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Abstract

Text-to-speech(TTS) has undergone remark-
able improvements in performance, particularly
with the advent of Denoising Diffusion Prob-
abilistic Models (DDPMs). However, the per-
ceived quality of audio depends not solely on
its content, pitch, rhythm, and energy, but also
on the physical environment. In this work, we
propose ViT-TTS, the first visual TTS model
with scalable diffusion transformers. ViT-TTS
complement the phoneme sequence with the
visual information to generate high-perceived
audio, opening up new avenues for practical
applications of AR and VR to allow a more
immersive and realistic audio experience. To
mitigate the data scarcity in learning visual
acoustic information, we 1) introduce a self-
supervised learning framework to enhance both
the visual-text encoder and denoiser decoder;
2) leverage the diffusion transformer scalable
in terms of parameters and capacity to learn
visual scene information. Experimental results
demonstrate that ViT-TTS achieves new state-
of-the-art results, outperforming cascaded sys-
tems and other baselines regardless of the visi-
bility of the scene. With low-resource data (1h,
2h, 5h), ViT-TTS achieves comparative results
with rich-resource baselines. 1 2

1 Introduction

Text-to-speech (TTS) (Ren et al., 2019; Huang
et al., 2022a,b) aims to synthesize audios that is
consistent with the reference samples in terms of
semantic meaning, timbre, emotions, and melody,
and has shown remarkable advancements with the
advent of Denoising Diffusion Probabilistic Mod-
els (DDPMs). However, the perceived audio qual-
ity is not solely determined by these aspects, as
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1Audio samples are available at https://ViT-TTS.
github.io/.

2Code is available at https://github.com/
liuhuadai/ViT-TTS/

it is also influenced by the surrounding physical
environment. For instance, a room with hard sur-
faces like concrete or glass reflects sound waves,
whereas a room with soft surfaces such as carpets
or curtains absorbs them. This variance can dras-
tically impact the clarity and quality of the sound
we hear.

To ensure an authentic and captivating expe-
rience, it is imperative to accurately model the
acoustics of a room, particularly in virtual real-
ity (VR) and augmented reality (AR) applications.
Recent years have seen a surge in significant re-
search (Li et al., 2022; Radford et al., 2021; Li et al.,
2023; Huang et al., 2023b) addressing the language-
visual modeling problem. For instance, Li et al.
(2022) have proposed a unified video-language pre-
training framework for learning robust representa-
tion, while Radford et al. (2021) have focused on
large-scale image-text pairs pre-training via con-
trastive learning. Visual TTS open-ups numerous
practical applications, including dubbing archival
films, providing a more immersive and realistic ex-
perience in virtual and augmented reality, or adding
appropriate sound effects to games.

Despite the benefits of language-visual ap-
proaches, training visual TTS models typically
requires a large amount of training data, while
there are very few resources providing parallel text-
visual-audio data due to the heavy workload. Be-
sides, creating a sound experience that matches the
visual content remains challenging when develop-
ing AR/VR applications, as it is still unclear how
various regions of the image contribute to reverber-
ation and how to incorporate the visual modality as
auxiliary information in TTS.

In this work, we formulate the task of visual TTS
to generate audio with reverberation effects in tar-
get scenarios given a text and environmental image,
introducing ViT-TTS to address the issues of data
scarcity and room acoustic modeling. To enhance
visual-acoustic matching, we 1) propose the visual-
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text fusion to integrate visual and textual informa-
tion, which provides fine-grained language-visual
reasoning by attending to regions of the image; 2)
leverage transformer architecture to promote the
scalability of the diffusion model. Regarding the
data shortage challenge, we pre-train the encoder
and decoder in a self-supervised manner, showing
that large-scale pre-training reduces data require-
ments for training visual TTS models.

Experiments results demonstrate that ViT-TTS
generates speech samples with accurate reverbera-
tion effects in target scenarios, achieving new state-
of-the-art results in terms of perceptual quality. In
addition, we investigate the scalability of ViT-TTS
and its performance under low-resource conditions
(1h/2h/5h). The main contributions of this work
are summarized as follows:

• We propose the first visual Text-to-Speech
model ViT-TTS with vision-text fusion, which
enables the generation of high-perceived au-
dio that matches the physical environment.

• We show that large-scale pre-training allevi-
ates the data scarcity in training visual TTS
models.

• We introduce the diffusion transformer scal-
able in terms of parameters and capacity to
learn visual scene information.

• Experimental results on subjective and ob-
jective evaluation demonstrate the state-of-
the-art results in terms of perceptual qual-
ity. With low-resource data (1h, 2h, 5h), ViT-
TTS achieves comparative results with rich-
resource baselines.

