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Introduction

Welcome to the Tutorials Session of EMNLP 2023.

The EMNLP tutorials session is organized to give conference attendees a comprehensive introduction
by expert researchers to a variety of topics of importance drawn from our rapidly growing and changing
research field.

This year, as has been the tradition over the past few years, the call, submission, reviewing and selection
of tutorials were coordinated jointly for multiple conferences: EACL, ACL, and EMNLP. The committee
followed a reviewing process that ensured that each of the 42 tutorial submissions received at least two
reviews. The selection criteria included clarity, preparedness, novelty, timeliness, instructors’ experien-
ce, likely audience, open access to the teaching materials, diversity (multilingualism, gender, age and
geolocation) and the compatibility of preferred venues. A total of six tutorials were selected for EMNLP.
We would like to thank the tutorial authors for their contributions and flexibility while organising the
conference in a hybrid format. Finally, we would like to thank the conference organizers for effective
collaboration, and in particular to the general chair Yuji Matsumoto.

We hope you enjoy the tutorials.

EMNLP 2023 Tutorial Co-chairs
Hassan Sajjad
Qi Zhang
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NLP+Vis: NLP Meets Visualization

Shafiq Joty♦♠, Enamul Hoque♣, Jesse Vig♦

♦Salesforce Research, ♠Nanyang Technological University, Singapore
♣York University, Canada
♣{enamulh}@yorku.ca
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Abstract

Natural language and visualization (Vis) are
two powerful modalities of human communi-
cation. The goal of this tutorial is to push for-
ward the agenda of tightly integrating these
two modalities. To this end, the tutorial will
introduce NLP+Vis with a focus on two main
threads of work: (i) NLP for Vis: How to de-
velop and adapt state-of-the-art NLP models
for solving various visualization tasks? and
(ii) Vis for NLP: How to leverage visualization
techniques to interpret and explain complex
NLP models effectively? The tutorial will first
motivate why NLP+Vis is an important area of
research and provide an overview of research
topics on combining NLP and Vis techniques.
Then an overview of state-of-the-art deep learn-
ing models for NLP will be covered. Next, we
will provide an overview of applying visual-
ization techniques to help make NLP models
more interpretable and explainable. In the final
part, we will focus on various application tasks
at the intersection of NLP and Vis. We will
conclude with an interactive discussion of fu-
ture challenges for NLP+Vis applications. The
audience will include researchers interested in
applying NLP for visualizations as well as oth-
ers who focus more generally at the intersection
of machine learning and visualization.

1 Tutorial Overview

Natural language and visualization are two power-
ful modalities of human communication. Visualiza-
tions (Vis) are pervasive as they frequently appear
in research papers, textbooks, reports, news arti-
cles, and webpages in various forms such as charts,
diagrams, and infographics. While visualizations
can be very effective in finding patterns, trends,
and outliers in data, natural language can help ex-
plain the key points in visualizations (Obeid and
Hoque, 2020) and enable users to express their com-
plex information needs about data naturally (Setlur
et al., 2016). For example, recent work on Chart
Question Answering (QA) has demonstrated how

NLP techniques can reduce perceptual and cogni-
tive efforts by automatically answering complex
reasoning questions about charts (Kantharaj et al.,
2022; Masry et al., 2022; Lee et al., 2022) or
by generating natural language summaries from
charts (Shankar et al., 2022; Obeid and Hoque,
2020). We also refer the interested readers to Prof.
Marti Hearst’s keynote (link) at IEEE Vis’22 on
how NLP can help Visualization.

Likewise, visualizations also have critical appli-
cations in the NLP domain. For example, visualiza-
tion techniques can be leveraged to interpret neural
NLP models and to visually explain how a model
makes a prediction (Chatzimparmpas et al., 2020;
Belinkov and Glass, 2019; Li et al., 2016; Tenney
et al., 2020; Strobelt et al., 2018; Vig, 2019), and
more recently to design prompts (i.e., natural lan-
guage instructions accompanied with zero or few
demonstrations) to effectively use large language
models for zero-shot and few-shot task generaliza-
tion (Strobelt et al., 2022).

The proposed tutorial will be aimed at those who
would like to push forward the agenda of tightly in-
tegrating state-of-the-art NLP methods with visual-
izations. To this end, the tutorial aims to cover two
primary topics of interest: (i) NLP for Vis: How to
develop and adapt state-of-the-art NLP models for
solving various visualization-related downstream
tasks? (ii) Vis for NLP: How to leverage visual-
ization techniques to interpret, explain and adapt
complex NLP models effectively?

An overview of the tutorial is provided below:

• In the tutorial, we will first introduce the domain
of NLP+Vis and provide an overview of various
downstream tasks in this domain such as question
answering with charts (e.g., Lee et al. (2022); Kan-
tharaj et al. (2022); Masry et al. (2022)), science
diagrams (Kembhavi et al., 2016), and infograph-
ics (Mathew et al., 2022), as well as natural lan-
guage generation for visualizations (e.g., Shankar
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et al. (2022)) and text-to-chart (e.g., Wang et al.
(2022)).

• Next, we will introduce the state-of-the-art deep
learning methods from NLP which can be lever-
aged for solving various computational tasks for vi-
sualization research. In this part, we will cover top-
ics such as Seq2Seq models, attentions and Trans-
formers, pretraining and fine-tuning of large lan-
guage models (e.g., GPT, BERT, BART, T5). We
will also briefly cover emerging research in multi-
modal NLP (e.g., vision-language, data2NLP).

• Then, we will provide an overview of applying
visualization techniques for making NLP models
interpretable and explainable. In particular, we will
cover how interactive visualization techniques can
be leveraged to understand how the NLP model
internally works and to explain how a specific pre-
diction is made (Tenney et al., 2020; Wallace et al.,
2019; Li et al., 2016; Spinner et al., 2019; Strobelt
et al., 2018; Vig, 2019). We will also discuss the
limitations and common pitfalls of applying visu-
alization to model interpretability. Furthermore,
we will cover how visualization techniques can
be incorporated within interactive machine learn-
ing (Jiang et al., 2019) as well as prompt design
(Strobelt et al., 2022) for zero-shot and few-shot
generalization of large language models like GPT-
3.

• In the final part, we will demonstrate applica-
tions of deep learning to NLP in the areas of vi-
sualizations including visual text analytics (Liu
et al., 2018), chart question answering (e.g., Kan-
tharaj et al. (2022); Masry et al. (2022)), conver-
sational interfaces for visualizations (e.g., Hoque
et al. (2017); Setlur et al. (2020)) and automatic
data-driven story generation (e.g., Shi et al. (2020)).
We will also cover NLP models for enhancing chart
accessiblity and visualization literacy.

• The tutorial will conclude with an overview of
future challenges in the domain of NLP+Vis.

The tutorial will facilitate interactive conversa-
tions with those who participate in person as well
as those who will participate virtually. A website
will host the details of the tutorial including slides
and other resources such as suggested readings as
well as web links to related datasets and code repos-
itories.

1.1 Relevance to ACL Community

There are rapidly increasing research papers that
are being published at the intersection of Vis and
NLP, but to our knowledge, there has not been any
tutorial at any ACL venues. We gave a related tu-
torial at the IEEE Vis 2022 conference. However,
considering the target audience (visualization com-
munity), we restricted the content of that tutorial
to introductory and the NLP for Vis topic only. In
that sense, the scope of the proposed tutorial is
much broader and covers mostly cutting-edge re-
search. Given the growing interest in combining
NLP and visualization and the recent advances in
state-of-the-art deep learning techniques for NLP,
we believe it is a very good time to arrange a tuto-
rial on NLP+Vis.

1.2 Type of the Tutorial

Cutting-edge

1.3 Target Audience and Prerequisites

The tutorial will provide a gentle introduction to
advanced deep learning models for NLP for solv-
ing various visualization-related tasks. Familiarity
with Python (using numpy and PyTorch), Calculus,
Linear Algebra, Basic Probability and Statistics
and Machine Learning basics are expected.

While the primary target audience includes those
interested in applying NLP techniques for visual-
ization, the tutorial may be of interest to those who
are more generally interested to work at the inter-
section of machine learning and visualization.

2 Outline: Tutorial Structure

2.1 Introduction [20 mins]

• What is NLP?

• What is Vis?

• Why NLP+Vis?

