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Abstract

To reduce the inference cost of large language
models, model compression is increasingly
used to create smaller scalable models. How-
ever, little is known about their robustness to
minority subgroups defined by the labels and
attributes of a dataset. In this paper, we inves-
tigate the effects of 18 different compression
methods and settings on the subgroup robust-
ness of BERT language models. We show that
worst-group performance does not depend on
model size alone, but also on the compression
method used. Additionally, we find that model
compression does not always worsen the per-
formance on minority subgroups. Altogether,
our analysis serves to further research into the
subgroup robustness of model compression.

1 Introduction

In recent years, the field of Natural Language
Processing (NLP) has seen a surge in interest
in the application of Large Language Models
(LLMs) (Brown et al., 2020; Thoppilan et al., 2022;
Touvron et al., 2023). These applications range
from simple document classification to complex
conversational chatbots. However, the uptake of
LLMs has not been evenly distributed across soci-
ety. Due to their large inference cost, only a few
well-funded companies may afford to run LLMs at
scale. To address this, many have turned to model
compression to create smaller language models
(LMs) with near comparable performance to their
larger counterparts.

The goal of model compression is to reduce a
model’s size and latency while retaining overall per-
formance. Existing approaches such as knowledge
distillation (Hinton et al., 2015) have produced scal-
able task-agnostic models (Turc et al., 2019; Sanh
et al., 2020; Jiao et al., 2020). Meanwhile, other
approaches have shown that not all transformer
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Model Size (MB) Parameters
BERTBase 438.01 109M

BERTMedium 165.55 41M
BERTSmall 115.09 29M
BERTMini 44.71 11M
BERTTiny 17.56 4M
DistilBERT 267.86 67M
TinyBERT6 267.87 67M
TinyBERT4 57.43 14M
BERTPR20 415.97 104M
BERTPR40 393.14 98M
BERTPR60 370.31 93M
BERTPR80 347.48 87M
BERTDQ 181.48 24M
BERTSQ 182.89 24M

BERTQAT 182.89 24M
BERTV T100 438.01 109M
BERTV T75 414.57 104M
BERTV T50 391.13 98M
BERTV T25 367.69 92M

Table 1: Model size and number of parameters.
BERTBase is shown as the baseline with subsequent
models from knowledge distillation, structured pruning,
quantization, and vocabulary transfer respectively.

heads (Michel et al., 2019) or embeddings (Gee
et al., 2022) are essential. Although model com-
pression has been proven to work well in practice,
little is known about its influence on subgroup ro-
bustness.

In any given dataset, subgroups exists as a com-
bination of labels (e.g. hired or not hired) and
attributes (e.g. male or female) (Sagawa et al.,
2020; Bartlett et al., 2022). A model is said
to be subgroup robust if it maximizes the low-
est performance across subgroups (Gardner et al.,
2023). Due to the unbalanced sample size of each
subgroup, the conventional approach to training
via Empirical Risk Minimization (ERM) (Vapnik,
1999) produces models with a higher performance
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Figure 1: Plot of WGA against average accuracy. Compression method is represented by marker type, while
model size is represented by marker size. In MultiNLI and SCOTUS, compression worsens WGA for most models.
Conversely, WGA improves for most compressed models in CivilComments.

on majority subgroups (e.g. hired male), but a
lower performance on minority subgroups (e.g.
hired female).

Given the increasing role of LLMs in everyday
life, our work seeks to address a gap in the exist-
ing literature regarding the subgroup robustness of
model compression in NLP. To that end, we explore
a wide range of compression methods (Knowledge
Distillation, Pruning, Quantization, and Vocabu-
lary Transfer) and settings on 3 textual datasets
— MultiNLI (Williams et al., 2018), CivilCom-
ments (Koh et al., 2021), and SCOTUS (Chalkidis
et al., 2022). The code for our paper is publicly
available1.

The remaining paper is organized as follows.
First, we review related works in Section 2. Then,
we describe the experiments and results in Sec-
tions 3 and 4 respectively. Finally, we draw our
conclusions in Section 5.

2 Related Works

Most compression methods belong to one of the fol-
lowing categories: Knowledge Distillation (Hinton
et al., 2015), Pruning (Han et al., 2015), or Quan-
tization (Jacob et al., 2017). Additionally, there
exists orthogonal approaches specific to LMs such
as Vocabulary Transfer (Gee et al., 2022). Previous
works looking at the effects of model compression
have focused on the classes or attributes in images.

