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Abstract

Knowledge-grounded dialogue is a task of gener-
ating an informative response based on both the
dialogue history and external knowledge source. In
general, there are two forms of knowledge: manu-
ally annotated knowledge graphs and knowledge
text from website. From various evaluation view-
points, each type of knowledge has advantages and
downsides. To further distinguish the principles
and determinants from the intricate factors, we
conduct a thorough experiment and study on the
task to answer three essential questions. The ques-
tions involve the choice of appropriate knowledge
form, the degree of mutual effects between knowl-
edge and the model selection, and the few-shot
performance of knowledge. Supported by statisti-
cal shreds of evidence, we offer conclusive solu-
tions and sensible suggestions for directions and
standards of future research.

1 Introduction

Consistent human knowledge is compulsory to
achieve an intelligent AI, except for a massive
amount of data provided, whether a well-formed
structural knowledge (Moon et al., 2019) or hu-
man instruction (Ouyang et al., 2022). However,
many dialogue systems are not proficient in inte-
grating knowledge and cannot engage humans in a
thorough discussion about particular subjects. In or-
der to incorporate knowledge into the conversation,
knowledge-grounded dialogue systems have gained
popularity (Li et al., 2018; Dinan et al., 2019; Moon
et al., 2019; Zhou et al., 2018). The goal is to gen-
erate informative and meaningful responses based
on dialogue history and external knowledge. So
far, researchers have gathered datasets with various
knowledge forms, such as the recommendation dia-
logues with knowledge graph (Moon et al., 2019;
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Li et al., 2018) and the open-domain dialogues with
Wikipedia (Dinan et al., 2019; Zhou et al., 2018).

Generally, there are two forms of knowledge:
knowledge graphs and knowledge text. Knowledge
graphs are annotated by human experts and saved
as triples like <head entity, relationship, tail en-
tity>. Because the knowledge is structured, the
system can retrieve and use it to facilitate reason-
ing (Moon et al., 2019). However, a high-quality
knowledge graph is quite labor expensive. Instead,
the text naturally serves as a medium of knowl-
edge. knowledge text is derived from knowledge-
intensive texts and easily parameterized by large
language models. Textual knowledge is unstruc-
tured, easy to collect, yet challenging to reason and
explain directly.

Different forms of knowledge tend to serve
different knowledge-intensive language tasks
(KILT) (Petroni et al., 2021; Yu et al., 2022; Mi-
alon et al., 2023; Chowdhury et al., 2023; Pan
et al., 2023). Specifically, knowledge-grounded
dialogue systems can receive either forms of knowl-
edge graph or knowledge text to facilitate response
generation; nevertheless, their performances are
quite different regarding response quality and fac-
tual consistency, etc. The reason is closely tied to
knowledge’s characteristics. For instance, Open-
DialKG (Moon et al., 2019) is a typical knowl-
edge graph dataset, which annotates the reference
triples based on a large knowledge graph for rec-
ommended conversations. However, the knowl-
edge in OpenDialKG comes from Freebase (Bast
et al., 2014), which requires large-scale data an-
notation, and the knowledge is sparse (1-2 triples)
for generation. On the contrary, WoW dataset (Di-
nan et al., 2019) retrieves Wikipedia passages for
open-domain dialogue to assist intelligent agents in
generating informative utterances. The information
retrieved in WoW is too dense (i.e., 7 passages)
and noisy for models to figure out the accurate
knowledge. Thus, an extra selection module is re-
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quired to polish the pertinent knowledge. (Zhao
et al., 2020b). Therefore, determining the forms of
knowledge is crucial and merits extensive discus-
sion in light of the task’s features.

With a particular form of knowledge in hand,
we have to choose an appropriate approach to in-
corporate the knowledge to support relevant tasks.
Though knowledge-grounded tasks are extensively
studied, the majority aiming for advanced per-
formance, few of them have exhaustively com-
pared the determinants in the model and knowl-
edge. Prabhumoye et al. (2021) proposed a large-
size Dual-Encoders model on WoW. However, ac-
cording to our experiments, the base-size Dual-
Encoders model may perform better on WoW data.
Li et al. (2022) experimented with an Encoder-
Decoder model on multiple datasets but ignored
the Dual-Encoders are more compatible with the
task. Dziri et al. (2022a) experimented on sentence-
level knowledge datasets, neglecting the effect of
knowledge size and granularity. Nevertheless, com-
parisons from multiple perspectives are needed
to support the superiority and contribution of the
model theoretically. However, considering all fac-
tors every time in each specific research is not fea-
sible. Therefore, to aid future research, we com-
prehensively analyze the influencing factors, such
as model architecture, model size, pretrained mod-
els, etc., and then summarize several determinant
conclusions. Concretely, we leverage the scientific
strategy of controlling variables to investigate how
intricate factors affect and to what extent the model
and knowledge should be mutually adaptive.

