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Abstract

Language Models (LMs) have demonstrated
impressive molecule understanding ability on
various 1D text-related tasks. However, they
inherently lack 2D graph perception — a crit-
ical ability of human professionals in compre-
hending molecules’ topological structures. To
bridge this gap, we propose MolCA: Molecular
Graph-Language Modeling with Cross-Modal
Projector and Uni-Modal Adapter. MolCA en-
ables an LM (i.e., Galactica) to understand both
text- and graph-based molecular contents via
the cross-modal projector. Specifically, the
cross-modal projector is implemented as a Q-
Former to connect a graph encoder’s repre-
sentation space and an LM’s text space. Fur-
ther, MolCA employs a uni-modal adapter (i.e.,
LoRA) for the LM’s efficient adaptation to
downstream tasks. Unlike previous studies
that couple an LM with a graph encoder via
cross-modal contrastive learning, MolCA re-
tains the LM’s ability of open-ended text gen-
eration and augments it with 2D graph infor-
mation. To showcase its effectiveness, we
extensively benchmark MolCA on tasks of
molecule captioning, IUPAC name prediction,
and molecule-text retrieval, on which MolCA
significantly outperforms the baselines. Our
codes and checkpoints can be found at https:
//github.com/acharkq/MolCA.

1 Introduction

Language Models (LMs) have demonstrated signif-
icant achievements across various domains (Devlin
et al., 2019; Zhao et al., 2023). Notably, the wealth
of biochemical literature in LMs’ pretraining data
has enabled LMs to obtain a high-level understand-
ing of biochemical concepts and molecule prop-
erties. This can be reflected by their promising
performances in biochemical and medical question-
answering benchmarks (Taylor et al., 2022; Ope-
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nAI, 2023). Therefore, it becomes increasingly ur-
gent to incorporate these LMs to augment research
in chemistry and biology.

For this purpose, we aim to utilize LMs for
molecule understanding. As shown in Figure 1a,
most existing LMs (Touvron et al., 2023; Zhang
et al., 2022; Zeng et al., 2022) represent molecules
by their 1D Simplified Molecular Input Line Entry
System (SMILES) strings (Weininger, 1988) and
process them in a manner similar to texts. While
convenient, treating molecules as strings overlooks
the molecules’ 2D graph representations, which are
crucial to human professionals in comprehending
the molecule structures (Wells, 2012). To com-
bat that, recent works (Su et al., 2022; Liu et al.,
2022b) represent molecules as graphs and use a
Graph Neural Network (GNN; Xu et al., 2019) as
the molecular graph encoder. The graph encoder
is trained jointly with an LM through cross-modal
contrastive learning (Radford et al., 2021; Li et al.,
2022), as illustrated in Figure 1b. However, the ap-
plication scope of cross-modal contrastive learning
is limited (Alayrac et al., 2022): it is suitable for
retrieval tasks, but is insufficient for open-ended
molecule-to-text generation tasks, such as molecule
captioning (Edwards et al., 2022) and molecule’s
IUPAC name prediction (Taylor et al., 2022). This
is because molecule-to-text generation is a condi-
tional generation task (Keskar et al., 2019; Raffel
et al., 2020). It requires the LM to understand 2D
graphs as the generation conditions, which con-
trastive learning cannot achieve. Su et al. (2022)
attempt to directly input 2D graphs’ representations
into LMs, however showing limited improvement.

To bridge this gap, we devise MolCA: Molecular
Graph-Language Modeling with Cross-Modal Pro-
jector and Uni-Modal Adapter. MolCA enables the
LM to understand 2D graphs as inputs, therefore
effectively conditioning the molecule-to-text gener-
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ation process. To enable the LM to understand 2D
graphs, we identify that the key challenge is cross-
modal alignment (Li et al., 2023; Merullo et al.,
2023; Alayrac et al., 2022): translating the repre-
sentations of 2D graphs into 1D soft prompts (Li
and Liang, 2021) in the text space so that the LM
can understand. This translation is facilitated by the
cross-modal projector, bridging the gap between
the graph encoder’s representation space and the
LM’s input space, as illustrated in Figure 1. Specif-
ically, we implement the cross-modal projector as
a Q-Former (Li et al., 2023) due to its effective-
ness in vision-language tasks. With an effective
cross-modal projector, we can harness the power
of existing large LMs (Taylor et al., 2022; Tou-
vron et al., 2023) for molecule-to-text generation.
However, given a large LM with billion scale pa-
rameters, its efficiency of downstream fine-tuning
arises as a new problem. Therefore, we integrate
the LM with a uni-modal adapter, i.e., LoRA (Hu
et al., 2022), to enable its efficient adaptation.

As Figure 2 illustrates, MolCA uses a three-stage
training pipeline to integrate its components. The
two pretrain stages aim to develop the cross-modal
alignment ability of the cross-modal projector. In
pretrain stage 1, the projector and the encoder are
trained to extract the molecule features that are
the most relevant to the text. This stage endows
the resulting model with powerful molecule-text
retrieval ability. In pretrain stage 2, the cross-modal
projector is connected to a frozen LM and trained
for molecule captioning. This task forces the cross-
modal projector to produce soft prompts that the
LM can understand. In the final stage, MolCA is

fine-tuned for downstream generation tasks.
Our contributions can be summarized as follows:

• We propose MolCA, a pioneering method for
molecular language modeling. MolCA enables
an LM to perceive 2D molecular graphs, thereby
facilitating molecule-to-text generation tasks.

• MolCA sets new state-of-the-arts in a variety
of benchmarks. It surpasses the baselines by
4.0 and 8.7 BLEU-2 for molecule captioning on
CheBI-20 (Edwards et al., 2022) and our curated
PubChem324k dataset, respectively. Moreover,
in predicting IUPAC names, MolCA shows a
significant advantage of 10.0 BLEU-2 over the
baselines. For molecule-text retrieval, MolCA
outperforms the baselines by 20% retrieval ac-
curacy in PubChem324k and achieves the best
performances in PCDes (Zeng et al., 2022) and
MoMu datasets (Su et al., 2022).

• We conduct ablation studies to show MolCA’s
effectiveness of incorporating 2D graphs into
LMs for molecule-related tasks. Additionally,
our quantitative analysis shows that incorporat-
ing 2D graphs helps improve the LM’s ability to
count functional groups inside molecules.

2 Model Architecture
Here we introduce three key components of
MolCA’s architecture: 1) a graph encoder for 2D
structure understanding, 2) an LM for text gener-
ation, and 3) a cross-modal projector to connect
the graph encoder and the LM. We describe the
uni-modal adapter in Section 3.3.