Hooker et al. (2021) analyzed the performance
of compressed models on the imbalanced classes
of CIFAR-10, ImageNet, and CelebA. Magnitude
pruning and post-training quantization were consid-
ered with varying levels of sparsity and precision
respectively. Model compression is found to canni-
balize the performance on a small subset of classes

1https://github.com/wearepal/
compression-subgroup

to maintain overall performance.
Hooker et al. (2020) followed up by analyzing

how model compression affects the performance
on sensitive attributes of CelebA. Unitary attributes
of gender and age as well as their intersections (e.g.
Young Male) were considered. The authors found
that overall performance was preserved by sacrific-
ing the performance on low-frequency attributes.

Stoychev and Gunes (2022) expanded the pre-
vious analysis on attributes to the fairness of fa-
cial expression recognition. The authors found
that compression does not always impact fairness
in terms of gender, race, or age negatively. The
impact of compression was also shown to be non-
uniform across the different compression methods
considered.

To the best of our knowledge, we are the first
to investigate the effects of model compression
on subgroups in a NLP setting. Additionally, our
analysis encompasses a much wider range of com-
pression methods than were considered in the afore-
mentioned works.

3 Experiments

The goal of learning is to find a function f that
maps inputs x ∈ X to labels y ∈ Y . Additionally,
there exists attributes a ∈ A that are only provided
as annotations for evaluating the worst-group per-
formance at test time. The subgroups can then be
defined as g ∈ {Y ×A}.

3.1 Models
We utilize 18 different compression methods and
settings on BERT (Devlin et al., 2019). An
overview of each model’s size and parameters is
shown in Table 1.

Knowledge Distillation (KD). We analyze
seven models (BERTMedium, BERTSmall,
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Figure 2: Model performance is shown to improve across the binary datasets of MultiNLI. However, the overall
trend in WGA remains relatively unchanged, with a decreasing model size leading to drops in WGA.

BERTMini, BERTT iny, DistilBERT, TinyBERT6,
TinyBERT4) distilled from the uncased version
of BERTBase using 3 different distillation meth-
ods (Turc et al., 2019; Sanh et al., 2020; Jiao et al.,
2020). Each model is loaded from HuggingFace2

with its pre-trained weights.

Pruning. We analyze structured pruning (Michel
et al., 2019) on BERT following a three-step train-
ing pipeline (Han et al., 2015). Four different levels
of sparsity (BERTPR20, BERTPR40, BERTPR60,
BERTPR80) are applied by sorting all transformer
heads using the L1-norm of weights from the query,
key, and value projection matrices. Structured prun-
ing is implemented using the NNI library3.

Quantization. We analyze 3 quantization meth-
ods supported natively by PyTorch — Dy-
namic Quantization (BERTDQ), Static Quantiza-
tion (BERTSQ), and Quantization-aware Training
(BERTQAT ). Quantization is applied to the linear
layers of BERT to map representations from FP32
to INT8. The calibration required for BERTSQ and
BERTQAT is done using the training set.

Vocabulary Transfer (VT). We analyze vo-
cabulary transfer using 4 different vocabu-
lary sizes (BERTV T100, BERTV T75, BERTV T50,
BERTV T25) as done by Gee et al. (2022). Note
that BERTV T100 does not compress the LM, but
adapts its vocabulary fully to the in-domain dataset,
thus making tokenization more efficient.

3.2 Datasets
Our analysis is done on 3 classification datasets.
MultiNLI and CivilComments are textual
datasets used by most subgroup robustness
research (Sagawa et al., 2020; Liu et al., 2021;
Izmailov et al., 2022). Additionally, we extend

2https://github.com/huggingface/transformers
3https://github.com/microsoft/nni

the datasets to SCOTUS from the FairLex
benchmark (Chalkidis et al., 2022).

Further details regarding the subgroups in each
dataset are shown in Appendix A.1.

MultiNLI. Given a hypothesis and premise, the
task is to predict whether the hypothesis is con-
tradicted by, entailed by, or neutral with the
premise (Williams et al., 2018). Following Sagawa
et al. (2020), the attribute indicates whether any
negation words (nobody, no, never, or nothing) ap-
pear in the hypothesis. We use the same dataset
splits as Liu et al. (2021).