Furthermore, we also explore how various
knowledge performs in few-shot settings as few-
shot learning with the knowledge-auxiliary is an
important application (Chen et al., 2021). To an-
swer the above question comprehensively, we em-
ploy a unified Transformer (Vaswani et al., 2017)
framework to observe the effects of different knowl-
edge and serialize the knowledge graph to adapt to
the input. In this paper, our investigation mainly
focuses on three points:

1. Graph v.s. Sequence, which form of knowl-
edge is better?

2. To what extent the model and knowledge
should be mutually adaptive?

3. How does various knowledge perform in few-
shot settings?

Extensive experimental results and analysis
demonstrate that: (1) Different forms of knowl-
edge have their advantages in different situations
of KILT. Specifically, the knowledge graph out-
performs generation quality and exhibits stronger
generalizability, while the knowledge text outper-
forms factual consistency in generations. Perfor-
mance can be effectively improved by denoising
the knowledge, for example, by selecting the suc-
cinct sequence or extracting a structured knowl-
edge graph. (2) Performance could be universally
improved further by advanced Dual-Encoders struc-
ture or by employing domain adaption pre-training.
However, the impact of model size is highly re-
lated to the knowledge’s own characteristics. Fu-
ture work should choose the model size according
to the situation and explore the broader impact of
knowledge’s characteristics. (3) The number of
samples affects the model selection. When the
samples are extremely small (100–200 in our stud-
ies), it is preferable for the input form and model
architecture to resemble the pre-trained model as
much as possible. However, the model architecture
selection criteria tend to favour the task itself as the
amount of data increases (500+), as there is suffi-
cient data for the model to do task-level adaptive
learning.

The contribution of this paper is that it is, to the
best of our knowledge, the first work to thoroughly
investigate different forms of knowledge, knowl-
edge graph and knowledge text, and their respec-
tive advantages and disadvantages in knowledge-
grounded dialogues. Furthermore, we comprehen-
sively analyze implications from model selection,
knowledge representation, and how to adapt the ca-
pacity, highlighting feasible solutions and shedding
light on future research and development.

2 Literature Review

Knowledge-grounded dialogue is the task of gen-
erating an informative response R based on both
dialogue history C and external knowledge K. It
is becoming an increasingly important topic in our
community. The involved knowledge can be in dif-
ferent forms, such as documents for open-domain
conversation (Dinan et al., 2019), movie database
for movie recommendation conversation (Li et al.,
2018), and knowledge graph for recommendation
conversation (Liu et al., 2021b).

Recent research investigates several techniques
for improving knowledge representation to fuse
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knowledge in response generation. Ghazvinine-
jad et al. (2018) encoded the dialogue history and
knowledge documents separately to infuse the re-
sponse with external world facts. Wang et al.
(2022) added a particular knowledge graph rep-
resentation in the response generation module.

Another line of work investigates pre-training
methods for the knowledge-grounded dialogue to
improve the system’s performance on unseen top-
ics and train in a low-resource setting. Zhao et al.
(2020a) pre-trained the dialogue generation mod-
ule and the knowledge encoder with ungrounded
dialogues and the Wikipedia dump separately. Li
et al. (2020) devised a variational network that can
effectively estimate a generation model from a di-
alogue corpus and an independent knowledge cor-
pus. Liu et al. (2021a) proposed a three-stage learn-
ing framework to separately pre-train the dialogue
module and knowledge module.

Inspired by the accomplishments of pre-trained
language models (PLM) for a range of natural lan-
guage processing (NLP) tasks, researchers inves-
tigate learning knowledge through PLM’ param-
eters. Zhao et al. (2020b) equipped a pre-trained
language model with a knowledge selection mod-
ule and presented an unsupervised jointly optimiz-
ing technique. Prabhumoye et al. (2021) focused
on the attention mechanism in Transformers and
proposed a strong baseline by a pre-trained model.
Rashkin et al. (2021) increased the faithfulness in
knowledge-grounded dialogue with controllable
features of pre-trained models.

However, the above studies only considered a
single form of knowledge, neglecting the impact of
knowledge forms. Chen et al. (2020) proposed a
pre-trained model for data-to-text tasks by unifying
the knowledge format in the pre-training data and
downstream tasks. Li et al. (2022) used unified
essential knowledge triples instead of documents
in pre-training, making their model more general-
izable. Motivated by these methods, we conduct
a thorough investigation of knowledge-grounded
dialogue in various knowledge forms to explore the
impact of knowledge. We focus on how to choose a
knowledge form (sequence or graph) for NLG and
investigate questions about which knowledge form
is better and how it affects performance. Our study
will facilitate the subsequent data collection and
model construction and even influence the direction
of knowledge-intensive language tasks.

3 Experimental Settings

In order to investigate the effect of various forms of
knowledge, we comprehensively analyze the per-
formance of different knowledge. Further, we also
consider the factors of models to identify the in-
terrelation between models and knowledge. This
section introduces the detailed experimental set-
tings for a clearer illustration1.

3.1 Datasets

Our experiments were carried out on three pub-
lic datasets, WoW (Dinan et al., 2019), Faith-
Dial (Dziri et al., 2022a) and OpenDialKG (Moon
et al., 2019). Table 1 shows the data statistics.

