@inproceedings{kang-etal-2023-values,
title = "From Values to Opinions: Predicting Human Behaviors and Stances Using Value-Injected Large Language Models",
author = "Kang, Dongjun and
Park, Joonsuk and
Jo, Yohan and
Bak, JinYeong",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.961/",
doi = "10.18653/v1/2023.emnlp-main.961",
pages = "15539--15559",
abstract = "Being able to predict people`s opinions on issues and behaviors in realistic scenarios can be helpful in various domains, such as politics and marketing. However, conducting large-scale surveys like the European Social Survey to solicit people`s opinions on individual issues can incur prohibitive costs. Leveraging prior research showing influence of core human values on individual decisions and actions, we propose to use value-injected large language models (LLM) to predict opinions and behaviors. To this end, we present Value Injection Method (VIM), a collection of two methods{---}argument generation and question answering{---}designed to inject targeted value distributions into LLMs via fine-tuning. We then conduct a series of experiments on four tasks to test the effectiveness of VIM and the possibility of using value-injected LLMs to predict opinions and behaviors of people. We find that LLMs value-injected with variations of VIM substantially outperform the baselines. Also, the results suggest that opinions and behaviors can be better predicted using value-injected LLMs than the baseline approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kang-etal-2023-values">
<titleInfo>
<title>From Values to Opinions: Predicting Human Behaviors and Stances Using Value-Injected Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongjun</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonsuk</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohan</namePart>
<namePart type="family">Jo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JinYeong</namePart>
<namePart type="family">Bak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Being able to predict people‘s opinions on issues and behaviors in realistic scenarios can be helpful in various domains, such as politics and marketing. However, conducting large-scale surveys like the European Social Survey to solicit people‘s opinions on individual issues can incur prohibitive costs. Leveraging prior research showing influence of core human values on individual decisions and actions, we propose to use value-injected large language models (LLM) to predict opinions and behaviors. To this end, we present Value Injection Method (VIM), a collection of two methods—argument generation and question answering—designed to inject targeted value distributions into LLMs via fine-tuning. We then conduct a series of experiments on four tasks to test the effectiveness of VIM and the possibility of using value-injected LLMs to predict opinions and behaviors of people. We find that LLMs value-injected with variations of VIM substantially outperform the baselines. Also, the results suggest that opinions and behaviors can be better predicted using value-injected LLMs than the baseline approaches.</abstract>
<identifier type="citekey">kang-etal-2023-values</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.961</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.961/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>15539</start>
<end>15559</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Values to Opinions: Predicting Human Behaviors and Stances Using Value-Injected Large Language Models
%A Kang, Dongjun
%A Park, Joonsuk
%A Jo, Yohan
%A Bak, JinYeong
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F kang-etal-2023-values
%X Being able to predict people‘s opinions on issues and behaviors in realistic scenarios can be helpful in various domains, such as politics and marketing. However, conducting large-scale surveys like the European Social Survey to solicit people‘s opinions on individual issues can incur prohibitive costs. Leveraging prior research showing influence of core human values on individual decisions and actions, we propose to use value-injected large language models (LLM) to predict opinions and behaviors. To this end, we present Value Injection Method (VIM), a collection of two methods—argument generation and question answering—designed to inject targeted value distributions into LLMs via fine-tuning. We then conduct a series of experiments on four tasks to test the effectiveness of VIM and the possibility of using value-injected LLMs to predict opinions and behaviors of people. We find that LLMs value-injected with variations of VIM substantially outperform the baselines. Also, the results suggest that opinions and behaviors can be better predicted using value-injected LLMs than the baseline approaches.
%R 10.18653/v1/2023.emnlp-main.961
%U https://aclanthology.org/2023.emnlp-main.961/
%U https://doi.org/10.18653/v1/2023.emnlp-main.961
%P 15539-15559
Markdown (Informal)
[From Values to Opinions: Predicting Human Behaviors and Stances Using Value-Injected Large Language Models](https://aclanthology.org/2023.emnlp-main.961/) (Kang et al., EMNLP 2023)
ACL