• An overview of research topics on combining
NLP and Vis techniques

• An overview of the tutorial

2.2 NLP for Vis [70 mins]

• Encoder-decoder model

• Attention mechanism

• Transformer architecture
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• Self-supervised learning (e.g., BERT, GPT,
BART, T5)

• Applications (QA, Summarization, Dialog)

• Multi-modal deep learning

• Huggingface library

2.3 Coffee Break
2.4 Vis for NLP [25 mins]

• Intro to Vis for Interpretability

• Vis Tools and Use Cases

• Challenges and Limitations

2.5 NLP + Vis Applications [50 mins]
• Visual text analytics

• Natural language interfaces for visualizations

• ChartNLP (e.g., Chart question answering,
Text2Chart)

• Natural language generation for visualization

• Automated data-driven storytelling

• NLP for chart accessibility

• NLP+Vis for inclusions (e.g., promote visual-
ization Literacy)

2.6 Future Challenges [15 mins]
• Building benchmarks for training and evalua-

tion

• Data annotation challenges

• Emerging applications

3 Breadth

30 - 40% of the tutorial materials will come from
the work by the tutorial presenters, and the remain-
ing 60 - 70% will come from other researchers’
work.

4 Promoting Diversity and Inclusions

The tutorial integrates diversity and inclusion-
related topics into the agenda. It is well-known
that the lack of understanding of the important
data aggravates inequalities in access to informa-
tion among different user populations ranging from
vulnerable and marginalized communities (e.g.,

refugees and indigenous communities) to people
who face various physical and cognitive challenges
(e.g., blindness, dementia, autism). For example,
natural language can be helpful in improving chart
accessibility (Sharif et al., 2022) and supporting
novice users in exploring visualizations (Setlur
et al., 2016). The tutorial will highlight possible
application areas of NLP+Vis for promoting inclu-
sions and diversity.

5 Instructors

Shafiq Joty1 is a research director at Salesforce
Research, and is also an Associate Professor (on
leave) at NTU, Singapore. His work has primarily
focused on developing language analysis tools and
NLP applications. A significant part of his current
research focuses on multilingual (machine transla-
tion, cross-lingual transfer), multimodal (visual-
language learning, NLP+Vis, Code+NLP) NLP,
interpretability and robustness of NLP models.
His research contributed to 17 patents and more
than 110 papers in top-tier NLP and ML con-
ferences and journals including ACL, EMNLP,
NAACL, NeurIPS, ICML, ICLR, CVPR, ECCV,
ICCV, CL and JAIR. Shafiq served (or will serve)
as a PC chair of SIGDIAL’23, an S/AC for ICLR-
23, ACL’22, EMNLP’21, ACL’19-21, EMNLP’19,
NAACL’21 and EACL’21 and an AE for ACL-
RR. He gave tutorials at IEEE Vis’22, ACL’19,
ICDM’18 and COLING’18, and taught deep learn-
ing for NLP,2 a graduate-level NLP course, and an
undergraduate NLP course at NTU.

Enamul Hoque3 is an Associate Professor at
York University where he directs the Intelligent Vi-
sualization Lab. Previously, he was a postdoctoral
fellow in Computer Science at Stanford University.
He received the Ph.D. degree in Computer Science
from the University of British Columbia. His re-
search focuses on combining information visualiza-
tion and human-computer interaction with natural
language processing to address the challenges of
the information overload problem. Recently, he
has worked on developing natural language inter-
faces for visualizations (e.g., (Hoque et al., 2017;
Setlur et al., 2020)), automatic chart question an-
swering (Kim et al., 2020; Kantharaj et al., 2022;
Masry et al., 2022), chart retrieval (Hoque and
Agrawala, 2019) and chart summarization (Shankar

1https://raihanjoty.github.io/
2https://ntunlpsg.github.io/ce7455_deep-nlp-20/
3https://www.yorku.ca/enamulh/
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et al., 2022; Obeid and Hoque, 2020). He has also
worked on developing visual text analytics to sup-
port the user’s task of exploring and analyzing con-
versations (e.g., Hoque and Carenini (2014, 2015,
2016); Jasim et al. (2021)). Since his research
is uniquely positioned at the intersection of infor-
mation visualization, NLP, and HCI, he publishes
at the major venues in each of these areas such
as IEEE Vis, ACL, EMNLP, CHI, and UIST. He
serves as an Area Chair for the ACL Rolling Re-
view (2021-) and as a program committee member
(2018-) for the IEEE Vis. He has also been teach-
ing the graduate-level Information Visualization
course at York University for the past 3 years.

Jesse Vig4 is a lead research scientist at Sales-
force Research working on NLP, explainable AI,
and HCI. Much of his research has explored novel
interpretability methods, ranging from causal anal-
ysis of language models (Vig et al., 2020) to atten-
tion interpretation in protein sequence models (Vig
et al., 2021b). He developed the BertViz5 (Vig,
2019) library for visualizing attention in Trans-
former models, as well as the SummVis (Vig et al.,
2021a) and ProVis (Vig et al., 2021b) visualization
tools. His work has appeared in NeurIPS, ICLR,
IUI, UIST, ACL, NAACL, FAccT, and WWW, as
well as the VISxAI and BlackBoxNLP workshops.
Vig’s research has been recognized with a Best
Paper award at the Intelligent User Interfaces con-
ference.

6 Audience Size

We expect 75 - 100 attendees. We gave a similar
tutorial at the 2022 IEEE International Conference
on Visualizations (Vis 2022), a top conference in
data visualization. To the best of our knowledge,
there were 600 - 800 attendees at that conference.
The tutorials were run before the main conference.
Despite this, our tutorial attracted a good number
of attendees (∼ 40).

7 Preferable Venues

Our preferable venues are in the following order:
(i) ACL, (ii) EMNLP, and (iii) EACL

8 Technical Equipment

Projector and Internet access.

4¸
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9 Ethical Considerations

We have considered several ethical issues related to
the topics of the tutorial. To respect the intellectual
property of different dataset sources, we will only
use publicly available charts that comply with their
terms and conditions. To promote reproducibil-
ity, we will share the relevant code repositories
and datasets. Finally, we will explain any possi-
ble misuse of techniques presented in the tutorial.
In particular, we foresee one possible misuse of
different models presented in the tutorial which is
to spread misinformation. Currently, NLP model
outputs tend to contain factual errors. Hence, if
such model outputs are published without being
corrected, they may mislead and misinform the
general public.
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Abstract

Large-scale natural language processing mod-
els have been developed and integrated into
numerous applications, given the advantage
of their remarkable performance. Nonethe-
less, the security concerns associated with these
models prevent the widespread adoption of
these black-box machine learning models. In
this tutorial, we will dive into three emerging
security issues in NLP research, i.e., backdoor
attacks, private data leakage, and imitation at-
tacks. These threats will be introduced in accor-
dance with their threatening usage scenarios,
attack methodologies, and defense technolo-
gies.

1 Tutorial Content

1.1 Introduction

Large-scale natural language processing models
have recently garnered substantial attention due
to their exceptional performance. This promotes
a significant proliferation in the development and
deployment of black-box NLP APIs across a wide
range of applications. Simultaneously, an expand-
ing body of research has revealed profound secu-
rity vulnerabilities associated with these black-box
APIs, encompassing issues such as dysfunctional
failures (Gu et al., 2017; Dai et al., 2019; Huang
et al., 2023), concerns related to privacy and data
leakage (Coavoux et al., 2018; Carlini et al., 2021),
and infringements on intellectual property (Wal-
lace et al., 2020; Xu et al., 2022). Those security
challenges can lead to issues like data misuse, fi-
nancial loss, reputation damage, legal disputes, and
more. It is worth noting that these security vul-
nerabilities are not mere theoretical assumptions.
Previous research has demonstrated that both com-
mercial APIs and publicly available models can be
easily compromised (Wallace et al., 2020; Carlini
et al., 2021; Xu et al., 2022). This tutorial aims
to provide a comprehensive overview of the latest

research concerning security challenges in NLP
models.

1.2 Security Challenges in NLP
This section will delineate three prevalent security
challenges encountered in NLP research and appli-
cations. These include (1) backdoor attacks, (2) pri-
vacy concerns and data leakage, and (3) imitation
attacks. For each of these challenges, we will first
commence by introducing their threat model in real-
world applications. Subsequently, we will delve
into the techniques used to execute these attacks,
illustrating their impact on vulnerable applications.
Finally, we will discuss the countermeasures and
defense technologies available to mitigate these
attacks.

Adversarial and Backdoor Attacks. Our dis-
cussion commences with adversarial attacks in the
context of NLP tasks. These attacks involve the
manipulation of inputs to compromise the perfor-
mance of a target model (Alzantot et al., 2018;
Ebrahimi et al., 2018; Li et al., 2018). More specif-
ically, by altering specific characters or words, it
becomes possible to deceive a text classifier into
assigning an incorrect label. This research under-
scores the inherent vulnerability of trained NLP
models. A notable subset of these attacks is the
backdoor attack, where the victim model is induced
to associate misbehavior with specific triggers (Dai
et al., 2019). During the inference stage, poisoned
models exhibit normal behavior on clean inputs,
but their misbehavior is triggered when malicious
patterns are presented. Those malevolent actions
can range from deceiving text classifiers (Dai et al.,
2019; Kurita et al., 2020) to mistranslating neutral
phrases into controversial ones (Xu et al., 2021).