2 Related Work

2.1 Text-To-Speech
Text-to-Speech(TTS) tasks are divided into two cat-
egories: (1) generating a mel-spectrogram from
text or phoneme sequence first (Wang et al., 2017;
Ren et al., 2019), and then converting the gener-
ated spectrum into a waveform via vocoder (Kong
et al., 2020; Lee et al., 2022; Huang et al., 2022a);
(2) generating audio directly from text (Donahue
et al., 2020; Kim et al., 2021). The earlier TTS (Li
et al., 2019; Wang et al., 2017) models adopt an
autoregressive manner, which suffers from the prob-
lem of slow inference speed. As a solution, non-
autoregressive models have been proposed to en-
able fast inference by generating mel-spectrograms

in parallel. More recently, Grad-TTS (Popov et al.,
2021), DiffSpeech (MoonInTheRiver, 2021), and
ProDiff (Huang et al., 2022c) have employed dif-
fusion generative models to generate high-quality
audio, but they all rely on the convolutional archi-
tecture such as WaveNet (Oord et al., 2016) and
U-Net (Ronneberger et al., 2015) as the backbone.
In contrast, some studies (Peebles and Xie, 2023;
Bao et al., 2023) in image generation tasks have
explored transformers (Vaswani et al., 2017) as an
alternative to convolutional architectures, achieving
competitive results with U-Net. In this paper, we
present the first transformer-based diffusion model
as an alternative of convolutional architecture. By
harnessing the scalable properties of transformers,
we enhance the model capacity to more effectively
capture visual scene information and promote the
model performance.

2.2 Self-supervised Pre-training
There are two main criteria for optimizing speech
pre-training: contrastive loss (Oord et al., 2018;
Chung and Glass, 2020; Baevski et al., 2020) and
masked prediction loss (Devlin et al., 2018). Con-
trastive loss is used to distinguish between positive
and negative samples with respect to a reference
sample, while masked prediction loss is originally
proposed for natural language processing (Devlin
et al., 2018; Lewis et al., 2019) and later applied to
speech processing (Baevski et al., 2020; Hsu et al.,
2021). Some recent work (Chung et al., 2021) has
combined the two approaches, achieving good per-
formance for downstream automatic speech recog-
nition (ASR) tasks. In this work, we leverage the
success of self-supervised to enhance both the en-
coder and decoder to alleviate the data scarcity
issue.

2.3 Acoustic Matching
The primary objective of acoustic matching is to
convert audio from a source environment into au-
dio that resembles the target environment. In the
field of blind estimation (Mack et al., 2020; Xiong
et al., 2018; Murgai et al., 2017; Mezghani and
Swindlehurst, 2018), acoustic matching is applied
to generate a simple room impulse response (RIR)
that can be used to synthesize the corresponding
target audio using two critical acoustic metrics - the
direct-to-reverberant ratio (DRR) (Zahorik, 2002)
and the reverberation time 60 (RT60) (Ratnam
et al., 2003). The music production community
also implements acoustic matching to modify the
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Figure 1: The overall architecture for ViT-TTS. In subfigure (b), Vi denotes the visual sequence and N1 denotes the
layers of Encoder. In subfigure (c), N2 is the number of transformer layers. α and β are the dimension-wise scale
parameters, while γ is the dimension-wise shift parameters. c is the variance adaptor’s output and t is the diffusion
step.

reverberation, thus simulating the reverberation of
the target space or processing algorithm (Koo et al.,
2021; Sarroff and Michaels, 2020). Recently, there
is research on visual acoustic matching (Chen et al.,
2022), which involves generating audio recorded
in the target environment based on the input source
audio clip and an image of the target environment.
However, our proposed visual TTS is distinct from
those mentioned above as as it aims to generate
audio that captures the room acoustics in the tar-
get environment based on the written text and the
target environment image.

3 Method

3.1 Overview
The overall architecture has been presented as Fig-
ure 1. To alleviate the issue of data scarcity, we
leverage unlabeled data to pre-train the visual-text
encoder and denoiser decoder with scalable trans-
formers in a self-supervised manner. To capture the
visual scene information, we employ the visual-text
fusion module to reason about how different image
patches contribute to texts. BigvGAN (Lee et al.,
2022) converts the mel-spectrograms into audio
that matches the target scene as a neural vocoder.