Graph Encoder. Given the rich structural pat-
terns in molecules, we leverage a GNN-based en-
coder to encode molecular graphs. Specifically,
we employ a five-layer GINE (Hu et al., 2020)
that is pretrained on 2 million molecules from the
ZINC15 (Sterling and Irwin, 2015) dataset by con-
trastive learning (You et al., 2020). Given a molec-
ular graph g, the graph encoder f can generate
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structure-aware features for every node of g:

f(g) = Z ∈ R|g|×d, (1)

where |g| denotes the number of nodes in g.
Language Model. To achieve effective text gen-

eration performance, we employ Galactica (Tay-
lor et al., 2022) as the base LM. Galactica is pre-
trained on a large collection of scientific litera-
ture, which encompasses fields like chemistry, bi-
ology, and medicine. Its promising performance
in text-based science question-answering bench-
marks (Hendrycks et al., 2021; Jin et al., 2019) un-
derscores its understanding of high-level biochem-
ical concepts. Notably, Galactica can process 1D
SMILES of molecules, which can potentially ben-
efit our downstream tasks. Galactica is a decoder-
only transformer LM based on the OPT (Zhang
et al., 2022) architecture.

Cross-Modal Projector. We implement the
cross-modal projector as a Querying-Transformer
(Q-Former) (Li et al., 2023) to map the graph en-
coder’s outputs to the LM’s input text space. As
shown in Figure 3, Q-former has different pro-
cedures for processing 2D molecular graphs and
1D texts. Given text inputs, Q-Former inserts
[CLS] tokens at the beginning and processes the
texts by N layers of self-attention modules and
feed-forward networks. The self-attention modules
adopt causal masks (Raffel et al., 2020) when the
pretraining task is text generation. On the other
hand, given a molecular graph g, Q-Former works
as a molecule feature extractor. Specifically, it
maintains a set of learnable query tokens {qk}

Nq

k=1

as inputs. These query tokens can interact with
the graph encoder’s output Z through the cross-
attention modules (Vaswani et al., 2017) and extract
molecule features. The cross-attention modules are
added every two layers. Additionally, the query

tokens can interact with the text inputs through the
same self-attention modules. Note that, the query
tokens and text inputs are processed by different
feed-forward networks, in order to maintain capac-
ities for processing molecules and texts.

We initialize Q-Former from Sci-BERT (Belt-
agy et al., 2019), an encoder-only transformer
pretrained on scientific publications. Q-Former’s
cross-attention modules are randomly initialized.

3 Training Pipeline

This section delves into the details of MolCA’s
three-stage training pipeline (cf. Figure 2). The
two pretrain stages leverage a dataset of molecule-
text pairs D = {(g1,y1), (g2,y2), ...} to train the
cross-modal projector and the graph encoder. The
goal of pretraining is to translate 2D molecular
graphs into soft prompts that a frozen LM can un-
derstand. The fine-tune stage focuses on efficient
adaptation to downstream generation tasks.

3.1 Pretrain Stage 1: Learning to Extract
Text Relevant Molecule Representations

In this stage, we aim to optimize the cross-modal
projector (i.e., Q-Former) to extract the molecule
features most relevant to the text input. This stage
serves as a “warmup” training for the cross-modal
projector before connecting to the LM. Inspired
by BLIP2 (Li et al., 2023), we simultaneously ap-
ply three cross-modal pretraining tasks that are
tailored for Q-Former’s architecture: molecule-text
contrasting, molecule-text matching, and molecule
captioning. These pretraining tasks endow the Q-
Former with a strong molecule-text retrieval ability.
Therefore, we save the resulting model from this
stage for downstream retrieval tasks. We now elab-
orate on the three pretraining tasks.

Molecule-Text Contrasting (MTC). We apply
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cross-modal contrastive learning (Radford et al.,
2021) to train the Q-Former to extract text-revelant
molecule features. In this task, query tokens and
text inputs are fed into the Q-Former separately
(left of Figure 3) to obtain Q-Former’s molecule
representations and text representations.

Formally, let {(g1,y1), ..., (gB,yB)} be a batch
of molecule-text pairs. We denote gi’s Q-Former
representations as {mik}Nq

k=1 (each element for one
query token), and denote yi’s Q-Former representa-
tion as ti (representation of the [CLS] token). For
arbitrary i, j ∈ [1, B], we measure the similarity
between ti and {mjk}Nq

k=1 by computing the max-
imum similarity between ti and every element in
{mjk}Nq

k=1. The MTC loss ℓMTC can be written as:

ℓg2t =
B∑

i=1

log
exp(maxk cos(mik, ti)/τ)∑B
j=1 exp(maxk cos(mik, tj)/τ)

,

ℓt2g =
B∑

i=1

log
exp(maxk cos(ti,mik)/τ)∑B
j=1 exp(maxk cos(ti,mjk)/τ)

,

ℓMTC = − 1

B
ℓg2t −

1

B
ℓt2g, (2)

where cos(·, ·)/τ is the temperature-scaled cosine
similarity. Temperature τ is empirically set to 0.1.

Molecule-Text Matching (MTM). MTM is a bi-
nary classification task, aiming to predict whether
a molecule-text pair is matched (positive) or un-
matched (negative). As Figure 3 illustrates, MTM
allows the queries and the texts to interact through
the same self-attention module. In this way, the
queries can extract multi-modal information from
both molecules and texts. For MTM prediction, we
attach a linear classifier after the mean pooling of
all queries’ Q-Former representations. Let ρ(g,y)
denotes MTM’s predicted probability that (g,y) is
matched. MTM loss ℓMTM can be written as:

ℓMTM =
1

B
Ej,k∼U(1,B)

[ B∑

i=1

− log ρ(gi,yi)+

log ρ(gi,yj) + log ρ(gk,yi)
]
, (3)

where U(1, B) is a uniform distribution; yj and gk
are random negative samples in batch.

Similar to MTC, MTM also computes the simi-
larity between molecule-text pairs. The difference
is that MTM can capture more fine-grained simi-
larity between a molecule and a text through the
self-attention and cross-attention modules, com-
pared to the simple cosine similarity used by MTC.

Therefore, in retrieval experiments, we use MTC
to first retrieve the top k samples and use MTM for
re-ranking, thereby improving the performance.