WoW The dataset consists of human-human con-
versations collected over Amazon Mechanical Turk
and is grounded in Wikipedia passage (Dinan et al.,
2019). These conversations are grounded in a di-
verse range of topics which are further split into
seen and unseen topics during training and vali-
dation. The dialogues between two humans, re-
ferred to as “Wizard” and “Apprentice”, engage
in a conversation about a given knowledge. The
dialogue is designed to be coherent and informa-
tive, with the Wizard providing information about
the topic and the Apprentice asking questions and
seeking clarification. The original knowledge in
WoW is passages retrieved from Wikipedia, and we
extracted triples by Open Information Extraction
(OpenIE) annotator2 as a knowledge graph. Since
we consider constructing a knowledge-grounded
agent, only the utterances from Wizard are used.

FaithDial Dziri et al. (2022b) analyzed the hal-
lucination phenomenon and found that more than
60% of the response are hallucinated in the three
datasets (including WoW). To mitigate this be-
havior, Dziri et al. (2022a) create FaithDial for
hallucination-free dialogues by editing hallucinated
responses in the WoW. As the FaithDial is an edited
version of WoW, the settings of FaithDial are the
same as WoW. The original knowledge in FaithDial
is one sentence from Wikipedia, which is shorter
and more accurate, and we also construct a knowl-
edge graph by OpenIE as in WoW.

OpenDialKG OpenDialKG dataset contains con-
versations between two crowdsourcing agents en-
gaging in a dialogue about a given topic. Open-

1we will release our code and data in the future.
2https://nlp.stanford.edu/software/openie.html
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Dataset Form Avg. Turns Train Uttrs Dev Uttrs Test Uttrs Avg. Tokens Avg. Nodes
WoW Sequence 9.0 30.5K 3.5K 3.5K 141.63 48.55

FaithDial Sequence 9.0 11.2K 2.2K 2.3K 26.36 17.92
OpenDialKG Graph 5.8 14.8K 3.2K 3.2K 12.52 3.56

Table 1: Data statistics of Wow, FaithDial and OpenDialKG. Form denotes the original forms of knowledge in
datasets. Avg. Turns indicates the average number of turns involved in the dialogue. Avg. Tokens and Avg. Nodes
indicate the size of different types of knowledge. The Uttrs denotes the number of total used utterances in datasets.

DialKG annotates a knowledge graph path label
for each dialogue and a triple label for each dia-
logue turn. The response is grounded on the labeled
triples during data collection. The original knowl-
edge in OpenDialKG is one or some triples in the
knowledge graph, and the sequence reasoning path
is used as the source text. For example, the origi-
nal triple is <“Ryan Reynolds”, “ starred_actors”,

“Turbo”> and sequence reasoning path is “Ryan
Reynolds starred in Turbo”.

3.2 Architectures

We utilize three typical architectures in NLG for a
thorough comparison.

Decoder-Only Decoder-Only architecture is a
typical language model characterized by a single
autoregressive decoder. The decoder relies on pre-
vious tokens within a sequence as input to predict
the subsequent token, following the conditional
probability distribution (p(xt|x<t)). It generates
text from left to right and is, therefore, able to gen-
erate human-like text by predicting the most likely
next token at each time step. we employ GPT-2
as the Decoder-Only model. We concatenate the
knowledge, the dialogue history, and the response
as the input, i.e., p(Rt|[K; C;R<t]), where [; ] de-
notes the concatenation of strings.

Encoder-Decoder Encoder-Decoder is another
representative paradigm for NLG (Lewis et al.,
2019; Raffel et al., 2020). Unlike Decoder-Only
models, the Encoder-Decoder architecture mod-
els sequence-to-sequence generation by combining
a bidirectional encoder and an autoregressive de-
coder. In our experiments, to individually model
the different semantic spaces of knowledge and
dialogue, we only pass the knowledge K to the
encoder. The dialogue history C is considered as
the prompt of the decoder, i.e., p(Rt|K, [C;R<t]),
where [; ] denotes the concatenation of strings. We
use BART (Lewis et al., 2019) as our backbone.

Dual-Encoders Dual-Encoders is a remarkable
architecture for knowledge-grounded dialogue gen-
eration which encodes knowledge and dialogue
history by two encoders and fuse them with at-
tention mechanism in decoder (Prabhumoye et al.,
2021; Liu et al., 2021a; Yang et al., 2022). In-
spired by these works, we adopt Dual-Encoders
architecture in our experiment. The knowledge en-
coder encodes the knowledge K, and the dialogue
encoder encodes dialogue history C. Each layer
of the decoder contains a self-attention block, a
context cross-attention attending to dialogue con-
text C and a knowledge cross-attention attending to
knowledge K, i.e., p(Rt|K, C,R<t).

There maybe many other variants to improve
these basic architectures. However, the most sim-
plest configuration demonstrate the most funda-
mental abilities of the model. This kind of analysis
provides the most important reference for other
researchers. Adding too many components may
distract from the main focus of the paper and make
it difficult for readers to understand the key contri-
butions and findings. Besides, as the parameters of
different architecture is much different, we only fo-
cus on the impact from knowledge form and avoid
influences from the number of model parameters
as much as possible.