In the literature, there exist two primary strate-
gies for embedding backdoor triggers: (1) data
poisoning and (2) weight poisoning. Data poison-
ing seeks to infiltrate triggers into a victim model
by poisoning a small fraction of the training data,
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as demonstrated in various studies (Dai et al., 2019;
Chen et al., 2021; Qi et al., 2021b; Wang et al.,
2021; Xu et al., 2021). Regarding weight poison-
ing, attackers surreptitiously integrate the triggers
into the victim model’s weights (Kurita et al., 2020;
Li et al., 2021; Yang et al., 2021a) or their embed-
ding dictionary (Huang et al., 2023). It is note-
worthy that the majority of backdoor attacks have
centered on supervised learning. However, with the
growing prominence of instruction tuning (Ouyang
et al., 2022; Wei et al., 2022), we will delve into
the manipulation of large language models through
instruction tuning poisoning in subsequent discus-
sions (Wan et al., 2023; Xu et al., 2023; Shu et al.,
2023).

In conjunction with the literature on backdoor at-
tacks, we will cover multiple defensive approaches
that aim at mitigating the vulnerabilities caused by
these attacks. Depending on the level of access
to the training data, these defensive measures can
be categorized into two types: (1) training-stage
defense and (2) test-stage defense. The former
method aims at identifying poisoned data by ana-
lyzing the anomalous characteristics of the training
data (Sun et al., 2021; He et al., 2023b). The latter
approach leverages external tools (Qi et al., 2021a)
or the victim language models themselves (Yang
et al., 2021b; Chen et al., 2022; He et al., 2023a)
to either remove the triggers or entirely discard the
poisoned data samples during the inference.

Privacy and Data Leakage. Another challenge
in NLP models is the potential risk of disclosing
data, particularly sensitive content, to untrustwor-
thy parties. A recent widely recognized example
is the capability of pre-trained language models,
e.g., GPT-2, to generate sentences containing sen-
sitive information when provided with carefully
designed prompts (Carlini et al., 2021). Another
concern revolves around the possibility that cer-
tain information from the training data is inferred
through the model’s parameters or the gradient up-
dates, such as membership inference and text data
recovery (Melis et al., 2019; Gupta et al., 2022).
These types of attacks pose significant challenges
to collaborative learning of language models (Yang
et al., 2019).

Privacy and data leakage present a contentious
challenge in NLP models. In this discussion, we
will introduce technologies aimed at addressing
these concerns, including (1) unlearning specific
private training data, known as machine unlearn-

ing (Bourtoule et al., 2021), (2) methods for identi-
fying the generated outputs that may contain sensi-
tive attributes (Xu et al., 2020) and (3) techniques
that obscure the intermediate representation of NLP
models, such as the application of differential pri-
vacy (Lyu et al., 2020; Shi et al., 2022).

Imitation Attack. The final security challenge
within our scope will be the imitation attack on
NLP models. With the advancement of NLP mod-
els, particularly large pre-trained language models,
companies have encapsulated exceptional models
into commercial APIs, serving millions of end-
users. In order to foster a profitable market, ser-
vice providers commonly implement pay-as-you-
use policies for those APIs. To circumvent service
charges, a seminal work (Tramèr et al., 2016) pro-
posed the imitation of the functionality of commer-
cial APIs by relying on predictions from those APIs.
Subsequent research has revealed vulnerabilities as-
sociated with imitation attacks that extend beyond
the violation of intellectual property, e.g., one can
employ the imitation model to craft transferable
adversarial examples capable of deceiving the vic-
tim model as well (Wallace et al., 2020; He et al.,
2021). Moreover, the interaction between the vic-
tim model and the imitator can lead to significant
privacy breaches (He et al., 2022a). Furthermore,
Xu et al. (2022) demonstrate that imitation models
can outperform the imitated victim models, particu-
larly in the context of domain adaptation and model
ensemble.

Several studies have devised a range of defensive
strategies to mitigate those security threats. Given
that imitation attacks depend on the predictions
made by victim models, one straightforward solu-
tion involves manipulating these predictions such
that the imitation models are trained with partial or
potentially deceptive information. We will delve
into the details of how this has been achieved in
text classification and generation problems, includ-
ing techniques such as customizing and perturbing
predicted label distributions (Xu et al., 2022; He
et al., 2022a). Additionally, we will explore recent
advancements in watermarking technologies for in-
tellectual property protection (Krishna et al., 2020;
He et al., 2022b,c; Zhao et al., 2023)

2 Relevance and Importance to
Computational Linguistic Community

Large-scale language models have achieved signifi-
cant performance in many NLP tasks, with many
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applications now reliant on those advanced NLP
models. However, any uncontrolled misconduct,
the inadvertent disclosure of private training data,
or potential leaks of model intellectual property
could result in substantial financial and social con-
sequences. The imperative to guide the future de-
velopment of NLP models is shifting from mere
task performance to a growing emphasis on the
security and ethical concerns of these models. Ma-
chine learning models, especially large-scale deep
learning models, remain somewhat inscrutable to
human comprehension. This opacity raises the
challenges in identifying and addressing potential
risks associated with these models without compre-
hensive explanations and a deep understanding of
their inner workings. In order to inspire broader
discussion and foster research efforts in the domain
of security in NLP, this tutorial is dedicated to pre-
senting the principle security challenges in mod-
ern natural language processing models. This will
include exploration of their threat models, attack
methodologies, and defense technologies.

3 Tutorial Information

Tutorial Outline The tutorial is expected to be
3.5 hours, including a half-hour coffee break.

1. Introduction (15 mins)

2. Backdoor Attack (50 min, by Xuanli He)

(a) Problem definition and motivation;
(b) Adversarial and Backdoor Attacks on

NLP models;
(c) Defense techniques against backdoor at-

tacks.

3. Privacy and Data Leakage (50 min, by
Qiongkai Xu)

(a) Problem definition and motivation;
(b) Privacy Leakage in NLP models;
(c) Data Leakage in NLP models;
(d) Defense techniques against privacy and

data Leakage.

4. Imitation Attack (50 min, by Qiongkai Xu
and/or Xuanli He)

(a) Problem motivation and definition;
(b) Imitation attack and subsequent attacks;
(c) Defense techniques against imitation at-

tack.

5. Conclusion and Future Trends (15 mins)

Topic Breadth. Our expectation is that approxi-
mately 30% of the content will be drawn from the
work of the instructors, while the remaining 70%
will be sourced from contributions made by various
other researchers. The materials we intend to cover
include papers from both academia and industry.

Ethical Considerations. In this tutorial, we shed
light on various vulnerabilities found in contempo-
rary NLP models. Our intention in discussing these
vulnerabilities is not to endorse any form of attack.
Rather, our objective is to emphasize the impor-
tance of responsible AI practices in both academic
and industrial contexts. Through this approach, we
can harness the progress made in AI while con-
currently upholding security, privacy, and ethical
considerations.

Open Accessibility. We intend to ensure that all
instructional materials are available online.1 More-
over, we grant permission to include slides and
video recordings in the ACL anthology.

4 Prerequisites for the Attendees

This tutorial is designed to cater to the needs of
both NLP researchers and students in academia, as
well as industrial practitioners with an interest in
security & privacy in NLP, model explanation, and
related areas. While a basic understanding of Ma-
chine Learning is beneficial, it is not an obligatory
prerequisite.