Molecule Captioning (MCap). MCap aims to
generate the molecule’s text description based on
the molecule representations. For this task, we
adopt a special masking strategy in self-attention
modules to ensure that the queries learn to ex-
tract molecule features that correspond to the
text descriptions. Specifically, we employ the bi-
directional self-attention masks for queries, allow-
ing them to see each other but not the text tokens.
Further, we apply causal masks for texts on the
same self-attention module to perform autoregres-
sive decoding of text descriptions. Each text token
can see the queries and the preceding text, but not
the subsequent text tokens. Since the text tokens
cannot directly interact with the graph encoder, they
must obtain molecule information from the queries,
forcing the queries to extract molecule information
through the cross-attention modules. Let p1(y|g)
be the probability of Q-Former generating text y
for a graph g. We use the following loss function:

ℓMCap = − 1

B

B∑

i=1

log p1(yi|gi) (4)

3.2 Pretrain Stage 2: Aligning 2D Molecular
Graphs to Texts via Language Modeling

In this stage, we aim to align the cross-modal pro-
jector’s outputs to the text space of a frozen LM.
As Figure 4 illustrates, we feed the cross-modal
projector’s representations of 2D molecular graphs
to the frozen LM as inputs, and train the model to
generate molecules’ text descriptions. This process
encourages the cross-modal projector to provide
representations that the LM can understand, so as
to prompt the text generation. Additionally, we
also use a molecule’s 1D SMILES to guide the
generation (cf. Figure 4). This is because most
LMs (Taylor et al., 2022; Touvron et al., 2023;
Zhang et al., 2022) use SMILES during pretraining.
Therefore, these LMs have established some cor-
relations between SMILES and their text contexts.
Thus, including SMILES can potentially prompt
the corresponding biochemical knowledge. On the
other hand, incorporating 2D graphs can help cap-
ture structural patterns that are hard to learn from
1D SMILES. We will show later in experiments
that combining 2D graphs and 1D SMILES can
boost performance.
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Figure 5: MolCA’s fine-tune stage for molecule-to-text generation.
The example shows the prediction of a molecule’s IUPAC name.

Formally, consider a molecule-text pair (g,y)
and g’s SMILES repsentation s, The cross-modal
projector representations of g are denoted as
{mk}Nq

k=1. We define p2(·) as the text distribution
parameterized by the frozen LM. We optimize the
cross-modal projector and the graph encoder by
minimizing the following loss function:

− log p2(y|{mk}Nq

k=1, s)

=−
L∑

l=1

log p2(yl|y1, ..., yl−1, {mk}Nq

k=1, s). (5)

3.3 Fine-tune Stage: Uni-Modal Adapter for
Efficient Downstream Adaptation

In this stage, we fine-tune MolCA for downstream
generation tasks. As Figure 5 illustrates, we ap-
pend a text prompt of the task description after the
molecule representations. Then, we apply language
modeling loss to fine-tune MolCA for generation
tasks, such as molecule’s IUPAC name prediction.

Uni-Modal Adapter. In MolCA, the LM is ac-
counted for a large portion of computation over-
head: it can have ∼1B parameters, while the cross-
modal projector and graph encoder only have a
total of ∼0.1B parameters. Therefore, we employ a
uni-modal adapter for the LM’s efficient adaptation
to downstream tasks. Specifically, we employ the
LoRA (Hu et al., 2022) adapter due to its simple
implementation and promising performances (Liu
et al., 2022a). As shown in Figure 5, for selected
weight matrices (e.g., W ∈ Rd1×d2) in the LM,
LoRA adds pairs of rank decomposition matrices
(e.g., BA,B ∈ Rd1×r,A ∈ Rr×d2) in parallel to
them. The original h = Wx layer is changed to:

h = Wx+ BAx, (6)

where W is kept frozen and the newly added BA
is trained during adaptation. Given a small r ≪

Subset Size Avg mol len Min text len Avg text len

Pretrain 309689 35 1 18
Train 12000 32 20 60
Valid 1000 32 20 61
Test 2000 31 20 60

Table 1: Statistics of the PubChem324k dataset. We
count the text length by splitting the text at spaces.

min(d1, d2), LoRA can effectively adapt the LM
to downstream tasks while requiring little memory
overhead for storing gradients.

4 Experiments

4.1 Experimental Setting
Here we briefly present the experimental settings.
More details can be found in Appendix B.

PubChem324k Dataset. We collect PubChem-
324k – a dataset containing 324k molecule-text
pairs from the PubChem website1. Table 1 presents
the dataset statistics. Notice that, the dataset in-
cludes many uninformative texts, such as “The
molecule is a peptide”. Therefore, we sample a
high-quality subset of 15k pairs with text longer
than 19 words for downstream tasks. This high-
quality subset is further randomly divided into the
train/valid/test sets. The remaining dataset, which
is more noisy, is used for pretraining.

Baselines. For generation tasks, we compare
MolCA with the following baselines: T5 (Raffel
et al., 2020), MolT5 (Edwards et al., 2022), and
MoMu (Su et al., 2022). For molecule-text retrieval,
we also include these methods: MoleculeSTM (Liu
et al., 2022b), KV-PLM (Zeng et al., 2022), and
Sci-BERT (Beltagy et al., 2019).

4.2 Molecule Captioning
We evaluate MolCA for molecule captioning on the
datasets of PubChem324k and CheBI-20 (Edwards

1https://pubchem.ncbi.nlm.nih.gov

15627

https://pubchem.ncbi.nlm.nih.gov


Model #Trainable params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

1D SMILES
MolT5-Small 80M, full ft 14.8 8.5 26.5 13.5 23.6 18.5
MolT5-Base 250M, full ft 30.1 20.9 40.3 25.1 33.8 35.6
MolT5-Large 780M, full ft 30.2 22.2 41.5 25.9 34.8 36.6

1D SMILES + 2D Graph
MoMu-Small 82M, full ft 19.1 12.0 29.7 16.3 26.7 21.8
MoMu-Base 252M, full ft 30.2 21.5 40.5 25.1 34.4 34.2
MoMu-Large 782M, full ft 31.1 22.8 41.8 25.7 36.7 36.2
MolCA, MolT5-Large 877M, full ft 33.7 27.0 49.7 35.6 44.4 42.4
MolCA, Galac125M 222M, full ft 32.4 24.9 44.9 30.1 39.5 39.2
MolCA, Galac1.3B 100M, LoRA ft* 39.8 31.7 51.7 37.3 46.2 46.8

(a) PubChem324k dataset. Baseline performances are reproduced using their source codes (Edwards et al., 2022; Su et al., 2022).

