieved by learning a neural network that predicts the
ground truth from the noised version of the ground truth. In our case, we neglect the constant term and
denote the part of our optimization criterion that stems from the VLB as

LVLB = ∥fθ (zt, t)− z0∥22 .
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