5 Reading List

• Backdoor Attack (Gu et al., 2017; Dai et al.,
2019; Kurita et al., 2020)

• Privacy and Data Leakage (Melis et al., 2019;
Carlini et al., 2021; He et al., 2022a)

• Imitation Attack (Wallace et al., 2020; Xu
et al., 2022)

• Defense using differential privacy (Lyu et al.,
2020; Shi et al., 2022), machine unlearn-
ing (Bourtoule et al., 2021), and watermark-
ing (He et al., 2022b)

6 Presenters

Dr. Qiongkai Xu, Research Fellow on Secu-
rity in NLP, School of Computing and Infor-

1The resources pertaining to this tutorial are available
at https://emnlp2023-nlp-security.github.
io/.
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mation System, the University of Melbourne,
Australia.2
https://xuqiongkai.github.io
https://scholar.google.com/
citations?user=wCer2WUAAAAJ

His recent research interest lies in auditing ma-
chine learning models, namely 1) privacy and se-
curity issues in ML/NLP models and 2) new eval-
uation paradigms for ML/NLP models. He has
published more than 30 papers, with more than 10
of them on the topic of privacy and security in NLP.
Dr. Xuanli He, Research Fellow, Department of
Computer Science, University College London,
UK.
https://xlhex.github.io/
https://scholar.google.com/
citations?user=TU8t0iAAAAAJ&hl

His recent research lies in an intersection be-
tween deep learning and natural language process-
ing, with an emphasis on robustness and security
in NLP models. He has published more than 10
top-tier conference papers about security in NLP
models.
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Designing, Learning from, and Evaluating Human-AI Interactions
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1 Introduction

With the rapid advancement of natural language
processing (NLP) research, there are numerous ap-
plications across a wide range of domains that re-
quire models to interact with humans — for exam-
ple, chatbots responding to human inquiries (Thop-
pilan et al., 2022), machine translation systems
aiding human translators (Santy et al., 2021), de-
signers prompting Large Language Models for
co-creation (Gero et al., 2022) or prototyping AI-
infused applications (Park et al., 2022). In each of
these cases, (timely) human interaction has been
the key to the success; and any potential miscon-
ceptions or differences introduced to this interac-
tion process might lead to error cascades at later
stages (Sambasivan et al., 2021). Such interaction
involves a lot of design choices around models —
the sensitivity of interfaces (Amershi et al., 2019)
and modalities (Ravichander et al., 2021), the im-
pact of questions during human evaluation (Clark
et al., 2021), or incorporating steer-ability in mod-
els (Dathathri et al., 2019).

These choices are equally (if not more) impor-
tant compared to the algorithms or datasets, but
they are often undervalued and sometimes even
considered a trivial part of the equation. In fact,
while many of these topics have been extensively in-
vestigated in Human-Computer Interaction (HCI),
they have only recently gained sufficient attention
in NLP. NLP researchers entering the interaction
world typically have to go through a steep learning
curve before they can fully utilize the best prac-
tices from HCI, resulting in some unintentional
decisions that have adversely affected the repro-
ducibility of earlier work (Clark et al., 2021).

In this tutorial, we aim to provide a system-
atic and up-to-date overview of key considerations
and effective approaches for studying human-NLP
model interactions. Interactions can take various
forms depending on the stage of model develop-

ment and the human involved; For example, NLP
researchers and developers may interactively debug
models during development, crowdworkers may
participate in data annotation, etc.Our tutorial will
focus specifically on the scenario where end users
— lay people and domain experts who try to use and
benefit from NLP models — interact or collaborate
with deployed models (Wu & Bansal et al., 2021).

Throughout the tutorial, we will use four
case studies (on model-assisted decision making,
machine-aided translation, dialog systems, and
prompting) to cover three major themes: (1) how to
conduct usability evaluations to ensure that models
are capable of interacting with humans; (2) how to
design user interfaces (UIs) and interaction mech-
anisms that allow end users to easily access NLP
models; (3) how to learn from and improve NLP
models through human interaction. We will ground
our discussion in HCI best practices, highlighting
current challenges and future directions.

2 Tutorial Outline

This will be a three-hour tutorial devoted to the
cutting-edge topic of Designing, Learning from,
and Evaluating Human-AI Interaction. Each theme
will take 35 mins, followed by 10 mins for Q&A
and 10 mins for a break. Each part includes an
overview of the corresponding topics, widely used
methods, and a deep dive into a set of representative
NLP and HCI work. In the last 15 minutes, we will
conclude our tutorial by highlighting challenges
and research opportunities in the field.

2.1 Walkthrough Case Studies

For consistency, we will use four case studies
throughout the tutorial. They demonstrate how hu-
mans and models would play different roles, some-
times working together, sometimes supporting one
another. We use them to discuss interaction initia-
tion, usability priorities, etc.
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Model-assisted decision making. NLP Mod-
els are quite often used when making decisions
such in clinical settings. In this setup, humans and
AI collaborate towards a common goal, with the
hope that each makes a decisions that they are best
suited to make. It is an example of how standard
evaluation may not translate to model usability in
an interaction setup, because accurate models may
not be complementary to human strengths (Bansal
et al., 2021). Meanwhile, numerous studies have
explored how humans would interact with classi-
fiers making recommendations given various visual
representations of model outputs and various forms
of model explanations (e.g., Wu & Bansal et al.,
2021; Gonzalez et al., 2020). This more mature
and well-researched scenario will be used to give
an overarching introduction on evaluation (§2.2)
and interaction design (§2.3).

Machine-aided Translation. This instead illus-
trates a situation where humans take the initiative
while the model provides assistance. With hu-
mans making the final judge on model usefulness,
various evaluation dimensions are affected. For ex-
ample, humans would deem a model useful even if
they are partially correct (Green et al., 2014b) and
different user groups get different benefits (Santy
et al., 2021). Meanwhile, users’ needs and percep-
tions on the model also affect their use patterns,
e.g., they may only use models for keyword trans-
lation if model outputs are not fluent (Green et al.,
2013, 2014a), which in turn points to future model
improvement. We will use this case study to re-
view the importance of human understanding and
tracking in evaluation and learning (§2.4).

Dialog systems. Chatbot/dialog system is an-
other early adoption of NLP techniques that also
fall under models supporting humans. It repre-
sents the use case where evaluation is dynamic (1)
the model performance is easily swayed by human
responses and can hardly be measured on bench-
mark datasets (Li et al., 2021), (2) the model has
to balance multiple criteria like interestingness, in-
formativeness, etc. which could be subjective for
different user groups (Thoppilan et al., 2022), (3) it
is essential to implement fallback options (e.g., re-
sponses like “sorry I didn’t understand” that’s built
around the model at the UI level) when the model
does not behave as expected or safety modules
when there is potential for controversiality (Kim
et al., 2022). These properties also make dialog
systems an ideal testbed for discussing UI designs

(§2.3) and personalization (§2.4).
Prompting Large Lanuge Models Recently,

large Language Models has made NLP models
more accessible to end users, and has led to the
emergence of a brand new interaction mechanism
— prompting. Prompting perhaps represents a rare
case where humans are “supporting” the model,
i.e., they try to search for optimal instructions that
maximize model performances on certain tasks.
We will review various recent papers on prompting
strategies (e.g., chaining (Wu et al., 2022), defin-
ing shareable prompt templates (Dang et al., 2022),
inducing personas from LLMs (Reynolds and Mc-
Donell, 2021)), with an emphasis on the trade-off
of expressiveness and learning curve (Jiang et al.,
2022), and the potential of learning from user feed-
back (e.g., InstructGPT (Ouyang et al., 2022)). We
will also emphasize on the differences between
LLMs (which can respond to arbitrary human input
text) and other modeling structures (which make
more assumptions on possible text inputs).

2.2 Theme 1: Evaluate Model Usability

The first part of our tutorial will focus on evaluat-
ing NLP model usability. As mentioned in §2.1,
NLP models that interact with (make suggestions
to, have conversations with) humans need to go
beyond accuracy (Ribeiro et al., 2020; Bhatt et al.,
2021). User interaction experiences are affected
by human-centered metrics such as safety, latency,
faithfulness, responsiveness, etc. We refer to these
dimensions as usability evaluation. In most cases,
these evaluations are conducted on human subjects.
Users would interact with both a target (experi-
ment) model and a baseline (control) model, and
compare them on effectiveness, usefulness, etc.
through self-rating. The usability evaluations de-
termine whether a model is ready for actual use.
Unfortunately, their results are often easily swayed
by arbitrary design choices (e.g., the survey ques-
tion, the task instruction) (Roopa and Rani, 2012),
making them unreliable.

This tutorial will guide the participants to design
rigorous usability evaluations. Following the evalu-
ation categorization in HCI (Kuniavsky, 2003), we
will cover (1) survey design, (2) think-aloud proto-
col, (3) cognitive walkthrough, and (4) Experimen-
tation and A/B testing. We will also discuss useful
qualitative (e.g., Likert Scale results) and quantita-
tive metrics (e.g., retrieving interaction speed from
user clickstream (Lee et al., 2022)), best use sce-
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nario and typical design pitfalls for each approach
(e.g., leading questions in survey design).

Besides methodologies, this tutorial will also dis-
cuss the user group selection (Olsen Jr, 2007): (1)
the potential impact of running studies on crowd-
sourcing platforms (where motivating participants
is challenging and denoising is essential), in the lab
(where graduate students are frequently used but
can only represent a biased distribution), and in the
actual deployment environment (which is costly);
(2) the importance of identifying the targeted user
group and achieving good coverage.