3.2 Enhanced visual-text Encoder
Self-supervised Pre-training The advent of the
masked language model (Devlin et al., 2018; Clark
et al., 2020) has marked a significant milestone in

the field of natural language processing. To allevi-
ate the data scarcity issue (Huang et al., 2022d; Liu
et al., 2023; Huang et al., 2023c) and learn robust
contextual encoder, we are encouraged to adopt
the masking strategy like BERT in the pre-training
stage. Specifically, we randomly mask the 15% of
each phoneme sequence and predict those masked
tokens rather than reconstructing the entire input.
The masked phoneme sequence is then input into
the text encoder to obtain hidden states. The final
hidden states are fed into a linear projection layer
over the vocabulary to obtain the predicted tokens.
Finally, we calculate the cross entropy loss between
the predicted tokens and target tokens.

The masked token during the pre-training phase
will not be used in the fine-tuning phase. To mit-
igate this mismatch between the pre-training and
fine-tuning, we randomly choose the phonemes to
be masked: 1) 80% probability to add masks; 2)
10% probability to keep phoneme unchanged, and
3) 10% probability to replace with a random token
in the dictionary.

Visual-Text Fusion In the fine-tuning stage, we
integrate the visual modal and module into the en-
coder to integrate visual and textual information.
Before feeding into the visual-text encoder, we
first extract image features of panoramic images
through ResNet18 (Oord et al., 2018) and obtain
phoneme embedding. Both the image features and
phoneme embedding are fed into one of the vari-
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ants of the transformer to get the hidden sequences.
Specifically, we first pass the phoneme through
relative self-attention, which is defined as follows:

α(i, j) = Softmax(
(QiW

Q)(KjW
K +Rij)

T

√
dk

) (1)

where n is the length of phoneme embedding, Rij

are the relative position embedding of key and
value, dk is the dimension of key, and Q, K, V
are all the phoneme embedding. We use relative
self-attention to model how much phoneme pi at-
tends to phoneme pj . After that, we choose to use
cross-attention instead of a simplistic concatena-
tion approach as we can reason about how different
image patches contribute to the text after feature
extraction. The equation is defined as follows:

δ(V, P ) = Softmax(
PV T

√
dv

)V (2)

where P is the phoneme embedding, V is the visual
features, and dv is the dimension of vision features.
Finally, the feed-forward layer is applied to output
the hidden sequence.

3.3 Enhanced Diffusion Transformer
Scalable Transformer As a rapidly growing cat-
egory of generative models, DDPMs have demon-
strated their exceptional ability to deliver top-
notch results in both image (Zhang and Agrawala,
2023; Ho and Salimans, 2022) and audio synthe-
sis (Huang et al., 2022c, 2023a; Lam et al., 2021).
However, the most dominant diffusion TTS models
adopt a convolutional architecture like WaveNet or
U-Net as the de-factor choice of backbone. This
architectural choice limits the model scalability to
effectively incorporate panoramic visual images.
Recent research (Peebles and Xie, 2023; Bao et al.,
2023) in the image synthesis field has revealed that
the inductive bias of convolutional structures is
not a critical determinant of DDPMs’ performance.
Instead, transformers have emerged as a viable al-
ternative.

For this reason, we propose a diffusion trans-
former that leverages the scalability of transform-
ers to expand model capacity and incorporate room
acoustic information. Moreover, we leverage the
adaptive normalization layers in GANs and ini-
tialize the full transformer block as the identity
function to enhance the transformer architecture.

Unconditional Pre-training In this part, we in-
vestigate self-supervised learning from orders of

magnitude mel-spectrograms data to alleviate data
scarcity. Specifically, assuming the target mel-
spectrogram is x0, we first random select 0.065%
of x0 as starting indices and apply a mask that
spans 10 steps following the Wav2vec2.0 (Baevski
et al., 2020). Then, we obtain xt through a diffu-
sion process, which is defined by a fixed Markov
chain from data x0 to the latent variable xt.

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1), (3)

At each diffusion step t ∈ [1, T ], a tiny Gaussian
noise is added to xt−1 to obtain xt, according to a
small positive constant βt:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (4)

xt obtained from the diffusion process is passed
through the transformer to predict Gaussian noise
ϵθ. Loss is defined as mean squared error in the ϵ
space, and efficient training is optimizing a random
term of t with stochastic gradient descent:

LGrad
θ =

∥∥∥∥ϵθ
(
αtx0 +

√
1− α2

tϵ

)
− ϵ

∥∥∥∥
2

2

, ϵ ∼ N (0, I)

(5)

To this end, ViT-TTS takes advantage of the re-
construction loss to predict the self-supervised rep-
resentations which largely alleviates the challenges
of data scarcity. Detailed formulation of DDPM
has been attached in Appendix C.