Model #Trainable params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

1D SMILES
T5-Small 80M, full ft 50.1 41.5 60.2 44.6 54.5 53.2
T5-Base 250M, full ft 51.1 42.3 60.7 45.1 55.0 53.9
T5-Large 780M, full ft 55.8 46.7 63.0 47.8 56.9 58.6
MolT5-Small 80M, full ft 51.9 43.6 62.0 46.9 56.3 55.1
MolT5-Base 250M, full ft 54.0 45.7 63.4 48.5 57.8 56.9
MolT5-Large 780M, full ft 59.4 50.8 65.4 51.0 59.4 61.4

1D SMILES + 2D Graph
MoMu-Small 82M, full ft 53.2 44.5 - - 56.4 55.7
MoMu-Base 252M, full ft 54.9 46.2 - - 57.5 57.6
MoMu-Large 782M, full ft 59.9 51.5 - - 59.3 59.7
MolCA, Galac125M 222M, full ft 61.6 52.9 67.4 53.3 61.5 63.9
MolCA, Galac1.3B 110M, LoRA ft* 63.9 55.5 69.7 55.8 63.6 66.9

(b) CheBI-20 dataset. Baseline performances are borrowed from their original papers (Edwards et al., 2022; Su et al., 2022).

Table 2: Performances (%) of molecule captioning on the PubChem324k and CheBI-20 datasets. Bold indicates the
best performance and underline indicates the second best performance. Full ft denotes full parameter fine-tuning.
*The LoRA configurations for PubChem324k and CheBI-20 datasets are different. Details are in Appendix B.

et al., 2022). Specifically, we implement MolCA
with the base LMs of Galactica1.3B, Galactica125M,
and MolT5-Large. We employ full parameter fine-
tuning for Galactica125M and MolT5-Large due to
their smaller scales. We fine-tune MolCA and base-
lines on the dataset’s training set and report the test
set performance selected by the valid set. Follow-
ing (Edwards et al., 2022), we adopt BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005) as the evaluation
metrics. As shown in Table 2, we observe that:

1. MolCA consistently outperforms the base-
lines by a large margin. Specifcally, MolCA,
Galac1.3B achieves the highest performance on all
metrics. It outperforms the baselines by 8.7 BLEU-
2 on PubChem324k and 4.0 BLEU-2 on CheBI-20.

2. MolCA, Galac125M outperforms baselines
of larger sizes across all metrics, showing that
MolCA’s advantage is not limited to model scale.

4.3 IUPAC Name Prediction

The International Union of Pure and Applied Chem-
istry (IUPAC) has established a standardized nam-

ing system for chemical compounds, known as IU-
PAC names (Favre and Powell, 2013). Notably,
this naming system relies on identifying specific
molecule structures, including hydrocarbon chains
and double/triple bonds. Therefore, correctly pre-
dicting IUPAC names indicates a model’s profi-
ciency to understand molecule structures. We
fine-tune MolCA and baselines using the Pub-
Chem324k’s training set to generate a molecule’s
IUPAC name. As shown in Table 3, MolCA consis-
tently outperforms the baselines by a large margin
of 10.0 BLEU-2, highlighting MolCA’s advantage
in comprehending molecule structures.

4.4 Molecule-Text Retrieval

We evaluate MolCA for molecule-text retrieval on
the datasets of PubChem324k, PCDes (Zeng et al.,
2022) and MoMu (Su et al., 2022). Specifically, we
evaluate MolCA’s checkpoint from pretrain stage
1 without further fine-tuning. For all experiments,
MolCA first retrieves the top 128 candidates us-
ing MTC, then employs the MTM module for re-
ranking. We select Accuracy (Acc) and Recall@20
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Model #Trainable params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

1D SMILES
MolT5-Small 80M, full ft 48.6 35.2 40.0 16.1 34.3 42.5
MolT5-Base 250M, full ft 52.7 41.5 50.7 26.0 44.3 53.2
MolT5-Large 780M, full ft 59.4 49.7 55.9 33.3 49.1 58.5

1D SMILES + 2D Graph
MolCA, Galac125M 222M, full ft 72.9 65.1 69.5 48.0 62.6 71.6
MolCA, Galac1.3B 100M, LoRA ft 74.6 66.1 70.5 49.1 64.2 73.0

Table 3: Performances (%) of predicting molecule’s IUPAC names on the PubChem324k dataset. Baseline
performances are obtained by running their source codes (Edwards et al., 2022).

M2T T2M

Model Acc R@20 Acc R@20

1D SMILES
Sci-BERT 39.3 86.1 37.9 85.1
KV-PLM 38.8 86.3 38.7 85.6

2D Graph
MoMu-S* 11.5 41.2 12.6 43.6
MoMu-K* 11.3 41.0 12.4 39.9
MoMu-S 40.6 86.5 40.6 86.5
MoMu-K 41.8 88.9 42.4 88.5
MoleculeSTM 47.1 89.0 45.4 91.5
MolCA w/o MTM 60.5 93.7 58.6 92.3
MolCA 69.4 95.7 69.6 94.6

(a) Performances (%) in the PubChem324k dataset.

PCDes dataset MoMu dataset

Model M2T T2M M2T T2M

1D SMILES
Sci-BERT† 60.7 60.8 0.3 0.3
KV-PLM† 75.9 64.3 0.5 0.3

2D Graph
MoMu-S† 79.1 75.5 43.3 43.4
MoMu-K† 80.2 79.0 43.7 43.5
MoleculeSTM 84.6 85.1 75.8 74.5
MolCA w/o MTM 88.0 85.5 81.5 81.6
MolCA 90.5 87.6 88.6 87.3

(b) Recall@20 (%) in the PCDes and MoMu datasets.

Table 4: Molecule-text retrieval performances. We re-
port performances of using molecule to retrieve text
(M2T) and using text to retrieve molecule (T2M). * de-
notes performance evaluated on the baseline’s released
checkpoint. † denotes result borrowed from (Su et al.,
2022). Other models are trained on PubChem324k’s
pretrain subset. The complete results are in Appendix C

(R@20) as the evaluation metrics, and report the
performances of retrieval in the entire test set. As
shown in Table 4, we observe that:

1. MolCA demonstrates superior performance
over baselines. Specifically, in PubChem324k,
MolCA improves the accuracy by more than 20%
over the baselines. In PCDes and MoMu, MolCA
also consistently outperforms the baselines, demon-
strating its effectiveness for molecule-text retrieval.

2. Incorporating MTM significantly improves

MolCA’s performance. This can be attributed to
MTM’s ability to model long-range interactions
between molecule features and texts, achieved by
the cross-attention and self-attention modules.

3. MolCA’s good performances can be par-
tially attributed to our larger pretrain dataset – Pub-
Chem324k. As shown in Table 4a, we compare
the performances of MoMu’s original checkpoint
(pretrained on 15k molecule-text pairs) with our
reproduced MoMu using PubChem324k. The latter
improves the retrieval accuracy by over 25%.