3.3 Serialize Knowledge Graph

The above architectures are based on the Trans-
formers (Vaswani et al., 2017), which has become
the dominant model in the field of NLP. Such mod-
els can effectively handle discrete sequences of
tokens rather than graphs. Hence, we serialize the
knowledge graph as input to the model. Specially,
we add three special tokens, “[triple]”, “[entity]”,
and “[relation]”, to identify the triple, entity, and
relation, respectively. For example, “<guy ritchie,
written by, snatch>, <snatch, starred actors, ewen
bremner>” is a knowledge graph with two triples.
It will be serialized as “[triple] [entity] guy ritchie
[relation] written by [entity] snatch [triple] [en-
tity] snatch [relation] starred actors [entity] ewen
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Architecture Knowledge BLEU-2 BLEU-4 ROUGE-2 ROUGE-L DIST-1 DIST-2
OpenDialKG

Decoder-Only
Sequence 26.60 15.09 20.09 33.13 8.92 33.92

Graph 27.13 15.62 21.07 34.18 9.28 35.01

Encoder-Decoder
Sequence 25.08 14.37 19.34 31.30 10.00 37.42

Graph 25.57 14.28 19.14 31.41 9.68 35.85

Dual-Encoders
Sequence 27.35 15.12 20.55 34.12 9.65 37.66

Graph 27.70 15.57 20.45 34.34 10.46 35.55
FaithDial Seen

Decoder-Only
Sequence 25.07 12.61 16.50 32.18 10.43 40.26

Graph 18.98 8.15 11.60 27.40 10.63 42.23

Encoder-Decoder
Sequence 24.47 12.21 18.25 34.41 9.64 40.07

Graph 20.60 9.23 13.71 28.97 10.40 43.89

Dual-Encoders
Sequence 27.59 14.51 18.29 34.43 9.62 33.29

Graph 21.16 9.68 14.51 30.57 10.59 38.42
FaithDial Unseen

Decoder-Only
Sequence 23.60 10.69 15.21 31.41 15.88 54.25

Graph 18.96 7.91 12.01 27.83 14.62 51.46

Encoder-Decoder
Sequence 24.02 10.88 17.35 33.57 14.52 54.36

Graph 21.42 9.06 13.58 28.62 14.05 54.40

Dual-Encoders
Sequence 24.17 10.28 15.31 31.89 16.60 59.41

Graph 20.38 8.72 14.55 30.55 15.92 52.16
WoW Seen

Decoder-Only
Sequence 14.37 7.12 8.21 20.89 13.13 54.29

Graph 15.68 7.16 9.48 22.57 12.34 53.19

Encoder-Decoder
Sequence 13.73 6.89 8.76 20.35 11.53 50.55

Graph 17.31 9.03 11.00 22.27 11.62 51.87

Dual-Encoders
Sequence 16.00 8.20 9.78 22.88 14.21 58.70

Graph 20.31 11.02 14.75 28.83 12.91 53.78
WoW Unseen

Decoder-Only
Sequence 13.69 6.92 7.86 20.72 8.93 41.44

Graph 13.85 5.48 7.67 21.39 9.13 44.44

Encoder-Decoder
Sequence 13.00 6.67 8.37 19.90 7.61 36.27

Graph 15.00 7.14 9.09 20.46 8.68 43.53

Dual-Encoders
Sequence 15.39 7.81 9.19 22.17 9.22 39.16

Graph 18.60 9.47 12.63 26.80 9.18 42.41

Table 2: The response quality performance of large pre-trained models.

bremner”. Considering the knowledge graph is dis-
ordered, we sort the triples according to the token
overlap between the triples and the dialogue history,
which keeps the potential knowledge triples from
being truncated. According to our experiments, as
long as the valuable triples can be within the maxi-
mum length, the effect of the order is not significant.
In this way, we bridge the information granularity
gap between graph nodes and text tokens, i.e., a
node is composed of many tokens. Furthermore,
we can leverage a pre-trained model for the graph
by considering the serialized knowledge graph as a

natural language.

3.4 Metrics
Knowledge-grounded dialogue generation involves
two-fold evaluations: first, it needs to generate
coherent and diverse responses as a dialogue gener-
ation task. Second, as a knowledge-intensive task,
the generation needs to satisfy factual consistency
with external knowledge. To evaluate the quality
of the response, we adopt BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) to evaluate the
generated response against the reference. Higher
scores indicate that the generated results are closer
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to the reference. We also evaluate the diversity of
generated response by n-grams distinct(Li et al.,
2016). Following previous works in evaluating
faithfulness (Dziri et al., 2022a), we take the NLI,
Q2F1 and Q2NLI (Honovich et al., 2021) as met-
rics. The NLI evaluates the text entailment, and
the Q2evaluates the factual consistency by ques-
tion generation and question answering.

4 Experimental Analyses

This section presents our detailed investigation of
how the knowledge forms affect the knowledge-
grounded dialogue, focusing on the better forms
of knowledge, the mutual adaption of model and
knowledge, and the performance under few-shot
settings. In this section, large pre-trained models
(GPT2-Large and BART-Large) are leveraged for
initialization unless otherwise highlighted. We use
sequence- or graph-based models to refer to models
that use knowledge text or knowledge graph as
knowledge, respectively.