2.3 Theme 2: Interaction Design
Usability evaluation can help judge whether a
model is usable, but user interfaces are still needed
to make it user friendly. This part concerns the
interface and interaction design, with two focuses:

(1) Communication, i.e., what inputs the model
should take from humans and how to present the
results. We will present different modes of hu-
man input (e.g., Natural Language input vs. tra-
ditional WIMP interfaces) and discuss their trade-
offs (Wang et al., 2022). Additionally, we will
discuss the desiderata for visualizing NLP model
training information, their predictions, uncertain-
ties, and (where applicable) explanations, as well as
the impact of design choice (Khadpe et al., 2020).
In addition, we will discuss how NLP models can
have a design bias that make them difficult for peo-
ple from different demographics (culture, language,
age, gender), and how interactions may rectify the
issues to some extent.

(2) Initiation, i.e., how the NLP model and
the human can take the leading roles interchange-
ably. We will ground our discussion on the mixed-
initiative interaction mechanism (Avula et al.,
2022) — a flexible interaction strategy in which
each agent contributes what it is best suited at
the most appropriate time — and discuss how
model initiations impact the perceived model use-
fulness (Avula et al., 2022; Santy et al., 2019), and
how human initiations may be used as not only a
driving force on achieving human goals (Oh et al.,
2018), but also a fallback option when the model
does not behave as expected (Lee et al., 2022).

2.4 Theme 3: Learn from Interactions
As users interact with NLP models, they generate
rich signals that reveal model incorrectness and
point to future model improvements (Krishna et al.,
2022). For example, users may submit explicit

feedback (e.g., users flagging a translation as incor-
rect) (Cabrera et al., 2021; Stiennon et al., 2020),
or their clickstream may implicitly reflect their ex-
pectations on a model (e.g., when they revise a
model-generated text after accepting the sugges-
tion (Lee et al., 2022)).

Here, we review different types of human feed-
back that can be naturally retrieved from human in-
teractions, as well as different modeling approaches
to incorporate human feedback. Building on the
survey from our presenter team (Wang et al., 2021),
we will review recent studies that incorporate hu-
man feedback with respect to their goals, human
interactions, and feedback learning methods, with
a focus on example-based feedback (Wallace et al.,
2019, e.g.,) and reinforce learning (Ouyang et al.,
2022; Stiennon et al., 2020). In particular, we
will also re-emphasize how the feedback can be
retrieved through the methods introduced in §2.3.
Additionally, to help researchers make practical
use of these methods, we will discuss the poten-
tial trade-offs between intuitiveness vs. expres-
siveness (e.g., labeling functions in weak supervi-
sion (Ratner et al., 2016) might be more scalable
but more difficult than labeling a single counterex-
ample (Wallace et al., 2019)).

2.5 Breadth

While we will give pointers to dozens of relevant
papers, we plan to cover around 7-8 research papers
in close detail. Only 1-2 of the “deep dive” papers
will come from the presenter team.

2.6 A Comparison with Relevant Tutorials

Given the rising awareness of human-centered NLP
(a special theme at NAACL 2022), it is not surpris-
ing that some tutorials have already touched on
some relevant topics. To the best of our knowledge,
two tutorials that are closest to ours are: (1) Case
Studies in Benchmark Data Collection at EMNLP
20211) which uses six case studies to present a wide
variety of data collection crowdsourcing methods
and principles; and (2) Human-centered Evalua-
tions of Explanations at NAACL 20222, which con-
tributes a taxonomy of human-centered evaluation
of explanations. Both tutorials have some topical
overlaps with our tutorial: data labeling is a par-
ticular form of interaction, crowdsourcing-based
interaction will be covered in Evaluate Model Us-

1https://nlp-crowdsourcing.github.io/
2https://xai-hcee.github.io/
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ability, and explanations presentation will be cov-
ered in Interaction Design. However, we believe
the overlap is not substantial, as we only instruct
these elements as “parameters” in human-model
interaction. Instead, we hope our tutorial will be
complementary to the previous ones.

Additionally, workshops like CHAI, NLP+HCI,
and DADC (NAACL 2022) has gathered re-
searchers in the field to explore the frontiers of
relevant topics, whereas our tutorial will do a sys-
tematic reflection correspondingly.

3 Diversity Considerations

Our chosen tutorial topic inherently touches on
human user distribution. As mentioned before, we
will discuss the importance of high coverage of user
groups, and the impact of design biases on people
from different demographics (e.g., ages, cultures,
languages, and gender). As such, we believe our
tutorial will be a strong advocate for diversity in
the NLP model and interaction designs.

Besides diversity-related topics, our presenter
team will also make our tutorial more accessible to
different user groups. Specifically, we will share
our tutorial with a worldwide audience by promot-
ing it on social media. we will also work with *CL
D&I teams, and consult resources such as the BIG
directory to diversify our audience participation.

4 Prerequisites & Reading List

The tutorial is targeted toward NLP researchers and
practitioners working with humans. The prerequi-
site includes familiarity with basic knowledge of
NLP and language systems. Knowledge of system
deployment is a plus. We will also provide a more
paced introduction to some materials.

The authors will also release an NLP+HCI play-
book as a resource for people interested in getting
started in human-centered NLP research. Here are
a few papers that lay a foundation for this area:
• Putting Humans in the Natural Language Pro-

cessing Loop: A Survey (Wang et al., 2021);
• All That’s Human Is Not Gold: Evaluating Hu-

man Evaluation of Generated Text (Clark et al.,
2021);

• Re-examining Whether, Why, and How Human-
AI Interaction Is Uniquely Difficult to De-
sign (Yang et al., 2020);

• Does the whole exceed its parts? The effect of
AI explanations on complementary team perfor-
mance (Wu & Bansal et al., 2021);

• Principles of mixed-initiative user inter-
faces (Horvitz, 1999);

• Guidelines for Human-AI Interaction (Amershi
et al., 2019);

• Training language models to follow instructions
with human feedback (Ouyang et al., 2022);

• Learning to summarize with human feedback
(Stiennon et al., 2020)

5 Tutorial Presenters

Sherry Tongshuang Wu (she/her) is an assistant
professor at the Human-Computer Interaction In-
stitute, Carnegie Mellon University. Her primary
research investigates how humans (AI experts, lay
users, domain experts) interact with (debug, au-
dit, and collaborate) AI systems. Sherry has orga-
nized two workshops at NLP and HCI conferences:
Shared Stories and Lessons Learned workshop at
EMNLP 2022 and Trust and Reliance in AI-Human
Teams at CHI 2022. She is currently developing a
new course on Human-Centered NLP at CMU.

Diyi Yang (she/her) is an assistant professor in
the CS Department at Stanford University. Her re-
search focuses on learning with limited and noisy
text data, user-centric language generation, and
computational social science. Diyi has organized
four workshops at NLP conferences: Widening
NLP Workshops at NAACL 2018 and ACL 2019,
Casual Inference workshop at EMNLP 2021, and
NLG Evaluation workshop at EMNLP 2021. She
also gave a tutorial at the ACL 2022 on Learn-
ing with Limited Data. She has taught courses
on natural language processing at Georgia Tech
since 2019 and is now developing a new course on
Human-Centered NLP at Stanford University.

Sebastin Santy (he/him) is a second-year PhD
student at the Paul G. Allen School of CSE, Univer-
sity of Washington. He works on problems in the
intersection of HCI and NLP and specifically his re-
search focuses on uncovering design biases in NLP
systems. He previously worked on multilinguality
and machine translation.

6 Ethics Statement

We do not anticipate any ethical issues related to
the tutorial logistics, but we plan to cover ethi-
cal considerations in our content, especially when
we discuss human-centered evaluation metrics like
safety, and when we review the impact of different
communication and initiation methods in interac-
tion designs (e.g. leading to confirmation biases).
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Abstract
The progress of natural language processing
(NLP) is primarily driven by machine learning
that optimizes a system on a large-scale set of
task-specific labeled examples. This learning
paradigm limits the ability of machines to have
the same capabilities as humans in handling
new tasks since humans can often solve unseen
tasks with a couple of examples accompanied
by task instructions. In addition, we may not
have a chance to prepare task-specific exam-
ples of large-volume for new tasks because we
cannot foresee what task needs to be addressed
next and how complex to annotate for it. There-
fore, task instructions act as a novel and promis-
ing resource for supervision.