Controllable Fine-tuning During the fine-
tuning stage, we will face the following challenges:
(1) there is a data scarcity issue with the available
panoramic images and target environmental audio
for training; (2) a fast training method is equally
crucial for optimizing the diffusion model, as it can
save a significant amount of time and storage space.
To address these challenges, we draw inspiration
from Zhang and Agrawala (2023) and implement
a swift fine-tuning technique. Specifically, we cre-
ate two copies of the pre-trained diffusion model
weights, namely a "trainable copy" and a "locked
copy," to learn the input conditions. We fix all
parameters of the pre-trained transformer, desig-
nated as Θ, and duplicate them into a trainable
parameter Θt. We train these trainable parameters
and connect them with the "locked copy" via zero
convolution layers. These convolution layers are
unique as they have a kernel size of one by one
and weights and biases set to zero, progressively
growing from zeros to optimized parameters in a
learned fashion.
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3.4 Architecture
As illustrated in Figure 1, our model comprises a
visual-text encoder, variance adaptor, and spectro-
gram denoiser. The visual-text encoder converts
phoneme embeddings and visual features into hid-
den sequences, while the variance adaptor predicts
the duration of each hidden sequence to regulate
the length of the hidden sequences to match that
of speech frames. Furthermore, different variances
like pitch and speaker embedding are incorporated
with hidden sequences following FastSpeech 2 Ren
et al. (2022). Finally, the spectrogram denoiser it-
eratively refines the length-regulated hidden states
into mel-spectrograms. We put more details in Ap-
pendix B.

Visual-Text Encoder The visual-text encoder
consists of relative position transformer blocks
based on the transformer architecture. Specifically,
it convolves a pre-net for phoneme embedding, a vi-
sual feature extractor for image, and a transformer
encoder which includes multi-head self-attention,
multi-head cross-attention, and feed-forward layer.

Variance Adaptor In variance adaptor, the du-
ration and pitch predictors share a similar model
structure consisting of a 2-layer 1D-convolutional
network with ReLU activation, each followed by
the layer normalization and the dropout layer, and
an extra linear layer to project the hidden states
into the output sequence.

Spectrogram Denoiser Spectrogram denoiser
takes in xt as input to predict ϵ added in diffusion
process conditioned on the step embedding Et and
encoder output. We adopt a variant of the trans-
former as our backbone and make some improve-
ments upon the standard transformer motivated
by Peebles and Xie (2023), mainly includes:(1)
we explore replacing standard layer norm layers
in transformer blocks with adaptive layer norm
(adaLN) to regress scale and shift parameters from
the sum of the embedding vector of t and hidden
sequence. (2) Inspired by ResNets (Oord et al.,
2018), we initialize the transformer block as the
identity function and initialize the MLP to output
the zero-vector.

3.5 Pre-training, Fine-tuning, and Inference
Procedures

Pre-training The pre-training has two stages: 1)
encoder stage: pre-train the visual-text encoder
vias masked LM loss LCE (ie. cross-entropy loss)
to predict the masked tokens. 2) decoder stage: the

masked x0 is puted into denoiser to predict Gaus-
sian noise ϵθ. Then, the Mean Square Error(MSE)
loss is applied to the predicted Gaussian noise and
target Gaussian noise.

Fine-tuning We begin by loading model weights
from the pre-trained visual-text encoder and uncon-
ditional diffusion decoder, after which we finetune
both of them until the model converges. The fi-
nal loss term consists of the following parts: (1)
sample reconstruction loss Lθ: MSE between the
predicted Gaussian noise and target Gaussian noise.
(2) variance reconstruction loss Ldur,Lp: MSE be-
tween the predicted and the target phoneme-level
duration, pitch.

Inference During inference, DDPM iteratively
runs the reverse process to obtain the data sample
x0, and then we use a pre-trained BigvGAN-16khz-
80band as the vocoder to transform the generated
mel-spectrograms into waveforms.

4 Experiment

4.1 Experimental Setup
Dataset We use the SoundSpaces-Speech
dataset (Chen et al., 2023), which is constructed
on the SoundSpaces platform based on real-world
3D scans to obtain environmental audio. The
dataset includes 28,853/1,441/1,489 samples for
training/validation/testing, each consisting of clean
text, reverberant audio, and panoramic camera
angle images. Following (Chen et al., 2022), we
remove out-of-view samples and divide the test set
into test-unseen and test-seen, where the unseen
set injects room acoustics depicted in novel images
while the seen set only contains the scenes we
have seen in the training stage. We convert the
text sequence into the phoneme sequence with an
open-source grapheme-to-phoneme conversion
tool (Sun et al., 2019) 3.