4.5 Ablation Study on Representation Types

Here we ablate the two representations types of
molecules: 1D SMILES and 2D graphs. We com-
pare MolCA with its two variants: 1) 1D SMILES:
an LM that uses only 1D SMILES for pretraining
and fine-tuning. For a fair comparison, we pretrain
this variant on PubChem324k’s pretrain subset for
molecule captioning before its downstream adapta-
tion; 2) 2D Graph: this variant follows the original
MolCA’s training pipeline, except not using 1D
SMILES in pretrain stage 2 and fine-tune stage.

End Task Ablation. Table 5 presents the re-
sults for molecule-to-text generation and molecule
property prediction (Hu et al., 2020) tasks. We can
observe that combing 2D graphs and 1D SMILES
leads to improved performance in all the compared
tasks. This demonstrates MolCA’s effectiveness in
incorporating molecules’ 2D graph representations.

Counting Functional Groups (FGs). We ablate
MolCA’s capability of counting 85 types of FGs
inside molecules. An FG is a molecule’s subgraph
that exhibits consistent chemical behaviors across
different molecules (Rong et al., 2020). Correctly
counting FGs can help understand a molecule’s
properties. As shown in Figure 6, incorporating
2D graphs significantly improves MolCA’s perfor-
mance in counting FGs, thereby enhancing its abil-
ity in understanding molecule structures.
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Representation type BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Molecule Captioning, PubChem324k
1D SMILES 33.7 26.0 45.4 31.6 40.7 40.3
2D Graph 35.7 27.4 47.3 32.3 41.8 42.0
1D SMILES + 2D Graph 39.8 31.7 51.7 37.3 46.2 46.8

Molecule Captioning, CheBI-20
1D SMILES 58.3 49.4 65.9 51.3 59.7 62.4
1D SMILES + 2D Graph 63.9 55.5 69.7 55.8 63.6 66.9

IUPAC Name Prediction, PubChem324k
1D SMILES 70.7 60.7 68.6 46.2 61.7 71.5
1D SMILES + 2D Graph 74.6 66.1 70.5 49.1 64.2 73.0

(a) Ablating the representation type on tasks of molecule captioning and IUPAC name prediction.

Representation type Bace BBBP ClinTox ToxCast Sider Tox21 Mean

1D SMILES 79.3±0.8 70.8±0.6 89.0±1.7 56.2±0.7 61.1±1.2 76.0±0.5 72.1
1D SMILES + 2D Graph 79.8±0.5 70.0±0.5 89.5±0.7 64.5±0.8 63.0±1.7 77.2±0.5 74.0

(b) ROC-AUC (%) scores on six molecule property prediction datasets from MoleculeNet (Wu et al., 2018). We use scaffold
split following (Hu et al., 2020). We report the performance’s mean values and standard deviations across three random seeds.

Table 5: Ablating molecule’s representation types. All compared models fine-tune the base LM of Galactica1.3B.

0 50 100
Fine-tune epochs

0.0

0.5

1.0

M
S

E
 lo

ss

(a) Training set loss.

0 50 100
Fine-tune epochs

0.3

0.4

0.5

R
M

S
E

1D SMILES
1D SMILES + 2D Graph

(b) Valid set performance.

Figure 6: Ablating MolCA for counting FGs inside
molecules from PubChem324k. We plot average values
across three random seeds. Blue shades indicate the
range of ± one standard deviation. Evaluation metric
is Root Mean Square Error (RMSE). Lower value indi-
cates better performance.

5 Related Works
Here we briefly review the molecule-related lit-
erature. We discuss MolCA’s relations to vision-
language pretraining methods in Appendix A.

Molecule Understanding via 1D Language
Modeling. Due to the extensive biochemical liter-
ature in their training corpus, some open-domain
LMs (Zhang et al., 2022; Touvron et al., 2023;
Chowdhery et al., 2022) have obtained a high-level
understanding of molecular and chemical concepts.
This is demonstrated through their promising per-
formances in text-related biochemical and medical
question-answering benchmarks (Hendrycks et al.,
2021; Jin et al., 2019). Among these LMs, Galac-
tica (Taylor et al., 2022) shows competitive perfor-
mances for using a corpus that is primarily com-
posed of scientific literature. Focusing on the chem-
istry domain, KV-PLM (Zeng et al., 2022) models
molecules by applying masked language modeling

loss on 1D SMILES. Vaucher et al. (2021) pro-
pose to predict the chemistry experiment actions by
reading chemical reaction equations. MolT5 (Ed-
wards et al., 2022) presents several T5-based (Raf-
fel et al., 2020) LMs for SMILES-to-text and text-
to-SMILES translations. Further, Christofidellis
et al. (2023) propose to fine-tune T5 for chem-
ical reaction prediction and retrosynthesis tasks.
MolCA is different from these methods that exclu-
sively utilize 1D SMILES to represent molecules.
Instead, MolCA aims to enable LMs to perceive
molecules’ 2D graph representations.

Molecule-Text Contrastive Learning. Driven
by the demand of a molecule-text retrieval system,
Text2Mol (Edwards et al., 2021) employs cross-
modal contrastive learning to train a molecular
graph encoder of GCNs (Kipf and Welling, 2017)
and a text encoder of Sci-BERT (Beltagy et al.,
2019). Subsequent works (Su et al., 2022; Liu
et al., 2022b; Seidl et al., 2023) have proposed en-
hancements, including the addition of inter-modal
contrastive learning loss (Su et al., 2022) and apply-
ing the model for text-based molecule editing (Liu
et al., 2022b). However, cross-modal contrastive
learning is unsuitable for open-ended conditional
generation task (Alayrac et al., 2022), because of its
focus on learning a similarity function. To resolve
the problem, we propose MolCA to enable the
LM’s understanding of 2D molecular graphs, facili-
tating MolCA’s capability of open-ended molecule-
to-text generation.
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6 Conclusion and Future Works
In this work, we propose MolCA, a novel molec-
ular language modeling method. MolCA aims to
enable LMs to perceive 2D graphs for molecule-to-
text generation. For this purpose, MolCA features
a cross-modal projector to map representations of
2D graphs into the text space of LMs. It also em-
ploys a uni-modal adapter for efficient downstream
adaptation. MolCA achieves state-of-the-art perfor-
mances on molecule captioning and molecule-text
retrieval benchmarks. Looking forward, we are
interested in exploring LMs for 3D molecular mod-
eling and drug discovery tasks.

Limitations

This work focuses on utilizing LMs’ generation
ability for molecule-text tasks. Other interesting
abilities of LMs, like in-context learning and chain-
of-thought reasoning, are beyond the scope of this
research. We leave that to future exploration.

