@inproceedings{pial-etal-2023-analyzing,
title = "Analyzing Film Adaptation through Narrative Alignment",
author = "Pial, Tanzir and
Aunti, Shahreen and
Pethe, Charuta and
Kim, Allen and
Skiena, Steven",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.962",
doi = "10.18653/v1/2023.emnlp-main.962",
pages = "15560--15579",
abstract = "Novels are often adapted into feature films, but the differences between the two media usually require dropping sections of the source text from the movie script. Here we study this screen adaptation process by constructing narrative alignments using the Smith-Waterman local alignment algorithm coupled with SBERT embedding distance to quantify text similarity between scenes and book units. We use these alignments to perform an automated analysis of 40 adaptations, revealing insights into the screenwriting process concerning (i) faithfulness of adaptation, (ii) importance of dialog, (iii) preservation of narrative order, and (iv) gender representation issues reflective of the Bechdel test.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pial-etal-2023-analyzing">
<titleInfo>
<title>Analyzing Film Adaptation through Narrative Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanzir</namePart>
<namePart type="family">Pial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahreen</namePart>
<namePart type="family">Aunti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charuta</namePart>
<namePart type="family">Pethe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Skiena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Novels are often adapted into feature films, but the differences between the two media usually require dropping sections of the source text from the movie script. Here we study this screen adaptation process by constructing narrative alignments using the Smith-Waterman local alignment algorithm coupled with SBERT embedding distance to quantify text similarity between scenes and book units. We use these alignments to perform an automated analysis of 40 adaptations, revealing insights into the screenwriting process concerning (i) faithfulness of adaptation, (ii) importance of dialog, (iii) preservation of narrative order, and (iv) gender representation issues reflective of the Bechdel test.</abstract>
<identifier type="citekey">pial-etal-2023-analyzing</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.962</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.962</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>15560</start>
<end>15579</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Film Adaptation through Narrative Alignment
%A Pial, Tanzir
%A Aunti, Shahreen
%A Pethe, Charuta
%A Kim, Allen
%A Skiena, Steven
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F pial-etal-2023-analyzing
%X Novels are often adapted into feature films, but the differences between the two media usually require dropping sections of the source text from the movie script. Here we study this screen adaptation process by constructing narrative alignments using the Smith-Waterman local alignment algorithm coupled with SBERT embedding distance to quantify text similarity between scenes and book units. We use these alignments to perform an automated analysis of 40 adaptations, revealing insights into the screenwriting process concerning (i) faithfulness of adaptation, (ii) importance of dialog, (iii) preservation of narrative order, and (iv) gender representation issues reflective of the Bechdel test.
%R 10.18653/v1/2023.emnlp-main.962
%U https://aclanthology.org/2023.emnlp-main.962
%U https://doi.org/10.18653/v1/2023.emnlp-main.962
%P 15560-15579
Markdown (Informal)
[Analyzing Film Adaptation through Narrative Alignment](https://aclanthology.org/2023.emnlp-main.962) (Pial et al., EMNLP 2023)
ACL
- Tanzir Pial, Shahreen Aunti, Charuta Pethe, Allen Kim, and Steven Skiena. 2023. Analyzing Film Adaptation through Narrative Alignment. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 15560–15579, Singapore. Association for Computational Linguistics.