Following the common pratice (Ren et al., 2019;
MoonInTheRiver, 2021), we conduct preprocess-
ing on the speech and text data: 1) extract the spec-
trogram with the FFT size of 1024, hop size of 256,
and window size of 1024 samples; 2) convert it to
a mel-spectrogram with 80 frequency bins; and 3)
extract F0 (fundamental frequency) from the raw
waveform using Parselmouth tool 4.

3https://github.com/Kyubyong/g2p
4https://github.com/YannickJadoul/

Parselmouth
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Method Test-Seen Test-Unseen ParamsMOS(↑) RTE (↓) MCD (↓) MOS(↑) RTE (↓) MCD (↓)

GT 4.34±0.07 / / 4.24±0.07 / / /
GT (voc.) 4.18±0.05 0.006 1.46 4.19±0.07 0.008 1.50 /

WaveNet 3.85±0.09 0.091 4.61 3.78±0.12 0.110 4.69 42.3M
Transformer-S 3.92±0.07 0.068 4.57 3.80±0.06 0.077 4.68 32.38M
Transformer-B 3.98±0.06 0.061 4.53 3.90±0.07 0.066 4.62 41.36M
Transformer-L 4.02±0.08 0.056 4.37 3.95±0.07 0.061 4.50 56.96M
Transformer-XL 4.05±0.07 0.047 4.35 4.00±0.05 0.053 4.39 115.12M

Table 1: Comparison between the diffusion WaveNet and diffusion transformers sweeping over model config(S,
B, L, XL). All models remove the pre-training stage and other conditions not related to backbone in training and
inference remain the same.

Model Configurations The size of the phoneme
vocabulary is 73. The dimension of phoneme em-
beddings and the hidden size of the visual-text
transformer block are both 256. We use the pre-
trained ResNet18 as an image feature extractor. As
for the pitch encoder, the size of the lookup table
and encoded pitch embedding are set to 300 and
256. In the denoiser, the number of transformer-B
layers is 5 with the hidden size 384 and head 12.
We initialize each transformer block as the iden-
tity function and set T to 100 and β to constants
increasing linearly from β1 = 10−4 to βT = 0.06.
We have attached more detailed information on the
model configuration in Appendix B

Pre-training, Fine-tuning, and Inference Dur-
ing the pre-training stage, we pre-train the encoder
for 120k steps and the decoder for 160k until con-
vergence. The diffusion probabilistic models have
been trained using 1 NVIDIA A100 GPU with a
batch size of 48 sentences. In the inference stage,
we uniformly use a pre-trained BigvGAN-16khz-
80band (Lee et al., 2022) as a vocoder to transform
the generated mel-spectrograms into waveforms.

4.2 Scalable Diffusion Transformer
We compare and examine diffusion transformer
sweeping over model config(S, B, L, XL), and
conduct evaluations in terms of audio quality and
parameters. Appendix A gives the details of the
model configs. The results have been shown in Ta-
ble 1. We have some observations from the results:
(1) Increasing the depth and number of layers in
the transformer can significantly enhance the per-
formance of the diffusion model, resulting in an
improvement in both objective metrics and subjec-
tive metrics, which demonstrates that expanding
the model size enables finer-grained room acoustic

modeling. (2) Our proposed diffusion transformer
outperforms WaveNet backbone under similar pa-
rameters across both test-unseen and test-seen sets,
significantly in the rt60 metric. We attribute this to
the fact that instead of directly concatenating the
condition input like WaveNet, we replace standard
layer norm layers in transformer blocks with adap-
tive layer norm to regress dimension-wise scale and
shift parameters from the sum of the embedding
vectors of diffusion step and encoder output, which
can better incorporate the conditional information,
as proven in GANs (Brock et al., 2018; Karras et al.,
2019).

4.3 Model Performances
In this study, we conduct a comprehensive com-
parison of the generated audio quality with other
systems, including 1) GT, the ground-truth au-
dio; 2) GT(voc.), where we first convert the
groud-truth audio into mel-spectrograms and then
convert them to audio using BigvGAN; 3) Diff-
Speech (MoonInTheRiver, 2021), one of the
most popular DDPM based on WaveNet; 4)ProD-
iff (Huang et al., 2022c), a recent generator-based
diffusion model proposed to reduce the sampling
time; 5)Visual-DiffSpeech, incorporate visual-text
fusion module into DiffSpeech; 6) Cascaded, the
system composed of DiffSpeech and Visual Acous-
tic Matching(VAM) (Chen et al., 2022). The results,
compiled and presented in Table 2, provide valu-
able insights into the effectiveness of our approach:

(1) As expected, the results in the test-unseen
set do poorer than the test-seen part because there
are invisible scenarios among the test-unseen set.
However, our proposed model has achieved the
best performance compared to baseline systems in
both sets, indicating that our model generates the
best-perceived audio that matches the target envi-
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Method Test-Seen Test-Unseen ParamsMOS (↑) RTE (↓) MCD (↓) MOS (↑) RTE (↓) MCD (↓)

GT 4.34±0.07 / / 4.24±0.07 / / /
GT(voc.) 4.18±0.05 0.006 1.46 4.19±0.07 0.008 1.50 /

DiffSpeech 3.79±0.08 0.104 4.65 3.67±0.05 0.120 4.71 29.9M
ProDiff 3.76±0.13 0.121 4.67 3.65±0.06 0.137 4.72 29.9M
Visual-DiffSpeech 3.85±0.09 0.091 4.61 3.78±0.12 0.110 4.69 42.3M
Cascaded 3.61±0.08 0.071 5.13 3.59±0.08 0.082 5.25 146.5M

ViT-TTS 3.95±0.06 0.066 4.52 3.86±0.05 0.076 4.59 41.3M

Table 2: Comparison with baselines on the SoundSpaces-Speech for Seen and Unseen scenarios. The diffusion step
of all diffusion models is set to 100. We use the pre-trained model provided by VAM for the evaluation of cascaded.

ronment from written text. (2) Our model surpassed
TTS diffusion models(i.e.DiffSpeech and ProDiff)
across all metric scores, especially in terms of RTE
values. This suggests that conventional diffusion
models in TTS do poorly in modeling room acous-
tic information, as they mainly focus on audio con-
tent, pitch, energy, etc. Our proposed visual-text
fusion module addresses this challenge by injecting
visual properties into the model, resulting in a more
accurate prediction of the correct acoustics from
images and high-perceived audio synthesis. (3)
The results of comparison with Visual-DiffSpeech
highlight the advantages of our choice of trans-
former and self-supervised pre-training. Although
Visual-DiffSpeech adds the visual-text module, the
choice of WaveNet and the lack of a self-supervised
pre-training strategy make it perform worse in
predicting the correct acoustics from images and
synthesizing high-perceived audio. (4) The cas-
caded system composed of DiffSpeech and Visual
Acoustic Matching model visual properties is bet-
ter than other baselines. However, compared to our
proposed model, it performed worse in both test-
unseen and test-seen environments. This suggests
that our direct visual text-to-speech system elimi-
nates the influence of error propagation caused by
the cascaded manner, resulting in high-perceived
audio. In conclusion, our comprehensive evalua-
tion results demonstrate the effectiveness of our
proposed model in generating high-quality audio
that matches the target environment.

4.4 Low Resource Evaluation
Training visual text-to-speech models typically re-
quires a large amount of parallel target environment
image and audio training data, while there may be
very few resources due to the heavy workload. In
this section, we prepare low-resource audio-visual

data (1h/2h/5h) and leverage large-scale text-only
and audio-only data to boost the performance of the
visual TTS system, to investigate the effectiveness
of our self-supervised learning methods. The re-
sults are compiled and presented in Table 3, and we
have the following observations: 1)As training data
is reduced in the low-resource scenario, a distinct
degradation in generated audio quality could be wit-
nessed in both test sets (test-seen and test-unseen).
2) Leveraging orders of magnitude text-only and
audio-only data with self-supervised learning, the
ViT-TTS achieve RTE scores of 0.082 and 0.068
respectively in test-unseen and test-seen, showing
a significant promotion regardless of the unseen
scene. In this way, the dependence on a large num-
ber of parallel audio-visual data can be reduced for
constructing visual text-to-speech systems.

Method MOS (↑) RTE (↓) MCD (↓)

Finetune with 1 hour data

Test-Seen 3.72±0.05 0.092 5.04
Test-Unseen 3.67±0.06 0.101 5.11

Finetune with 2 hours data

Test-Seen 3.75±0.06 0.089 4.85
Test-Unseen 3.70±0.07 0.097 4.89

Finetune with 5 hours data

Test-Seen 3.83±0.05 0.068 4.65
Test-Unseen 3.73±0.09 0.082 4.72

Table 3: Low resource evaluation results.

4.5 Case Study
We provide two examples of generation sampled
from a large empty room with significant rever-
beration in the Test-Seen environment depicted in
Figure 2, and have the following observations: 1)
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Figure 2: Visualizations of the ground truth and generated mel-spectrograms by different Visual TTS models. The
text corresponding to the first line in test-seen is "it is so made that everywhere we feel the sense of punishment"
while the second line in test-unseen is "the task will not be difficult returned david hesitating though i greatly fear
your presence would rather increase than mitigate his unhappy fortunes ".