This tutorial targets researchers and practition-
ers who are interested in AI and ML technolo-
gies for NLP generalization in a low-shot sce-
nario. In particular, we will present a diverse
thread of instruction-driven NLP studies that
try to answer the following questions: (i) What
is task instruction? (ii) How is the process of
creating datasets and evaluating systems con-
ducted? (iii) How to encode task instructions?
(iv) When and why do some instructions work
better? (v) What concerns remain in LLM-
driven instruction following? We will discuss
several lines of frontier research that tackle
those challenges and will conclude the tutorial
by outlining directions for further investigation.

1 Introduction

This proposal is driven by a fundamental question
of task generalization in NLP: how to comprehend
a new task if labeled examples are pretty limited?
One goal of AI is to build a system that can con-
tinually understand and solve new tasks. Labeled
examples, as the mainstream task representation,
are unlikely to be available in large numbers or
even do not exist. Then, is there any other task
representation that can contribute to task compre-
hension? Task instructions provide another dimen-
sion of supervision for expressing the task seman-

tics. Instructions often contain more abstract and
comprehensive knowledge of the target task than
individual labeled examples. With the availability
of task instructions, systems can be quickly built
to handle new tasks, especially when task-specific
annotations are scarce (Wang et al., 2022; Yin et al.,
2022). Instruction following is inspired by the typi-
cal human learning for new tasks, e.g., a little kid
can well solve a new mathematical task by learn-
ing from its instruction and a few examples. This
new learning paradigm has recently begun to at-
tract the attention of the machine learning and NLP
communities.

Despite the importance, frontier research in in-
struction following is still struggling with the fol-
lowing questions. First, should instructions be con-
structed to express the target task as detailed as
possible (e.g., MTurk instructions (Mishra et al.,
2022)) or to align with the format of supervising
tasks (e.g., natural language inference (Yin et al.,
2019) or language modeling (Brown et al., 2020))
as well as possible? Second, how to effectively en-
code instructions that may consist of some specific
requirements such as “maximal output length 5”,
and “do not generate anything else apart from one
of the following · · ·”? Third, what are the factors
(e.g., model size, task numbers) that influence a sys-
tem’s generalization, robustness, etc.? Fourth, how
to evaluate instruction-following systems? Last,
what is the future for academia and industry in this
ChatGPT era?

In this tutorial, we will systematically review
several lines of frontier research on developing
systems that are supervised by task instructions.
Beyond introducing pioneering work that parsed
instructions to cope with individual tasks, such as
soccer game (Kuhlmann et al., 2004), software con-
trol (Branavan et al., 2009, 2011), etc., we will
focus on recent LLM-based approaches for cross-
task generalization given task instructions. Specifi-
cally, in light of the heterogeneous formats and dis-
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parate rationales underlying instructions, we shall
endeavor to establish a unified lens for interpreting
the essence of various instructions. Subsequently,
a structured exposition and critical analysis will
be undertaken, encompassing a spectrum of as-
pects such as diverse instruction-following datasets,
rigorous evaluation methodologies, multifaceted
performance-influencing factors, and lingering con-
cerns within this domain.

Participants will learn about recent trends and
emerging challenges in this topic, representative
tools and learning resources to obtain ready-to-use
models, and how related technologies benefit end-
user NLP applications.

2 Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancements in NLP with su-
pervision from task instructions. The detailed con-
tents are outlined below.

2.1 Background and motivation [20min]

We will define the main research problem and moti-
vate the topic by presenting several real-world NLP
and instruction-driven AI applications, as well as
several key challenges that are at the core of classic
machine learning.

2.2 What is the essence of instructions?
[30min]

Various researchers may hold differing viewpoints
on the nature of instructions, with some specializ-
ing in particular types of instructions while over-
looking the interconnections among various instruc-
tion categories. In this section, we aim to establish
a unified perspective for understanding the essence
of instructions.

We begin by introducing various typical forms
of instructions. For instance, some instructions
serve to elucidate the output labels in classifica-
tion tasks, as exemplified by NLI-oriented task
instructions (Yin et al., 2019; Xu et al., 2022; Li
et al., 2022; Xia et al., 2021; Sainz et al., 2021,
2022). These instructions treat the outputs as hy-
potheses and transform the target problems into
natural language inference (NLI) to leverage the su-
pervision available in existing NLI datasets. Other
instructions aim to enhance the input text, such
as prompts, which are designed to leverage the
rich supervision from pretrained language models
(Radford et al., 2019; Schick and Schütze, 2021b,a,

2022). Thus, they are referred to as LM-oriented
instructions. Additionally, there are more natu-
ral instructions contributed by end-users who lack
expertise in machine learning or LLMs. These in-
structions attempt to convey the task’s semantics
regardless of the specific technique to be employed.
We categorize these as human-oriented instruc-
tions (Efrat and Levy, 2020; Mishra et al., 2022;
Wang et al., 2022; Lou et al., 2023). To adhere to
human-oriented instructions, LLMs are frequently
trained on a diverse array of instruction-following
tasks. Consequently, we consolidate these distinct
types of instructions under the umbrella term in-
structions as supervision-oriented textual expres-
sions.

2.3 Instruction-following datasets and
evaluations [30min]

Initially, we introduce a range of crowdsourced
datasets, which include P3 (Sanh et al.), Big-bench
(Srivastava et al., 2022), Dolly (Conover et al.,
2023), Natural-Instructions (Mishra et al., 2022;
Wang et al., 2022), Multi-Instruct (Xu et al., 2023b),
etc. Nevertheless, human-crafted datasets have
inherent limitations due to the constraints of hu-
man effort, making it challenging to expand the
diversity and complexity of tasks. Consequently,
recent efforts have turned to LLM-generated
datasets, as exemplified by Self-Instruct (Wang
et al., 2023), Unnatural-Instruct (Honovich et al.,
2023), Dynosaur (Yin et al., 2023), WizardLM (Xu
et al., 2023a), LongForm (Köksal et al., 2023), Muf-
fin (Lou et al., 2023), and others. Irrespective of
the datasets’ origin, this tutorial will elucidate their
objectives and distinctions from a scaling perspec-
tive.

Regarding the evaluation, we commence with
automated assessments conducted on a selection
of high-quality crowdsourced datasets, including
Natural-Instructions (Mishra et al., 2022; Wang
et al., 2022), T0 (Sanh et al.), Big-bench (Srivas-
tava et al., 2022), etc. Subsequently, we introduce
Vicuna system (Chiang et al., 2023), which em-
ployed GPT-41 for automated evaluations. Finally,
we proceed to human assessments, which take into
account various criteria, as demonstrated in works
such as (Wang et al., 2023; Yin et al., 2023; Askell
et al., 2021).

1https://openai.com/research/gpt-4
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2.4 Methodology for instruction tuning
[30min]

An established experimental framework for instruc-
tion tuning entails initially training a model on a
set of provided instructions and subsequently as-
sessing its performance on unseen instructions. In
this context, we will present three distinct method-
ologies for modeling instructions: (i) The Concate-
nation method, which involves the straightforward
concatenation of elements from the instruction and
task input to form a lengthy textual sequence. This
composite sequence is then fed into an LLM to
generate the desired output. Representative works
include (Mishra et al., 2022; Wang et al., 2022;
Yin et al., 2022). (ii) Hypernetwork-based ap-
proaches (Ye and Ren, 2021; Ivison et al., 2022),
where a hypernetwork (Ha et al., 2017) is trained
to generate instruction-specific model parameters,
which are subsequently integrated into a primary
network. (iii) Reinforcement learning with hu-
man feedback methods (Bai et al., 2022; Ouyang
et al., 2022; Stiennon et al., 2020), which involve
the utilization of reinforcement learning techniques
guided by human-provided comparison data.

2.5 When and why it works [30min]

Most instruction-driven systems assume that each
task has a single instruction. We can imagine that
different users can convey a task with instructions
of distinct textual expressions. Some prompt-based
LLMs also show varying performance in dealing
with prompts of different templates (Schick and
Schütze, 2022; Kojima et al., 2022). A question
arises: how to predict and explain an instruction’
behavior? To the end, we first introduce the work
by Gu et al. (2023) that explored the robustness of
pretrained instruction learning system in handling
(i) the same task with distinct instructions writ-
ten by different MTurkers, and (ii) instruction of
varying degrees of abstractions. Then, we present
a series of works that i) explain prompts perfor-
mance by LLM-oriented perplexity (Gonen et al.,
2022), the model bias (Zhao et al., 2021), or ii)
improve instructions by reformulating them into
more effective ones (Khashabi et al., 2022).