CivilComments. Given an online comment, the
task is to predict whether it is neutral or toxic (Koh
et al., 2021). Following Koh et al. (2021), the
attribute indicates whether any demographic iden-
tities (male, female, LGBTQ, Christian, Muslim,
other religion, Black, or White) appear in the com-
ment. We use the same dataset splits as Liu et al.
(2021).

SCOTUS. Given a court opinion from the US
Supreme Court, the task is to predict its the-
matic issue area (Chalkidis et al., 2022). Fol-
lowing Chalkidis et al. (2022), the attribute in-
dicates the direction of the decision (liberal or
conservative) as provided by the Supreme Court
Database (SCDB). We use the same dataset splits
as Chalkidis et al. (2022).

3.3 Implementation Details

We train each compressed model via ERM with 5
different random initializations. The average ac-
curacy, worst-group accuracy (WGA), and model
size are measured as metrics. The final value of
each metric is the average of all 5 initializations.

Following Liu et al. (2021); Chalkidis et al.
(2022), we fine-tune the models for 5 epochs on
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Figure 3: Distribution of accuracies by subgroup for KD. Sample sizes in the training set are shown beside each
subgroup. In CivilComments, performance improves on minority subgroups (2 and 3) across most models as model
size decreases contrary to the minority subgroups (3 and 5) of MultiNLI.

MultiNLI and CivilComments and for 20 on SCO-
TUS. A batch size of 32 is used for MultiNLI
and 16 for CivilComments and SCOTUS. Each
model is implemented with an AdamW opti-
mizer (Loshchilov and Hutter, 2019) and early stop-
ping. A learning rate of 2 · 10−5 with no weight
decay is used for MultiNLI, while a learning rate of
10−5 with a weight decay of 0.01 is used for Civil-
Comments and SCOTUS. Sequence lengths are set
to 128, 300, and 512 for MultiNLI, CivilComments,
and SCOTUS respectively.

As done by Gee et al. (2022), one epoch of
masked-language modelling is applied before fine-
tuning for VT. The hyperparameters are the same
as those for fine-tuning except for a batch size of 8.

4 Results

Model Size and Subgroup Robustness. We plot
the overall results in Figure 1 and note a few in-
teresting findings. First, in MultiNLI and SCO-
TUS, we observe a trend of decreasing average and
worst-group accuracies as model size decreases. In
particular, TinyBERT6 appears to be an outlier in
MultiNLI by outperforming every model including
BERTBase. However, this trend does not hold in
CivilComments. Instead, most compressed models
show an improvement in WGA despite slight drops
in average accuracy. Even extremely compressed
models like BERTT iny are shown to achieve a
higher WGA than BERTBase. We hypothesize that
this is due to CivilComments being a dataset that
BERTBase easily overfits on. As such, a reduction
in model size serves as a form of regularization for
generalizing better across subgroups. Additionally,
we note that a minimum model size is required
for fitting the minority subgroups. Specifically,
the WGA of distilled models with layers fewer

than 6 (BERTMini, BERTT iny, and TinyBERT4)
is shown to collapse to 0 in SCOTUS.

Second, we further analyze compressed mod-
els with similar sizes by pairing DistilBERT with
TinyBERT6 as well as post-training quantization
(BERTDQ and BERTSQ) with BERTQAT accord-
ing to their number of parameters in Table 1.
We find that although two models may have an
equal number of parameters (approximation er-
ror), their difference in weight initialization af-
ter compression (estimation error) as determined
by the compression method used will lead to
varying performance. In particular, DistilBERT
displays a lower WGA on MultiNLI and Civil-
Comments, but a higher WGA on SCOTUS than
TinyBERT6. Additionally, post-training quanti-
zation (BERTDQ and BERTSQ) which does not
include an additional fine-tuning step after com-
pression or a compression-aware training like
BERTQAT is shown to be generally less subgroup
robust. These methods do not allow for the recov-
ery of model performance after compression or to
prepare for compression by learning compression-
robust weights.

Task Complexity and Subgroup Robustness
To understand the effects of task complexity on
subgroup robustness, we construct 3 additional
datasets by converting MultiNLI into a binary task.
From Figure 2, model performance is shown to
improve across the binary datasets for most mod-
els. WGA improves the least when Y = [0, 2], i.e.
when sentences contradict or are neutral with one
another. Additionally, although there is an overall
improvement in model performance, the trend in
WGA remains relatively unchanged as seen in Fig-
ure 1. A decreasing model size is accompanied by
a reduction in WGA for most models. We hypoth-
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esize that subgroup robustness is less dependent
on the task complexity as defined by number of
subgroups that must be fitted.