While MolCA offers improvements over base-
lines, we observe that the current performance
in molecule captioning is not yet sufficient for
practical application. This can be attributed to
the scale of pretraining data. To our knowledge,
our PubChem324k dataset is the largest dataset of
molecule-text pairs. However, compared to the
∼10M scale dataset (Changpinyo et al., 2021) for
vision-language pretraining, our dataset, consists
of 324k data points, is comparatively smaller and
limits the model’s performance. Remedy solutions
may include mining weakly supervised data from
biochemical literature.

Broader Impacts

Our work has established new state-of-the-art per-
formances in molecule captioning and molecule-
text retrieval. It has broader impacts in two as-
pects: 1) for chemistry professionals, our method
of molecule captioning and molecule-text retrieval
could be useful tools, potentially speeding up their
research process; 2) for individuals without spe-
cialized chemistry knowledge, our method could
provide a more affordable way to access the basic
chemical information of molecules.

Our model shares the risks of most LMs. It can
generate inaccurate information and can potentially
be abused to produce biased content. Further, con-
sidering the limited scale of our training data, we
strongly advise strictly testing our model before
applying it in real applications.
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A Complete Related Works

We present the complete literature review. In addi-
tion to the molecule-related literature, as addressed
in the main body of the paper, we also discuss
MolCA’s relation to vision-language pretraining.

Molecule Understanding via 1D Language
Modeling. Due to the extensive biochemical liter-
ature in their training corpus, some open-domain
LMs (Zhang et al., 2022; Touvron et al., 2023;
Chowdhery et al., 2022) have obtained a high-level
understanding of molecular and chemical concepts.
This is demonstrated through their promising per-
formances in text-related biochemical and medical
question-answering benchmarks (Hendrycks et al.,
2021; Jin et al., 2019). Among these LMs, Galac-
tica (Taylor et al., 2022) shows competitive perfor-
mances for using a corpus that is primarily com-
posed of scientific literature. Focusing on the chem-
istry domain, KV-PLM (Zeng et al., 2022) models
molecules by applying masked language modeling
loss on 1D SMILES. Vaucher et al. (2021) pro-
pose to predict the chemistry experiment actions by
reading chemical reaction equations. MolT5 (Ed-
wards et al., 2022) presents several T5-based (Raf-
fel et al., 2020) LMs for SMILES-to-text and text-
to-SMILES translations. Further, Christofidellis
et al. (2023) propose to fine-tune T5 for chem-
ical reaction prediction and retrosynthesis tasks.
MolCA is different from these methods that exclu-
sively utilize 1D SMILES to represent molecules.
Instead, MolCA aims to enable LMs to perceive
molecules’ 2D graph representations.

Molecule-Text Contrastive Learning. Driven
by the demand of a molecule-text retrieval system,
Text2Mol (Edwards et al., 2021) employs cross-
modal contrastive learning to train a molecular
graph encoder of GCNs (Kipf and Welling, 2017)
and a text encoder of Sci-BERT (Beltagy et al.,
2019). Subsequent works (Su et al., 2022; Liu
et al., 2022b; Seidl et al., 2023) have proposed im-
provements, including the addition of inter-modal
contrastive learning loss (Su et al., 2022) and apply-
ing the model for text-based molecule editing (Liu
et al., 2022b). However, cross-modal contrastive
learning is unsuitable for open-ended conditional
generation task (Alayrac et al., 2022), because of its
focus on learning a similarity function. To resolve
the problem, we propose MolCA to enable the
LM’s understanding of 2D molecular graphs, facili-
tating MolCA’s capability of open-ended molecule-
to-text generation.

Vision-Language Pretraining (VLP). Both
VLP and Molecular Language Modeling aim to
bridge the gap between text and another modality.
Notably, VLP methods of CLIP (Radford et al.,
2021) and others (Li et al., 2022; Yao et al., 2022)
use contrastive learning to connect a visual encoder
and a text encoder. These methods can be applied
for tasks like image-text retrieval and zero-shot
image classification. Recently, a series of VLP
works (Tsimpoukelli et al., 2021; Merullo et al.,
2023; Li et al., 2023; Alayrac et al., 2022) show
that visual features can be aligned to the text space
of LMs. This cross-modal alignment allows LMs to
utilize their language generation and few-shot learn-
ing abilities for multi-modal tasks. MolCA draws
inspiration from these findings. To the best of our
knowledge, we are the first to align 2D molecu-
lar graphs to the text space of LMs. Furthermore,
we incorporate a uni-modal adapter to improve the
adaptation efficiency on downstream tasks.

B Experimental Settings

Pretrain Settings. MolCA’s pretrain stage 1 has
50 epochs and pretrain stage 2 has 10 epochs. Q-
Former has 8 query tokens (Nq = 8). Our opti-
mizer’s configuration follows (Li et al., 2023). We
use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with a weight-decay of 0.05. The learn-
ing rate is scheduled by a combination of linear
warmup and cosine decay. The peak learning rate
is 1e-4 and the warmup has 1000 steps.

Molecule Captioning. MolCA is fine-tuned
for 100 epochs using the same configuration of
optimizer and learning rate scheduler. LoRA is
implemented using the OpenDelta library (Ding
et al., 2022) and the PEFT library (Mangrulkar
et al., 2022). For the PubChem324k dataset, we set
LoRA’s rank r to 8 and apply LoRA to Galactica’s
modules of [q_proj, v_proj]. This configura-
tion yields a LoRA adapter with 2M parameters,
which constitutes 0.12% of the parameters in the
Galactica1.3B. For the CheBI-20 dataset, we set
LoRA’s rank r to 16 and apply LoRA to Galactica’s
modules of [q_proj, v_proj, out_proj, fc1,
fc2]. This configuration yields a LoRA adapter
with 12M parameters, which constitutes 0.94% of
the parameters in the Galactica1.3B.

IUPAC Name Prediction. We collect IUPAC
names for molecules in the train/valid/test sets of
PubChem324k using the PubChemPy library2. The

2https://github.com/mcs07/PubChemPy
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Subset #Mol-text pairs Usage Avg mol len Avg text len Min text len Max text len

Pretrain 309689 Pretrain stage 1 & 2 35 18 1 1305
Train 12000 Downstream fine-tune 32 60 20 937
Valid 1000 Downstream validation 32 61 20 1197
Test 2000 Downstream test 31 60 20 879

Table 6: Statistics of the PubChem324k dataset.