Mel-spectrograms produced by ViT-TTS are no-
ticeably more similar to the target counterpart. 2)
Moreover in challenging scenarios with invisible
scene images, cascaded systems suffer severely
from the issue of noisy and reverb details missing,
which is largely alleviated in ViT-TTS.

4.6 Ablation Studies
We conduct ablation studies to demonstrate the
effectiveness of several key techniques on the Test-
Unseen set in our model, including the encoder
pre-training(EP), decoder pre-training(DP), visual
input, random image, and concat function. The
results of both subjective and objective evalua-
tions have been presented in Table 4, and we have
the following observations: 1) Removing the self-
supervised encoder and decoder pre-training strat-
egy results in a decline in all indicators, which
demonstrates the effectiveness and efficiency of
the proposed pre-training strategy in reducing data
variance and promoting model convergence. 2)
Without the input of RGB-D image and removing
all of the modules related to the image causes a
distinct degradation in RTE values, which demon-
strates that our model successfully learns acoustics
from the visual scene. 3) The replacement of cross-
attention with the concat fusion function results in
a decrease in performance across all metrics, high-
lighting the effectiveness of our visual-text fusion
module.

Furthermore, we conducted a more detailed ex-
ploration of our model’s processing and reasoning
about different patches in the RGB-D images. To
achieve this, we deliberately substituted the target
image with random images, allowing us to deter-
mine whether the model can derive meaningful rep-
resentations from visual inputs. Our findings show

Method MOS (↑) RTE (↓) MCD (↓)

GT(voc.) 4.18±0.07 0.008 1.50

ViT-TTS 3.86±0.05 0.076 4.59
w/o EP 3.82±0.07 0.078 4.63
w/o DP 3.83±0.06 0.081 4.65
w/o Visual 3.78±0.07 0.102 4.68
w/ RI 3.73±0.08 0.103 4.75
w/ Concat 3.80 ±0.06 0.089 4.63

Table 4: Ablation study results. EP, DP, and RI are
encoder pre-training, decoder pre-training, and random
images respectively.

that after replacing the target image with a random
image, the performance of our model significantly
degraded, indicating that our model could model
the room acoustic information of visual input.

5 Conclusion

In this paper, we proposed ViT-TTS, the first visual
text-to-speech synthesis model that aimed to con-
vert written text and target environmental images
into audio that matches the target environment. To
mitigate the data scarcity for training visual TTS
tasks and model visual acoustic information, we 1)
introduced a self-supervised learning framework to
enhance both the visual-text encoder and denoiser
decoder; 2) leveraged the diffusion transformer
scalable in terms of parameters and capacity to
improve performance.

Experimental results demonstrated that ViT-TTS
achieved new state-of-the-art results and performed
comparably to rich-resource baselines even with
limited data. To this end, ViT-TTS provided a solid
foundation for future visual text-to-speech studies,
and we envision that our approach will have far-
reaching impacts on the fields of AR and VR.
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6 Limitation and Potential Risks

As indicated in the experimental setup, we utilized
ResNet-18 as our image feature extractor. While it
is a classic extractor, there may be newer extractors
that perform better. In future work, we will explore
the use of superior extractors to enhance the quality
of generated audio.

Moreover, our pre-trained encoder and decoder
are based on the SoundSpace-Speech dataset,
which, as described in the dataset section, is not
sufficiently large. To address this limitation in fu-
ture work, we will pre-train on a large-scale dataset
to achieve better performance in low-resource sce-
narios.

ViT-TTS lowers the requirements for visual text-
to-speech generation, which may cause fraud and
scams by impersonating someone else’s voice. Fur-
thermore, there is the potential for leading to the
spread of false information and rumors.
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A TRANSFORMER CONFIGURATION

The details of transformer denoisers are shown in
Table 5, while B, M, L, and XL means the base,
medium, large, extra large respectively.

Model layers Hidden Size Heads

Transformer-S 4 256 8
Transformer-B 5 384 12
Transformer-L 6 512 16

Transformer-XL 8 768 16

Table 5: Diffusion Transformer Configs.

B ARCHITECTURE

We list the model hyper-parameters of ViT-TTS in
Table 6.

Hyperparameter ViT-TTS

Visual-Text Encoder

Phoneme Embedding 256
Pre-net Layers 3
Pre-net Hidden 256

Visual Conv2d Kernel (7, 7)
Visual Conv2d Stride (2, 2)

Encoder Layers 4
Encoder Hidden 256

Encoder Conv1d Kernel 9
Conv1D Filter Size 1024

Attention Heads 2
Dropout 0.1

Variance Predictor
Conv1D Kernel 3

Conv1D Filter Size 256
Dropout 0.5

Denoiser

Diffusion Embedding 384
Transformer Layers 5
Transformer Hidden 384

Attention Heads 12
Position Embedding 384

Scale/Shift Size 384

Total Number of Parameters 41.36M

Table 6: Hyperparameters of ViT-TTS models.