Distribution of Subgroup Performance. We
plot the accuracies distributed across subgroups
in Figure 3. We limit our analysis to MultiNLI and
CivilComments with KD for visual clarity. From
Figure 3, we observe that model compression does
not always maintain overall performance by sac-
rificing the minority subgroups. In MultiNLI, a
decreasing model size reduces the accuracy on mi-
nority subgroups (3 and 5) with the exception of
TinyBERT6. Conversely, most compressed models
improve in accuracy on the minority subgroups (2
and 3) in CivilComments. This shows that model
compression does not necessarily cannibalize the
performance on minority subgroups to maintain
overall performance, but may improve performance
across all subgroups instead.

5 Conclusion

In this work, we presented an analysis of existing
compression methods on the subgroup robustness
of LMs. We found that compression does not al-
ways harm the performance on minority subgroups.
Instead, on datasets that a model easily overfits on,
compression can aid in the learning of features that
generalize better across subgroups. Lastly, com-
pressed LMs with the same number of parameters
can have varying performance due to differences
in weight initialization after compression.

Limitations

Our work is limited by its analysis on English lan-
guage datasets. The analysis can be extended to
other multi-lingual datasets from the recent FairLex
benchmark (Chalkidis et al., 2022). Additionally,
we considered each compression method in isola-
tion and not in combination with one another.
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A Further Details

A.1 Datasets

We tabulate the labels and attributes that define
each subgroup in Table 2. Additionally, we show
the sample size of each subgroup in the training,
validation, and test sets.

A.2 Results

We tabulate the main results of the paper in Table 3.
The performance of each model is averaged across
5 seeds.

B Additional Experiments

B.1 Sparsity and Subgroup Robustness.

Besides structured pruning, we investigate the ef-
fects of unstructured pruning using 4 similar levels
of sparsity. Connections are pruned via PyTorch
by sorting the weights of every layer using the
L1-norm. We tabulate the results separately in Ta-
ble 4 as PyTorch does not currently support sparse
neural networks. Hence, no reduction in model
size is seen in practice. From Table 4, we observe
similar trends to those in Figure 1. Specifically,
as sparsity increases, the WGA generally worsens
in MultiNLI and SCOTUS, but improves in Civil-
Comments across most models. At a sparsity of
80%, WGA drops significantly for MultiNLI and
SCOTUS, but not for CivilComments.

B.2 Ablation of TinyBERT6.

To better understand the particular subgroup ro-
bustness of TinyBERT6, we conduct an ablation on
its general distillation procedure. Specifically, we
ablate the attention matrices, hidden states, and em-
beddings as sources of knowledge when distilling
on the Wikipedia dataset4. The same hyperparame-
ters as Jiao et al. (2020) are used except for a batch
size of 256 and a gradient accumulation of 2 due
to memory constraints.

From Table 5, we find that we are unable to
achieve a similar WGA on MultiNLI and its bi-
nary variants as shown by the performance gap be-
tween TinyBERT6 and TinyBERTAHE . On SCO-
TUS, the WGA of TinyBERTAHE is found to
also be much higher than TinyBERT6. We hy-
pothesize that the pre-trained weights that were
uploaded to HuggingFace5 may have included a

4https://huggingface.co/datasets/wikipedia
5https://huggingface.co/huawei-noah/TinyBERT_

General_6L_768D

further in-domain distillation on MultiNLI. Addi-
tionally, model performance is shown to benefit
the least when knowledge from the embedding is
included during distillation. This can be seen by
the lower WGA of TinyBERTAHE compared to
TinyBERTAH across most datasets.
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Dataset Subgroup Label Attribute Training Validation Test

M
ul

tiN
L

I

0 0 (Contradicts) 0 (No negation) 57498 22814 34597
1 0 (Contradicts) 1 (Has negation) 11158 4634 6655
2 1 (Entails) 0 (No negation) 67376 26949 40496
3 1 (Entails) 1 (Has negation) 1521 613 886
4 2 (Neutral) 0 (No negation) 66630 26655 39930
5 2 (Neutral) 1 (Has negation) 1992 797 1148