2.6 Concerns of instruction following [30min]

In this section, we will address concerns related
to instruction following across four distinct dimen-
sions: (i) The “inverse scaling law” observed in
LLMs when dealing with negation (Mishra et al.,

2022; Jang et al., 2022; Hossain et al., 2022). (ii)
Unanticipated behavior arising in the realm of in-
struction comprehension, drawing from human ca-
pabilities in following instructions (Webson and
Pavlick, 2022). (iii) The issue of task-hungry mod-
els. Despite shifting our research focus from cross-
example generalization to cross-task generation,
the creation of large-scale instruction-following
datasets presents another challenge. To enhance
LLMs’ instruction-following abilities for new tasks,
the collection of extensive training tasks becomes
a necessity. (iv) The emergence of adversarial in-
struction attacks (Shu et al., 2023; Wan et al., 2023;
Kang et al., 2023; Li et al., 2023).

2.7 Future directions [10min]

In the last section, we will discuss some critical and
foreshadowing research directions, such as scalable
oversight and alignment (Hendrycks et al., 2021;
Bowman et al., 2022), explainable instruction learn-
ing, and how to encode instructions without the
help of labeled examples, etc.

3 Specification of the Tutorial

The proposed tutorial is considered a
cutting-edge tutorial that introduces new
frontiers in instruction-driven NLP. The pre-
sented topic has not been covered by any
ACL/EMNLP/EACL/NAACL/AACL/COLING
tutorials in the past 4 years. A tiny overlap
exists between our section “LM-oriented task
instructions” and the ACL tutorial (Beltagy
et al., 2022), which presented LLM techniques
for NLP. But Beltagy et al. (2022) focused on
various training techniques, such as self-training,
meta-training, etc., our tutorial has a broader scope
of instruction learning, in which prompt-based
LLM is merely a sub-area.

Audience and Prerequisites Based on the level
of interest in this topic, we expect around 150 par-
ticipants. While no specific background knowledge
is assumed of the audience, it would be best for
the attendees to know about basic deep learning
technologies, pre-trained language models (e.g.,
BERT). A reading list that could help provide
background knowledge to the audience before at-
tending this tutorial is given in Appendix A.1.

Breadth We estimate that at least 60% of the
work covered in this tutorial is from researchers
other than the instructors of the tutorial.
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Diversity Considerations This tutorial will
cover instruction learning for NLP as well as non-
NLP problems, such as instruction-driven naviga-
tion, software control, etc. We will also cover con-
tent applying instruction supervision for individual
tasks as well as cross-task generation. Our pre-
senter team has a diverse background regarding
geography and gender. Our team will promote our
tutorial on social media to diversify our audience
participation.

Material Access Online All the materials are
openly available at www.wenpengyin.org/
publications

4 Tutorial Instructors

The following are biographies of the speaker.

Wenpeng Yin is an Assistant Professor in the
Department of Computer Science and Engineer-
ing at Penn State University. His research focuses
on NLP with three sub-areas: (i) learning from
task instructions; (ii) information extraction; (iii)
NLP for education, bioinformatics, etc. Dr. Yin
has presented the tutorial “Indirectly Supervised
Natural Language Processing” at ACL’23, and tu-
torial “Learning from Task Instructions” at KON-
VENS’23. Additional information is available at
www.wenpengyin.org.

Qinyuan Ye is a fifth-year Ph.D. student at the
University of Southern California, advised by Prof.
Xiang Ren. Her research interest lies in natural
language processing. In particular she is interested
in approaches that reduce human annotation efforts,
including methods leveraging distant supervision,
high-level human supervision (e.g., explanations,
instructions), and meta-learning. Additional infor-
mation is available at yeqy.xyz.

Pengfei Liu is an associate professor at Shang-
hai Jiaotong University and leads the Generative
Artificial Intelligence Research Lab (GAIR). His
research topics currently focus on information ex-
traction, text generation, language pre-training, and
NLP system evaluation. He won the Best Demo
Paper award in ACL 2021 and the Outstanding
Demo Paper award in ACL 2022. Homepage:
http://pfliu.com.

Xiang Ren is an Associate Professor in Com-
puter Science and the Andrew and Erna Viterbi
Early Career Chair at USC. Ren’s research seeks

to build generalizable NLP systems that can han-
dle a wide variety of language tasks and situations.
He works on new algorithms and datasets to make
NLP systems cheaper to develop and maintain, arm
machine models with common sense, and improve
model’s transparency and reliability to build user
trust. His research work has received several best
paper awards in top NLP and AI conference venues.
Ren has been awarded an NSF CAREER Award,
multiple faculty research awards from Google,
Facebook, Amazon, JP Morgan and Sony, and
the 2018 ACM SIGKDD Doctoral Dissertation
Award. He was named Forbes’ Asia 30 Under 30
in 2019. Ren has presented a number of tutorials,
such as Knowledge-Augmented Methods for Nat-
ural Language Processing at ACL 2022, Scalable
Construction and Reasoning of Massive Knowl-
edge Bases at NAACL 2018, and other related tu-
torials at WWW’18, CIKM’17, etc. Homepage:
https://shanzhenren.github.io.

Hinrich Schütze is Chair of Computational
Linguistics and co-director of the Center of In-
formation and Language Processing at Ludwig-
Maximilians-Universität München (LMU Munich),
Germany. He was the President of the Association
for Computational Linguistics in 2020, and Gen-
eral Chair of ACL 2013. In 2022, Prof. Schütze
was elected as ACL Fellow. Prior to joining LMU
Munich, he was a Professor of Theoretical Compu-
tational Linguistics at the University of Stuttgart.
Hinrich holds a Ph.D. in computational linguistics
from Stanford University. Additional information
is available at https://schuetze.cis.lmu.
de.

Ethical Considerations

We do not anticipate any ethical issues particularly
to the topics of the tutorial.
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A Appendix

A.1 Recommended Paper List
The following is a reading list that could help pro-
vide background knowledge to the audience before
attending this tutorial:

• Learning from Natural Instructions (Gold-
wasser and Roth, 2011)

• Learning from Explanations with Neural Exe-
cution Tree (Wang et al., 2020)

• Benchmarking Zero-shot Text Classification:
Datasets, Evaluation and Entailment Ap-
proach (Yin et al., 2019)

• Textual Entailment for Event Argument Ex-
traction: Zero- and Few-Shot with Multi-
Source Learning (Sainz et al., 2022)

• Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Lan-
guage Processing (Liu et al., 2021)

• True Few-Shot Learning With Prompts—A
Real-World Perspective (Schick and Schütze,
2022)

• The Turking Test: Can Language Models Un-
derstand Instructions? (Efrat and Levy, 2020)

• Hierarchical Task Learning from Language
Instructions with Unified Transformers and
Self-Monitoring (Zhang and Chai, 2021)

• Cross-Task Generalization via Natural Lan-
guage Crowdsourcing Instructions (Mishra
et al., 2022)

• MUFFIN: Curating Multi-Faceted Instruc-
tions for Improving Instruction Following
(Lou et al., 2023)
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Abstract

Numerous recent studies have highlighted so-
cietal harms that can be caused by language
technologies deployed in the wild. While sev-
eral surveys, tutorials, and workshops have dis-
cussed the risks of harms in specific contexts—
e.g., detecting and mitigating gender bias in
NLP models—no prior work has developed a
unified typology of technical approaches for
mitigating harms of language generation mod-
els. Our tutorial is based on a survey we re-
cently wrote that proposes such a typology. We
will provide an overview of potential social is-
sues in language generation, including toxicity,
social biases, misinformation, factual incon-
sistency, and privacy violations. Our primary
focus will be on how to systematically identify
risks, and how eliminate them at various stages
of model development, from data collection, to
model development, to inference/language gen-
eration. Through this tutorial, we aim to equip
NLP researchers and engineers with a suite of
practical tools for mitigating safety risks from
pretrained language generation models.

1 Motivation

With the widespread success and increasing adop-
tion on natural language processing (NLP) tech-
nologies in user-facing products including machine
translation (Vaswani et al., 2017; Lewis et al.,
2020), dialogue systems (Andreas et al., 2020; Gan-
gadharaiah and Narayanaswamy, 2020) and recom-
mendation systems (Jannach et al., 2020) the NLP
community is becoming increasingly aware that
we have a responsibility to evaluate the effects of
our research and mitigate harmful outcomes (Ben-
der et al., 2021). Indeed, models have been shown
to introduce vulnerabilities and threats, both inad-
vertent and malicious, to individual users, social
groups, and content integrity. Without social con-
text and content control, deployed language gen-
erators have quickly derailed to racist, homopho-
bic, hateful comments (Hunt, 2016; Jang, 2021;

Wolf et al., 2017; Vincent, 2022), compromised
user privacy (Carlini et al., 2021), spread disinfor-
mation (Shao et al., 2018), and even encouraged
suicide (Daws, 2020). Prior works have outlined
these risks (Maynez et al., 2020; Sheng et al., 2021;
Weidinger et al., 2021), proposed taxonomies (Wei-
dinger et al., 2022), discussed their points of origin,
and advocated for research on ethical development
of LMs (Bender et al., 2021; Solaiman et al., 2019).