C DIFFUSION POSTERIOR
DISTRIBUTION

Firstly we compute the corresponding constants
respective to diffusion and reverse process:

αt =

t∏

i=1

√
1− βi σt =

√
1− α2

t (6)

The Gaussian posterior in diffusion process is
defined through the Markov chain, where each iter-

ation adds Gaussian noise.

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) =N (xt;
√
1− βtxt−1, βtI)

(7)

We emphasize the property observed by (Ho
et al., 2020), the diffusion process can be computed
in a closed form:

q(xt|x0) = N (xt;αtx0, σtI) (8)

Applying Bayes’ rule, we can obtain the forward
process posterior when conditioned on x0

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

= N (xt−1; µ̃t(xt,x0), β̃tI),

(9)

where µ̃t(xt,x0) = αt−1βt

σt
x0 +

√
1−βt(σt−1)

σt
xt, β̃t =

σt−1

σt
βt

D DIFFUSION ALGORITHM

See Algorithm 1 and 2.

Algorithm 1 Training procedure

1: Input: The denoiser ϵθ, diffusion step T and
variance condition c.

2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I)
4: Take gradient descent steps on ∇θ||ϵ −

ϵθ(
√
αtx0 +

√
1− αtϵ, c, t)||.

5: until convergence

Algorithm 2 Sampling

1: Input: The denoiser ϵθ, and variance condition
c.

2: Sample xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: if t = 1 then
5: z = 0
6: else
7: Sample z ∼ N (0, I)
8: end if
9: Sample xt−1 = 1√

αt
(xt −

1−αt√
1−αt

ϵθ(xt, c, t)) + σtz

10: end for
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Figure 3: Screenshots of subjective evaluations.

E EVALUATION MATRIX

E.1 Evaluation Metrics
We measure the sample quality of the generated
waveform using both objective metrics and subjec-
tive indicators. The objective metrics we collected
are designed to measure varied aspects of wave-
form quality between the ground-truth audio and
the generated sample. Following the common prac-
tice of (Huang et al., 2022c; MoonInTheRiver,
2021; Popov et al., 2021), we randomly select a
part of the test set for objective evaluation, here is
50. We provide the following metrics: (1) RT60
Error(RTE)-the correctness of the room acoustics
between the predicted waveform and target wave-
form’s RT60 values. RT60 indicates the reverbera-
tion time in seconds for the audio signal to decay
by 60 dB, a standard metric to characterize room
acoustics. We estimate the RT60 directly from
magnitude spectrograms of the output audio, using
a model trained with disjoint SoundSpaces data.
(2) Mel Cepstral Distortion(MCD)-measures the
spectral distance between the synthesized and refer-
ence mel-spectrum features. The utilization of RTE
is solely intended for evaluating the room acoustic
performance of the generated audio, and as an ad-
ditional measure, we have incorporated the MCD
metric to assess the quality of the mel-spectrogram.

For subjective metrics, we use crowd-sourced
human evaluation via Amazon Mechanical Turk,
where raters are asked to rate Mean Opinion
Score(MOS) on a 1-5 Likert scale.

E.2 RT60 Estimator
Following (Chen et al., 2022), we first encode the
2.56s speech clips as spectrograms, process them
with a ResNet18 (Oord et al., 2018) and predict
the RT60 of the speech. The ground truth RT60 is
calculated with the Schroeder (Schroeder, 1965).
We optimize the MSE loss between the predicted
RT60 and the ground truth RT60.

E.3 MOS Evaluation
To probe audio quality, we conduct the MOS (mean
opinion score) tests and explicitly instruct the raters
to “focus on examining the audio quality, natural-
ness and whether the audio matches with the given
image.”. The testers present and rate the samples,
and each tester is asked to evaluate the subjective
naturalness on a 1-5 Likert scale.

Our subjective evaluation tests are crowd-
sourced and conducted via Amazon Mechanical
Turk. These ratings are obtained independently
for model samples and reference audio, and both
are reported. The screenshots of instructions for
testers have been shown in Figure 3. A small subset
of speech samples used in the test is available at
https://ViT-TTS.github.io/

F LOW RESOURCE SETTING

We partition the training set of SoundSpaces-
Speech into 1h/2h/5h subsets based on the alphabet-
ical order of speech IDs. Subsequently, we employ
these subsets to fine-tune our pre-trained models
and assess their performance on identical test sets.
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