C
iv

ilC
om

m
en

ts

0 0 (Neutral) 0 (No sensitive) 148186 25159 72373
1 0 (Neutral) 1 (Has sensitive) 90337 14966 46185
2 1 (Toxic) 0 (No sensitive) 12731 2111 6063
3 1 (Toxic) 1 (Has sensitive) 17784 2944 9161

SC
O

T
U

S

0 0 (Criminal Procedure) 0 (Liberal) 869 111 114
1 0 (Criminal Procedure) 1 (Conservative) 701 82 101
2 1 (Civil Rights) 0 (Liberal) 536 67 72
3 1 (Civil Rights) 1 (Conservative) 683 87 90
4 2 (First Amendment) 0 (Liberal) 267 29 37
5 2 (First Amendment) 1 (Conservative) 334 44 39
6 3 (Due Process) 0 (Liberal) 130 18 23
7 3 (Due Process) 1 (Conservative) 162 18 24
8 4 (Privacy) 0 (Liberal) 66 5 6
9 4 (Privacy) 1 (Conservative) 29 6 3
10 5 (Attorneys) 0 (Liberal) 34 3 4
11 5 (Attorneys) 1 (Conservative) 32 9 6
12 6 (Unions) 0 (Liberal) 149 10 20
13 6 (Unions) 1 (Conservative) 174 17 28
14 7 (Economic Activity) 0 (Liberal) 644 87 70
15 7 (Economic Activity) 1 (Conservative) 925 105 112
16 8 (Judicial Power) 0 (Liberal) 689 86 75
17 8 (Judicial Power) 1 (Conservative) 384 41 39
18 9 (Federalism) 0 (Liberal) 144 18 13
19 9 (Federalism) 1 (Conservative) 189 31 22
20 10 (Interstate Relations) 0 (Liberal) 67 16 4
21 10 (Interstate Relations) 1 (Conservative) 209 24 29

Table 2: Defined subgroups in MultiNLI, CivilComments, and SCOTUS.
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Model MultiNLI CivilComments SCOTUS
Average Worst Average Worst Average Worst

BERTBase 82.58 64.06 92.96 52.22 82.62 50.36
BERTMedium 79.02 55.46 92.70 55.02 80.50 38.18
BERTSmall 75.86 47.40 92.70 55.44 79.06 40.76
BERTMini 72.62 40.50 92.56 56.46 75.12 0.00
BERTT iny 64.90 19.26 92.04 54.26 63.02 0.00
DistilBERT 80.14 58.40 92.90 50.42 81.02 46.40
TinyBERT6 85.26 72.74 92.80 52.72 77.58 29.78
TinyBERT4 80.60 57.70 92.60 56.20 62.08 0.00
BERTPR20 82.08 61.24 92.80 56.64 81.84 44.00
BERTPR40 81.50 60.92 92.84 54.62 81.04 50.00
BERTPR60 80.72 61.24 92.86 53.08 80.28 36.64
BERTPR80 78.78 52.64 92.76 52.94 79.94 33.30
BERTDQ 76.74 58.48 92.48 36.96 72.44 3.34
BERTSQ 77.98 57.64 92.40 35.16 75.30 16.36

BERTQAT 79.44 57.26 92.50 60.24 80.20 43.20
BERTV T100 82.30 64.40 92.98 50.28 82.54 42.48
BERTV T75 82.26 62.24 93.00 51.96 81.62 36.12
BERTV T50 82.00 62.80 93.00 50.86 82.10 50.98
BERTV T25 81.26 63.92 92.90 52.14 81.42 40.44

(a) MultiNLI, CivilComments, and SCOTUS.

Model Y = [0, 1] Y = [0, 2] Y = [1, 2]
Average Worst Average Worst Average Worst

BERTBase 92.54 85.24 86.74 67.80 87.70 84.52
BERTMedium 89.28 78.70 83.40 57.84 85.80 81.62
BERTSmall 87.26 77.32 80.90 51.14 84.16 82.58
BERTMini 85.10 70.54 78.04 42.50 82.76 80.38
BERTT iny 79.16 64.22 73.28 14.08 77.58 68.36
DistilBERT 90.52 84.00 84.48 62.02 86.02 83.88
TinyBERT6 94.24 89.06 89.44 76.50 89.40 87.62
TinyBERT4 91.10 83.04 85.80 60.84 86.34 83.60
BERTPR20 92.48 85.72 86.50 69.12 87.30 83.34
BERTPR40 92.14 84.64 85.88 66.64 86.86 82.76
BERTPR60 91.50 82.54 84.86 62.00 86.40 82.14
BERTPR80 89.78 79.48 82.76 50.24 85.02 81.98
BERTDQ 90.76 81.08 85.04 62.18 85.58 79.02
BERTSQ 87.26 71.84 83.12 58.30 83.00 73.42