To facilitate the following analyses, we high-
light the knowledge’s characteristics of different
datasets. OpenDialKG provides manually anno-
tated knowledge graphs and knowledge text, which
are short and accurate knowledge. FaithDial and
WoW both provide knowledge text and the corre-
sponding knowledge graphs are extracted by au-
tomated tools. For knowledge text, FaithDial’s
knowledge is sentence-level knowledge annotated
by humans, while the knowledge in WoW ranges
over long passages retrieved from Wikipedia. In
comparison, the extracted knowledge graph in both
FaithDial and WoW is not as good quality as manu-
ally annotated OpenDialKG. Therefore, the results
of graph-based models on OpenDialKG can be re-
garded as the upper-bound of knowledge graph
grounded dialogue and the results of sequence-
based models on FaithDial and OpenDialKG can
be regarded as the upper-bound of knowledge text
grounded dialogue. However, as retrieving the pre-
cise knowledge sentence or triples is difficult in
real-world practice, the results on WoW is much
closer to reality.

4.1 Q1: Graph v.s. Sequence, which form of
knowledge form is better?

Our analyses examine the validity of the knowledge
text and graph in knowledge-grounded dialogue
and attempt to determine the better form.

Architecture Knowledge NLI Q2 F1 Q2 NLI
OpenDialKG

Decoder-Only
Sequence 50.69 42.20 41.56

Graph 51.85 44.13 43.56

Encoder-Decoder
Sequence 53.41 43.89 41.91

Graph 51.16 40.17 38.82

Dual-Encoders
Sequence 52.39 46.28 45.89

Graph 55.42 44.14 42.05
Faithdial Seen

Decoder-Only
Sequence 62.27 59.15 54.31

Graph 54.82 41.01 36.42

Encoder-Decoder
Sequence 64.28 67.03 61.44

Graph 53.43 44.42 39.51

Dual-Encoders
Sequence 63.49 70.88 66.67

Graph 56.70 49.34 46.04
Faithdial Unseen

Decoder-Only
Sequence 64.85 61.31 56.35

Graph 58.70 45.89 41.33

Encoder-Decoder
Sequence 67.55 65.21 59.67

Graph 60.85 49.37 44.31

Dual-Encoders
Sequence 69.34 68.14 61.39

Graph 61.17 51.07 46.55
WoW Seen

Decoder-Only
Sequence 54.07 55.08 49.37

Graph 53.42 41.24 36.35

Encoder-Decoder
Sequence 53.49 59.67 53.22

Graph 52.62 42.60 37.08

Dual-Encoders
Sequence 54.16 66.65 58.94

Graph 53.68 45.34 40.32
WoW Unseen

Decoder-Only
Sequence 53.82 55.55 50.46

Graph 52.89 36.37 32.33

Encoder-Decoder
Sequence 53.22 60.87 55.17

Graph 53.13 42.19 38.22

Dual-Encoders
Sequence 54.90 68.20 62.07

Graph 53.99 43.73 39.31

Table 3: The faithful consistency performance of large
pre-trained models.

Response Quality Table 2 illustrates the results
of response quality. The results on OpenDialKG
are numerically significantly higher than the other
two data sets which may indicate that whether the
form of knowledge is sequence or graph, more
precise information will be more advantageous to
the results. On the other hand, the performance
of graph-based models is slightly higher than the
sequence-based, which shows the upper-bound of
graph-based models is better. While on FaithDial,
the sequence-based models show a clear advan-
tage as the knowledge graph is much noisier or
sparse. The results of WoW present the opposite
conclusion from FaithDial, where the graph-based
models’ performance is significantly better than
that of the sequence-based model. It may indicate
that when the knowledge text is complex and noisy,
the extracted graph can act as an information filter
to reduce the noise. This result provides us with
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two paths to improve generation quality, one is to
simplify the text, such as annotating fine-grained
sentences, and the other is to extract the knowledge
graph to reduce the redundancy.

Our observations indicate that in the FaithDial
dataset, knowledge graphs improve response di-
versity in the "seen" setting, while knowledge text
enhances diversity in the "unseen" setting. Con-
versely, in the WoW dataset, knowledge text im-
proves diversity in the "seen" setting, whereas
knowledge graph improves it in the "unseen" set-
ting. These findings suggest that lower-quality
knowledge can lead to greater diversity when the
domain/topic is familiar during training, while
higher-quality knowledge may be more beneficial
when the domain/topic is unfamiliar. Furthermore,
we speculate that the variation in diversity across
datasets and knowledge formats may be attributed
to differences in modeling difficulty and general-
ization capabilities. For instance, Decoder-Only ar-
chitecture can readily model fine-grained sentences
and generalize to unseen examples in FaithDial but
may struggle with complex knowledge passages in
WoW.

Factual Consistency The results of factual con-
sistency are shown in Table 3. Unlike the response
quality, the knowledge text shows an absolute ad-
vantage in factual consistency. It may be a bias
that the metrics are calculated based on the text,
which is closer to the sequence than the graph.
However, we lack unified metrics to evaluate the
factual consistency of the knowledge graph and
sequence. Overall, the Dual-Encoders architecture
outperforms both metrics and is a superior model
for knowledge-intensive tasks.