Retrieval in batch Retrieval in test set
M2T (%) T2M (%) M2T (%) T2M (%)

Model Acc R@20 Acc R@20 Acc R@20 Acc R@20

1D SMILES
Sci-BERT 84.1 98.6 82.5 98.2 39.3 86.1 37.9 85.1
KV-PLM 84.3 98.3 82.3 98.3 38.8 86.3 38.7 85.6

2D Graph
MoMu-S* 42.3 90.1 43.7 90.1 11.5 41.2 12.6 43.6
MoMu-K* 43.3 90.4 45.8 89.0 11.3 41.0 12.4 39.9
MoMu-S 82.9 99.0 83.0 99.0 40.6 86.5 40.6 86.5
MoMu-K 84.1 98.7 83.6 98.9 41.8 88.9 42.4 88.5
MoleculeSTM 87.2 98.5 86.7 98.3 47.1 89.0 45.4 91.5
MolCA w/o MTM 86.6 98.9 85.3 98.7 60.5 93.7 58.6 92.3
MolCA 91.4 99.9 90.1 99.2 69.4 95.7 69.6 94.6

(a) Molcule-text retrieval performances in the PubChem324k dataset.

Retrieval in batch Retrieval in test set
M2T (%) T2M (%) M2T (%) T2M (%)

Model Acc R@20 Acc R@20 Acc R@20 Acc R@20

1D SMILES
Sci-BERT† 62.6 - 61.8 - - 60.7 - 60.8
KV-PLM† 77.9 - 65.0 - - 75.9 - 64.3

2D Graph
MoMu-S† 80.6 - 77.0 - - 79.1 - 75.5
MoMu-K† 81.1 - 80.2 - - 80.2 - 79.0
MoleculeSTM 86.2 - 83.9 - - 84.6 - 85.1
MolCA w/o MTM 88.4 98.8 85.5 98.5 54.6 88.0 51.8 85.5
MolCA 91.4 99.8 88.4 98.8 60.3 90.5 59.7 87.6

(b) Molecule-text retrieval performances in the PCDes dataset.

Retrieval in batch Retrieval in test set
M2T (%) T2M (%) M2T (%) T2M (%)

Model Acc R@20 Acc R@20 Acc R@20 Acc R@20

1D SMILES
Sci-BERT† 1.4 - 1.6 - - 0.3 - 0.3
KV-PLM† 1.5 - 1.3 - - 0.5 - 0.3

2D Graph
MoMu-S† 45.7 - 40.0 - - 43.3 - 43.4
MoMu-K† 46.2 - 38.5 - - 43.7 - 43.5
MoleculeSTM 81.8 - 81.9 - - 75.8 - 74.5
MolCA w/o MTM 77.3 97.7 77.3 97.5 38.1 81.5 37.3 81.6
MolCA 83.7 98.9 84.3 98.7 48.4 88.6 48.3 87.3

(c) Molecule-text retrieval performances in the MoMu dataset.

Table 7: Complete molecule-text retrieval performances on the datasets of PubChem324k, PCDes and MoMu. *
denotes performance evaluated on the baseline’s released checkpoint. † denotes result borrowed from (Su et al.,
2022). Other models are trained on PubChem324k’s pretrain subset.

experiment uses the same hyperparameters as the
molecule captioning experiment. We append a text

prompt “The molecule’s IUPAC name is” after the
molecule representations as the task description (cf.
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Model Pretrain stage 1 Pretrain stage 2 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

MolCA, Galac1.3B ✗ ✗ 35.8 27.6 47.4 33.0 42.1 42.2
MolCA, Galac1.3B ✓ ✗ 37.7 29.5 49.2 34.9 43.8 44.5
MolCA, Galac1.3B ✓ ✓ 39.8 31.7 51.7 37.3 46.2 46.8

Table 8: Ablating MolCA’s two pretrain stages by the task of molecule captioning in the PubChem324k dataset.

Cross-Modal Projector Representation Type BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

- 1D SMILES 33.7 26.0 45.4 31.6 40.7 40.3
Linear 1D SMILES + 2D Graph 34.6 27.8 46.7 32.9 41.9 41.2
Q-Former 1D SMILES + 2D Graph 39.8 31.7 51.7 37.3 46.2 46.8

Table 9: Comparing different cross-modal projectors for molecule captioning on the PubChem324k dataset. All the
compared methods apply LoRA fine-tuning on Galactica1.3B.

The molecule is a long-chain fatty acid that is 
behenic acid substituted at position 2 by a hydroxy 
group. It is a 2-hydroxy fatty acid. It is functionally 
related to a docosanoic acid. It is a conjugate acid of 
a 2-hydroxybehenate.

Ground truth

The molecule is a 2-hydroxy fatty acid that is 
hexacosanoic acid substituted at position 2 by a 
hydroxy group. It is a long-chain fatty acid. It is 
functionally related to an hexacosanoic acid. It is 
a conjugate acid of a 2-hydroxyhexacosanoate.

The molecule is an amino disaccharide consisting of 
alpha-(...) joined in sequence by a (1->4) glycosidic 
bond. It is a disaccharide derivative, an 
oligosaccharide sulfate, a member of sulfamic acids, 
a monocarboxylic acid (...)

The molecule is a disaccharide that consists of 
2-O-(...) residues joined in sequence by a (1-
>4) glycosidic bond. It is a disaccharide, an 
amino disaccharide, and a member of sulfamic 
acids.

MolCAMolecule

(a) Samples of molecule captioning.

(2S)-2,4-diamino-4-oxo 
butanoic acid

(2S)-2,4-diamino-4-
oxobutanoic acid

Ground truth MolCAMolecule

2-(3,4-dichlorophe 
noxy)acetic acid

2-(2,4-dichloropheno 
xy)acetic acid

1,3-thiazolidine-4-
carboxylic acid

thiomorpholine-3-
carboxylic acid

4-chloro-2,5-dioxo-cycl 
ohexa-2,5-dien-1-olate

2-chloro-5,6-diox 
opyridin-3-olate

(b) Samples of IUPAC name prediction.

Figure 7: Examples of MolCA’s molecule-to-text generation results. We highlight text snippets in blue that correctly
describe the molecule structures in the predicted texts. To save space, some parts of texts are replaced by (...).

Figure 5).

Molecule-Text Retrieval. We use MolCA’s
checkpoint from pretrain stage 1 for retrieval with-
out fine-tuning on any other datasets. This is simi-
lar to the setting of zero-shot retrieval in (Su et al.,
2022; Liu et al., 2022b).

Molecule Property Prediction. Following (Hu
et al., 2020), we fine-tune the models for 100
epochs and report the test performance selected
by the valid set. For molecule classification, we
attach a linear classifier after the mean pooling
of the LM’s hidden states of the last layer. We
use the AdamW optimizer with a constant learn-
ing rate of 1e-4 and weight decay of 0.05. This
experiment uses the same LoRA configuration as
the molecule captioning experiment in the Pub-
Chem324k dataset.