BERTQAT 90.12 80.14 84.72 67.74 85.90 82.78
BERTV T100 92.32 85.86 86.22 66.14 87.50 84.92
BERTV T75 92.28 84.20 86.16 65.88 87.56 85.16
BERTV T50 92.16 85.30 86.12 60.50 87.30 84.40
BERTV T25 91.46 84.82 85.24 62.54 86.78 82.34

(b) MultiNLI with different binary labels.

Table 3: Model performance averaged across 5 seeds. WGA decreases as model size is reduced in MultiNLI and
SCOTUS, but increases instead in CivilComments. This trend is also seen in the binary variants of MultiNLI despite
a reduction in task complexity.
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Sparsity MultiNLI CivilComments SCOTUS
Average Worst Average Worst Average Worst

0% 82.58 64.06 92.96 52.22 82.62 50.36
20% 81.92 66.20 92.66 57.12 82.42 44.62
40% 81.84 67.30 92.74 58.26 82.34 50.82
60% 81.44 63.12 92.84 55.36 81.52 50.00
80% 74.32 40.34 92.32 53.40 74.40 0.00

(a) MultiNLI, CivilComments, and SCOTUS.

Sparsity Y = [0, 1] Y = [0, 2] Y = [1, 2]
Average Worst Average Worst Average Worst

0% 92.54 85.24 86.74 67.80 87.70 84.52
20% 92.54 85.32 86.48 69.48 87.02 82.34
40% 92.38 85.28 86.38 69.16 87.16 84.06
60% 91.90 84.52 85.76 66.70 86.76 84.50
80% 86.00 70.38 78.52 38.72 81.78 76.28

(b) MultiNLI with different binary labels.

Table 4: Average and worst-group accuracies for unstructured pruning. BERTBase is shown with a sparsity of 0%.
MultiNLI and SCOTUS generally see a worsening WGA when sparsity increases contrary to the improvements in
CivilComments.

Model MultiNLI CivilComments SCOTUS
Average Worst Average Worst Average Worst

TinyBERT6 85.26 72.74 92.80 52.72 77.58 29.78
TinyBERTAHE 77.78 53.96 92.56 52.88 77.28 38.70
TinyBERTAH 77.76 54.50 92.54 53.76 76.70 38.94
TinyBERTAE 77.14 52.24 92.56 53.22 76.82 37.48
TinyBERTHE 75.68 51.66 92.54 51.70 77.76 39.26
TinyBERTA 77.12 51.62 92.58 53.42 77.14 34.98
TinyBERTH 76.08 53.12 92.52 50.82 78.06 42.04
TinyBERTE 65.90 32.22 92.00 44.16 75.58 33.30

(a) MultiNLI, CivilComments, and SCOTUS.

Model Y = [0, 1] Y = [0, 2] Y = [1, 2]
Average Worst Average Worst Average Worst

TinyBERT6 94.24 89.06 89.44 76.50 89.40 87.62
TinyBERTAHE 88.82 78.90 81.88 51.26 84.58 82.82
TinyBERTAH 88.82 78.50 81.72 53.04 84.62 82.04
TinyBERTAE 88.12 78.32 80.86 48.78 83.90 81.58
TinyBERTHE 87.48 75.88 80.60 49.74 83.36 80.56
TinyBERTA 87.98 78.50 80.86 49.76 83.76 81.70
TinyBERTH 87.76 76.26 80.94 53.80 83.58 79.80
TinyBERTE 78.68 61.10 72.84 38.74 72.22 65.80

(b) MultiNLI with different binary labels.

Table 5: Ablation of TinyBERT6. The subscripts A, H , and E represent the attention matrices, hidden states, and
embeddings that are transferred as knowledge respectively during distillation. A noticeable performance gap is seen
between TinyBERT6 and TinyBERTAHE on MultiNLI and SCOTUS.
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