Generalizability Dziri et al. (2022a) examines
the usefulness of FaithDial in an out-of-domain set-
ting by testing the performance on other datasets
of models trained on FaithDial. Following the set-
ting, we examine the generalizability of models
with different types of knowledge by transferring
the results of response generation from FaithDial to
WoW. As shown in Figure 1, the knowledge graph
results in response quality metrics are much higher
than the knowledge text in all three architectures.
The results on the unseen test set of FaithDial and
WoW also support the observation. It demonstrates
that graph-based models have stronger generaliz-
ability than sequence-based models, and when our
data is limited, it is helpful to construct knowledge

(a) BLEU-4 (b) ROUGE-L

Figure 1: Generalization performance in terms of train-
ing on FaithDial and testing on WoW.

of graph-based data.

Human Evalution In addition to reference-based
metrics, comprehensive human evaluation is cru-
cial for dialogue-related generation tasks. To this
end, we randomly selected 100 samples with two
responses (from sequence- or graph-based mod-
els) from each dataset for each architecture, and
instructed annotators to choose the preferred re-
sponse based on dialogue history and given knowl-
edge. The results, presented in Table 4, indi-
cate that sequence-based models outperform graph-
based models, with a significantly higher win rate
on FaithDial and WoW. These findings suggest that
sequence-based models, particularly those using
Dual-Encoders architecture, have a distinct advan-
tage in interacting with humans. Furthermore, the
results reveal a discrepancy between the reference-
based metrics such as BLEU and ROUGE and hu-
man preferences.

Dataset Architecture
Win Rate

Sequence Graph

OpenDialKG
Decoder-Only 51% 49%

Encoder-Decoder 50% 50%
Dual-Encoders 69% 31%

FaithDial Seen
Decoder-Only 66% 34%

Encoder-Decoder 75% 25%
Dual-Encoders 78% 22%

FaithDial Unseen
Decoder-Only 65% 35%

Encoder-Decoder 84% 16%
Dual-Encoders 76% 24%

WoW Seen
Decoder-Only 71% 29%

Encoder-Decoder 75% 25%
Dual-Encoders 75% 25%

WoW Unseen
Decoder-Only 60% 40%

Encoder-Decoder 74% 26%
Dual-Encoders 71% 29%

Table 4: Human comparison evaluation.

Based on the above analyses, for knowledge-
grounded dialogue, the knowledge graph has bet-
ter response quality and generalizability; however,
the knowledge text is better in the factual consis-
tency of generating responses. Moreover, manual
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(a) Sequence (b) Graph

Figure 2: BLEU-4 score of different architectures.

subgraphs selection in OpenDialKG and manually
grounded sentence annotation in FaithDial inspire
us that denoising the source knowledge can im-
prove the generation. Specifically, we can finely
retrieve an accurate subgraph when the source is the
knowledge graph. While the source is the knowl-
edge text, we can extract knowledge graphs to re-
duce redundancy like WoW or rank fine-grained
semantic units to select precise knowledge.

4.2 Q2: To what extent the model and
knowledge should be mutually adaptive?

Following the selection of the knowledge form,
problems arise like as what kind of architecture
is suitable for encoding the particular knowledge,
whether a larger model size is preferable, whether a
pre-trained model is required, etc. To facilitate the
subsequent research, we comprehensively compare
detailed factors of the model and investigate to
what extent the model and knowledge should be
mutually adaptive.

Model Architecture Figure 2 compares the
BLEU-4 score of different architectures. Besides
OpenDialKG, the Decoder-Only architecture out-
performs the Encoder-Decoder architecture for
knowledge text, while the opposite is observed for
the knowledge graph. On the contrary, the Dual-
Encoders outperform others in most cases whatever
the knowledge form is. It indicates that the Dual-
Encoders have a stably excellent performance over
varying forms of knowledge. Therefore, we con-
clude that the Dual-Encoders is a wise choice to
eliminate the impact of different knowledge.

Model Size Figure 3 compares the BLEU-4 score
of various model sizes of Dual-Encoders for the
two forms of knowledge. Hoffmann et al. (2022)
stated that the model size of large language mod-
els should be matched to the size of the training
data. In addition, our results further indicate that
the model size should be mutually adaptive to
the knowledge’s characteristics. For instance, the
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Figure 3: BLEU-4 score of various model size. The
figures on the left side are based on result grounded in
knowledge text, while the figures on the right side are
based on result grounded in a graph.

knowledge in OpenDialKG is of high quality; even
though it has limited data, the larger model per-
forms better. We infer that this is because some
knowledge’s characteristics, such as the standard
knowledge graph in OpenDialKG, are more con-
ducive to exploring the potential of pre-trained
models, like prompt learning. Furthermore, knowl-
edge in WoW has higher noise for both sequence
and graph forms, with varying effects on model
size. The above statistics indicate it is not that the
larger the model size is, the better performance
is. The optimal model size is related to training
data size and is highly associated with knowledge’s
sophisticated characteristics.