Counting Functional Groups (FGs). We use
the molecules in PubChem324k’s train set for fine-
tuning and use the molecules in the valid set for
evaluation. Following (Rong et al., 2020), we use
RDkit (Landrum, 2013) to obtain the ground truth
counts of FGs in every molecule. For each FG type,
we employ a separate linear classifier to regress
its numbers. Our model is trained using the Mean
Square Error (MSE) loss function. Other settings,

including optimizer and LoRA, are the same as the
Molecule Property Prediction experiment.

Galactica. Following the instructions in (Tay-
lor et al., 2022), we wrap SMILES sequences
with special tokens of [START_I_SMILES] and
[END_I_SMILES] before feeding them into Galac-
tica.

PubChem324k Dataset. Our dataset collection
process follows the procedures described in (Liu
et al., 2022b). The resulting dataset is larger due
to the frequent updates made to the PubChem
database (Kim et al., 2021). For each molecule
in this website, we use the “description” field in
its webpage as the corresponding text description.
To avoid information leakage, we replace any com-
mon name or IUPAC name of the molecule at the
beginning of texts with a text template (i.e., “The
molecule”). Detailed statistics of PubChem324k
are presented in Table 6.

C More Experimental Results

Molecule-Text Retrieval. Here we present
MolCA’s complete molecule-text retrieval perfor-
mance on the PubChem324k, PCDes, and MoMu
datasets. Following (Su et al., 2022), we report the
performance of retrieval in a batch of 64 random
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Sample 1 SMILES: C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)NS(=O)(=O)O)O)O[C@H]2
[C@@H]([C@H](C(=C(O2)C(=O)O)O)O)O)OS(=O)(=O)O

Ground truth The molecule is an amino disaccharide consisting of alpha-(...) joined in sequence by a (1->4)
glycosidic bond. It is a disaccharide derivative, an oligosaccharide sulfate, a member of sulfamic
acids, a monocarboxylic acid (...)

1D SMILES The molecule is a disaccharide sulfate consisting of 2-acetamido-(...) joined in sequence by a
(1->4) glycosidic bond. It is functionally related to a N-acetyl-D-glucosamine and a N-acetyl-D-
galactosamine.

1D SMILES + 2D Graph The molecule is a disaccharide that consists of 2-O-(...) residues joined in sequence by a (1->4)
glycosidic bond. It is a disaccharide, an amino disaccharide, and a member of sulfamic acids.

Sample 2 SMILES: CCCCCCCCCCCCCCCCCCCCC(C(=O)O)O

Ground truth The molecule is a long-chain fatty acid that is behenic acid substituted at position 2 by a hydroxy
group. It is a 2-hydroxy fatty acid. It is functionally related to a docosanoic acid. It is a conjugate
acid of a 2-hydroxybehenate.

1D SMILES The molecule is a 2-hydroxy fatty acid that is the 2-hydroxy derivative of tetracosanoic acid. It is
functionally related to a tetracosanoic acid. It is a conjugate acid of a 2-hydroxytetracosanoate.

1D SMILES + 2D Graph The molecule is a 2-hydroxy fatty acid that is hexacosanoic acid substituted at position 2 by a
hydroxy group. It is a long-chain fatty acid. It is functionally related to an hexacosanoic acid. It
is a conjugate acid of a 2-hydroxyhexacosanoate.

Table 10: Molecule captioning samples of MolCA (i.e., 1D SMILES + 2D Graph) and its variant of using only 1D
SMILES. We highlight text snippets in blue that correctly describe the molecule structures in the predicted texts. To
save space, some parts of texts are replaced by (...).

samples and the performance of retrieval in the en-
tire test set. As shown in Table 7, our conclusions
align with those from Section 4.4: 1) MolCA con-
sistently outperforms the baselines for molecule-
text retrieval; 2) applying the MTM module for
re-ranking is crucial for MolCA’s molecule-text
retrieval performances.

Ablating the Pretrain Stages. We conduct ab-
lation studies on MolCA’s two pretrain stages. As
shown in Table 8, both the two pretrain stages have
significant contributions to MolCA’s molecule cap-
tioning performances.

Ablating the Cross-Modal Projector. We com-
pare the performances of our selected cross-modal
projector Q-Former and a linear cross-modal pro-
jector. For the linear cross-modal projector, we
feed the node representations from the graph en-
coder to the base LM after the linear projector layer.
We tune the weights of the graph encoder, linear
projector, and the base LM’s LoRA adapter. The
experimental setting and hyperparameters are the
same as those of MolCA. Table 9 shows the results.
We can observe that: 1) Linear cross-modal projec-
tor underperforms Q-Former. We conjecture that
a linear layer is suboptimal to bridge the modal-
ity gap between 2D molecules and 1D texts. This
aligns with findings in the MME benchmark (Fu
et al., 2023), where Q-Former-based methods (e.g.,
BLIP-2, InstructBLIP (Dai et al., 2023), MiniGPT-

4 (Zhu et al., 2023)) outperform linear cross-modal
projector based method (e.g., LLaVA (Liu et al.,
2023)). 2) Linear cross-modal projector slightly
outperforms the SMILES-only baseline. We at-
tribute this improvement to the usage of 2D molec-
ular graphs, but the gains are limited because the
linear projector is less effective.

MolCA’s Generation Results. Figure 7 shows
MolCA’s molecule-to-text generation results. The
two samples of molecule captioning is also pre-
sented in Table 10. Specifically, we compare
MolCA (i.e., 1D SMILES + 2D Graph) and its
variant that is pretrained and fine-tuned using only
1D SMILES. We can observe that using both 1D
SMILES and 2D graph leads to more accurate de-
scriptions of molecule structures.

Computational Cost. We present the real-world
training time of MolCA’s three training stages in
Table 11. All experiments are conducted on two
NVIDIA A100 40 GB GPUs. Notably, we observe
that the fine-tuning stage is affordable in terms of
computational resources.
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Stage Base LM Dataset Epochs Time

Pretrain stage 1 - PubChem324k pretrain subset 50 18.0h
Pretrain stage 2 Galac1.3B, freeze PubChem324k pretrain subset 10 9.0h
Pretrain stage 2 Galac125M, freeze PubChem324k pretrain subset 10 3.0h
Fine-tune stage Galac1.3B, LoRA ft PubChem324k train subset 100 6.0h
Fine-tune stage Galac125M, full ft PubChem324k train subset 100 1.5h

Table 11: Compuational cost for MolCA’s three stages.
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