Pretrained or not We experimented with inves-
tigating the impact of pre-trained initialization, fo-
cusing on the effect of different knowledge forms
and architectures. Figure 5 shows the effect of pre-
trained across different architectures and knowl-
edge forms, with red indicating the results without
pre-trained and blue indicating the improved results
achieved with pre-trained. The positive impact of
pre-trained initialization is universal. However, pre-
trained can lead to a more remarkable performance
improvement when the knowledge is represented
in sequence form, compared to the serialization
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form of the knowledge graph. The reason may be
that the knowledge graph, a form of structured data,
lacks the natural language pattern after serializa-
tion, making it less intuitive for pre-trained mod-
els designed to understand and generate language
fluently. By comparing the results without pre-
trained, we can see that the architectures exhibit
different performances under different knowledge
forms. For instance, the Dual-Encoders architec-
ture yields the best performance in the sequence
form, whereas the Decoder-Only architecture at-
tains the optimal results in the graph form.

In terms of overall results, the Dual-Encoders ar-
chitecture with pre-trained initialization positively
impact the results. It suggests that performance
could be improved further by advanced Dual-
Encoders structure or by employing domain adap-
tion pre-training, and the improvement is slightly
related to knowledge’s characteristics. There-
fore, we suggest further research to choose Dual-
Encoders with pre-trained initialization as a base-
line and design experiments of various model sizes
for different knowledge to indicate the contribution.

4.3 Q3: How does various knowledge perform
in few-shot settings?

Since the knowledge-auxiliary is an important di-
rection of few-shot learning (Chen et al., 2021), we
would like to explore the performance of various
knowledge-based models under few-shot settings.
Unlike related work dedicated to few-shot learn-
ing (Li et al., 2022, 2020), we do not consider par-
ticular methods such as domain pre-training with
pseudo-data to optimize our models, but only the
models mentioned in the above paper.

Figure 4 shows the results from zero-shot to
1000-shot. Because the pre-trained model is trained
on natural language, the sequence-based model out-
performs the graph-based model. However, it may
be due to the gap between serialized graphs and nat-
ural language for the pre-trained language model.
The graph-based models would be better if the
model employed a graph-based pre-training stage.
Similarly, the Encoder-Decoder is closest to the pre-
training phase, while the Dual-Encoders have enor-
mous variation. Thus, the Encoder-Decoder per-
forms best, while the Dual-Encoders require more
training data to fine-tune. However, as the data in-
creases, the Dual-Encoders’ performance improves
significantly, surpassing other models, such as 500-
shot on OpenDialKG. Therefore, when we have
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Figure 4: BLEU-4 score in few-shot settings

only a few samples (100-200), the input form and
model architecture should resemble the pre-trained
model, such as Encoder-Decoder. Then, when the
data is larger (500+) or better (e.g., detailed manual
annotations), we can train a task-adapted model,
such as Dual-Encoders.

5 Conclusion

In the paper, we analyze the strength and limita-
tions of two forms of knowledge for knowledge-
grounded dialogue. We conduct a comprehensive
study to determine which form of knowledge is su-
perior and to what extent the model and knowledge
should be mutually adaptable. Additionally, we in-
vestigate the performance of various knowledge in
few-shot settings. Our experimental results indicate
that different knowledge forms have their advan-
tages, but task-oriented instructions, such as proper
knowledge and model selection, are essential. We
also summarize determinant conclusions about the
influencing factors for subsequent research. In fu-
ture work, we will analyze the influencing factors
more quantitatively and explore general conclu-
sions for other knowledge-intensive tasks.

15854



Limitations

This work may contribute to the development of
knowledge-intensive language tasks. Nevertheless,
there are two main limitations of the works. First,
limited by the experimental equipment, we can
not access the larger pre-trained language mod-
els, such as T5-XXL, for the scaling experiments.
As analyzed in Section 4.2, the model’s size and
knowledge are correlated. Therefore, all the conclu-
sions in this paper could have changed if the larger
models had been used. However, it is essential to
realize that the training cost of large models is vast,
so it may be necessary to compare effectiveness
and efficiency. Secondly, We only focus on the
knowledge-grounded dialogue generation as a rep-
resentative task for knowledge-intensive language
tasks. Besides, other tasks, such as fact-checking
and question-answering, should be considered. The
larger models will be considered in future work,
and more extensive research will be introduced in
other knowledge-intensive language tasks.
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A Implementation Details

Models in the paper were implemented by Py-
Torch and Transformers (Wolf et al., 2019). The
Dual-Encoders and Encoder-Decoder architecture
are based on BART (Lewis et al., 2019), and the
Decoder-Only architecture is based on GPT-2 (Rad-
ford et al., 2019).

We used the transformer toolkit (Wolf et al.,
2019) to implement the models. We initialized
the external parameters for the Dual-Encoders fol-
lowing DoHA (Prabhumoye et al., 2021). Specif-
ically, We initialized the two encoders with the

Architecture Sequenceize Params

Decoder-Only
base 237.35M

Medium 676.77M
Large 1476.35M

Encoder-Decoder
Base 265.92M
Large 774.94M

Dual-Encoders
Base 375.60M
Large 1161.39M

Table 5: The number of parameters of models in differ-
ent size.

same weights for the Dual-Encoders model, and
the two cross-attention blocks were initialized with
the same weights in the decoder layers. Hence, the
layer size of the cross-attention is the same as in
BART. We trained all models for 10k steps, using a
batch size of 32 and the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 5e-5. We
warmed up the learning rate for 0.5k steps followed
by a linear decay. The max length of dialogue
history and response is 128 and 64 tokens. The
max length of the knowledge text in OpenDialKG,
FaithDial, and WoW are 64, 64, and 256. The
knowledge graph’s max length is 64, 512, and 512,
respectively. The models were evaluated on the val-
idation set per 0.5k steps, and the best-performing
model was saved for testing. We early stopped the
training with patience of 5. Training for all models
was done on an Nvidia GeForce RTX 3090GPU
24GB, and for inference, we used nucleus sam-
pling with p=0.6. Table 5 shows the statistics of
parameters of models in different sizes.

For few-shot settings, inspired by the experi-
ments on model size, we only explore the perfor-
mance of base-size models (BART-base and GPT2-
base) with pre-trained initialization. We also ex-
periment with the large-size model, but the results
show that the large-size model could not fit the
few-shot data. To prevent overfitting at the few-
shot setting, we reduce the learning rate to 1e-5, set
the warmup steps to 100, and set the total training
steps to 5K. We also early stop the training with a
patience of 3.

A.1 Impact of Pretrained

B Encode Graph by GAT

In addition to serialization, we also considered
leveraging GAT (Veličković et al., 2018) to encode
the knowledge graph, and the results are shown in
Table 6. Specifically, we pool the token representa-
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Architecture dataset Graph Encoder Pre-trained or not BLEU-2 BLEU-4 ROUGE-2 ROUGE-L DISTINCT-1 DISTINCT-2

Encoder-Decoder

OpenDialKG
GAT-Encoder No 12.41 5.03 8.43 19.93 4.40 21.98

Serialization
No 13.33 5.81 7.61 16.80 6.60 28.55
Yes 25.57 14.28 19.14 31.41 9.68 35.85

FaithDial Seen
GAT-Encoder No 6.90 1.92 3.30 14.10 7.38 38.17

Serialization
No 6.24 1.57 3.05 13.64 8.06 39.60
Yes 20.60 9.23 13.71 28.97 10.40 43.89

FaithDial Unseen
GAT-Encoder No 9.03 2.57 4.85 16.70 7.97 41.48

Serialization
No 8.39 2.67 4.47 15.52 8.36 41.48
Yes 21.42 9.06 13.58 28.62 14.05 54.40

Wow Seen
GAT-Encoder No 6.04 1.17 2.71 13.89 5.98 35.60

Serialization
No 5.66 1.10 2.29 12.24 5.91 38.59
Yes 17.31 9.03 11.00 22.27 11. 62 51.87

WoW Unseen
GAT-Encoder No 4.52 0.63 1.75 11.99 5.68 33.65

Serialization
No 5.08 0.76 1. 65 12.88 8.20 41.52
Yes 15.39 7.81 9.19 22.17 9.22 39.16

Dual-Encoder

OpenDialKG
GAT-Encoder No 15.04 5.89 9.10 22.61 6.21 27.02

Serialization
No 13.72 5.44 8.73 22.00 6.55 28.26
Yes 27.70 15.57 20.45 34.34 10.46 35.55

FaithDial Seen
GAT-Encoder No 8.70 2.21 3.80 17.09 10.80 46.41

Serialization
No 8.72 2.49 3.88 16.85 10.08 42.90
Yes 21.16 9.68 14.51 30.57 10.59 38.42

FaithDial Unseen
GAT-Encoder No 11.74 3.87 6.24 20.28 11.89 50.50

Serialization
No 10.37 3.41 4.95 1 8.68 10.60 45.09
Yes 20.38 8.72 14.55 30.55 15.92 52.16

Wow Seen
GAT-Encoder No 8.74 2.35 3.80 16.64 8.73 44.39

Serialization
No 8.85 2.12 3.93 16.97 8.60 44,.96
Yes 20.31 11.02 14.75 28.83 12.91 53.78

WoW Unseen
GAT-Encoder No 5.87 1.01 2.09 13.87 8.47 42.51

Serialization
No 6.20 1.06 2.17 14.13 8.86 42.81
Yes 18.60 9.47 12.63 26.80 9.18 42.41

Table 6: The comparison results of graph-based models with GAT encoder and serialization.

tion as a representation of the nodes and leverage
GAT instead of the encoder in the architecture. As
we do not apply pre-trained initialization on GAT,
we only compare with the no pre-trained models.
The table shows that the graph encoder results are
better than those leveraging the serialization ap-
proach. However, the graph encoder models also
underperform the models with pre-trained initial-
ization. Therefore, when pre-training with Graph-
to-Sequence is unavailable, it is an excellent way
to serialize the knowledge graph into a sequence.
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Figure 5: The effect of pretrained. The figures on the
left side are based on result grounded in knowledge text,
while the figures on the right side are based on result
grounded in a graph.
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