However, there is little work that summarizes
actionable approaches and technical solutions
to preventing or mitigating these harms. This is
the purpose of our tutorial, which is based on a
survey we have recently conducted (Kumar et al.,
2022). In this tutorial, we aim to provide a compre-
hensive, unified taxonomy of relevant mitigation
strategies proposed in prior literature, specifically
focusing on language generation models.

2 Tutorial Content and Relevance

What are language models? A brief back-
ground: To build a common ground for dis-
cussing the risk mitigation strategies, this tutorial
will begin with a brief overview of recent trends in
language modeling and pretraining. We will cover
both causal (Radford et al., 2019; Brown et al.,
2020) and non-causal language models (Devlin
et al., 2019) highlighting their differences and their
impact on NLP research. We will briefly discuss
how pretrained models can be adapted to different
tasks covering model finetuning (both complete
and adapter based) as well as prompt-based formu-
lation to solve NLP tasks. We will also focus on
their scale both in terms of model parameters as
well as training data size.

How can language models cause societal harm?
After presenting the background on language mod-
els, we will then give a formal definition of harms
based on taxonomy defined in prior work (Barocas
et al., 2017) and focus on representational harms
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Figure 1: Overview of Intervention Strategies. Our
survey presents a taxonomy of intervention strategies
organized around the different phases where they can
be applied.

in this tutorial. Highlighting the impact of heed-
lessly using web data which is usually population-
imbalanced (Bender et al., 2021) and contains bi-
ased language against towards specific populations,
we will discuss how language models tend to re-
inforce and amplify bias against sub-populations
based on different personal and social attributes
such as gender (Stanovsky et al., 2019; de Vassi-
mon Manela et al., 2021), race (Liang et al., 2021;
Field et al., 2021), region (Huang et al., 2020), de-
mographics (Huang et al., 2020), age (Nangia et al.,
2020) among others. We will also discuss, that
by not being grounded in real world knowledge,
they pickup on spurious statistical correlations in
data and generate (in other words, hallucinate) fac-
tually incorrect content which can potentially be
used to spread misinformation (Zellers et al., 2020;
Kryscinski et al., 2020). Major content of this
section is borrowed from the course on Ethics in
NLP developed at Carnegie Mellon University and
the University the Washington by organizer Yulia
Tsvetkov.

Can we reduce or mitigate such harms? Fi-
nally, in this part, we will focus on work on mitigat-
ing harmful effects of language generation systems.
While still a nascent field of research, several so-
lutions in this space have been proposed which
we categorize into four categories, visualized in
Fig. 1. We organize and discuss in detail interven-

tion strategies based on where they fit in different
stages of LM development: in data collection,
modeling, post-factum decoding, and applica-
tion. Within each of these categories, our taxon-
omy brings together prior works that have been
treated as disjoint areas targeting different types of
harms (toxic/biased language and misinformation).

Since LMs learn and amplify biases present in
the training data, we will first discuss data level
interventions which focus on either (1) filtering
the pretraining corpora to create more balanced
datasets (Jia et al., 2020), or (2) finetuning trained
LMs on sanitized data (Gehman et al., 2020a).
Second, we will review model level interventions
where we consider approaches which modify either
the architecture or training objectives to induce or
remove desired biases (Nan et al., 2021; Cao and
Wang, 2021). Third, we will present methods to
modify model outputs post generation using de-
coding and editing methods to demote or remove
harmful content (Yang and Klein, 2021; Kumar
et al., 2021; Cao et al., 2020). These techniques are
especially useful for cases where it is impossible
to modify data or models or even decoding strate-
gies such as in case of GPT3 (Brown et al., 2020)
which are only available through an API. Finally,
we will end with application level interventions
where we show how methods to flag and redact
harmful content allow applications to shield such
content from reaching users (Vaidya et al., 2020;
Sun et al., 2019).

Throughout the tutorial, we will highlight both
detection and mitigation approaches, as well as
their specific limitations and shortcomings. By
the end of the tutorial, participants will be better
informed where to focus future research efforts.

Due to the vast range of societal harms and their
mitigation strategies, we do not plan an exhaustive
treatment of this material. One central goal is to
raise awareness for participants of the relevant is-
sues, so that when they return to their research they
will be more able to notice ways in which their
research based on large language models might im-
pact different variety of users. To achieve this goal,
we will aim for a “T-shape” in terms of breadth and
depth: to briefly mention a number of core ques-
tions and then to drill down into a few particular
case studies to see how these issues play out in real
research settings.
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3 Tutorial Structure

We propose a cutting-edge tutorial on an emerg-
ing area that has not been previously covered in
ACL/EMNLP/NAACL/COLING tutorials. This
would be a discussion-style tutorial where the or-
ganizers will present material with structured time
throughout for questions, and discussion amongst
attendees. The duration of the tutorial will be 3
hours with 5 min breaks at the end of each hour.
The following would be the outline of the talk:
1. Brief Introduction to Language models (10 mins)
- We will provide a quick background on current
state of NLP research with introduction to language
models and their capabilities.
2. Possible Harms of Language Technologies (15
mins) - We will briefly cover examples of ethical
concerns, societal harms and biases present in cur-
rent NLP tools.

• Fairness/Bias - Research on human-like biases
in NLP (Field et al., 2021; Caliskan et al.,
2017; Field and Tsvetkov, 2020)

• Toxicity - Research on toxic text generated
by NLP models (Gehman et al., 2020a) and
biases propagated in efforts to correct them
(Davidson et al., 2017).

• Misinformation, Factual Inconsistencies - fac-
tual errors in generated text (Cao et al., 2018;
Buchanan et al., 2021; Zellers et al., 2020)

• Privacy - Models generating sensitive, iden-
tifying information like addresses, SSN, etc.
(Carlini et al., 2020; Inan et al., 2021)

3. Application Level Interventions (30 mins) -
Techniques to filter harmful content before present-
ing model outputs to users.

• Harm Detection - Research on Toxic text de-
tection (Vaidya et al., 2020; Han and Tsvetkov,
2020), fact-checking (Zhou et al., 2021), hal-
lucination detection (Kryscinski et al., 2020;
Goyal and Durrett, 2020), bias-detection (Sun
et al., 2019; Park et al., 2018).

• Redacting or Flagging Harmful Text - Re-
search on application level warnings or redac-
tion for harmful or inappropriate generated
text (Xu et al., 2020).

4. Output Level Interventions (30 mins) - Tech-
niques to modify outputs to remove harmful con-
tent.

• Decoding Techniques - Research on search
and sampling algorithms for controllable gen-
eration by promoting or demoting specific
properties in output text (Zhang et al., 2022;

Krishna et al., 2022; King et al., 2022).
• Post-Factum Editing - Research to edit or re-

vise generated text to remove harmful content
(Pryzant et al., 2020; He et al., 2021; Bal-
achandran et al., 2022).

5. Model Level Interventions (30 mins) - Tech-
niques to modify or optimize model parameters to
prevent risky generations.

• Architecture and Training - Research on objec-
tives and model architectures to enforce safe
and reliable text generation (Yu et al., 2022;
Nan et al., 2021; Falke et al., 2019).

• Finetuning and Model Editing - Research
on editing or finetuning model parameters
to incorporate safety constraints, through
with new objectives (Gururangan et al., 2020;
Chan et al., 2021; Gehman et al., 2020b;
Chronopoulou et al., 2020).

6. Data Level Interventions (30 mins) - Techniques
to curate clean training data to prevent models from
using harmful text.

• Data Filtration - Research on filter-
ing/removing training data instances
containing toxic or harmful content (Ngo
et al., 2021; Brown et al., 2020).

• Data Augmentation - Research on adding
safer examples to datasets to offset the effect
of problematic data (Mathew et al., 2018; Di-
nan et al., 2020; Stafanovičs et al., 2020).

7. Open Problems and Future Research (20 mins)
The tutorial will be a series of presentations with

a set of references to related research papers and
external demos. The presentation will cover a wide
array of research on the topics from across the
field. We will share the slides with the participants
in advance. We will additionally share an online
repository of relevant research material and online
links to available code and demos to help partici-
pants navigate and use relevant research for their
work. No copyright issues are expected as we will
use open-source material.

4 General Information

4.1 Organizers

Sachin Kumar is a sixth year PhD candidate at the
Language Technologies Institute, School of Com-
puter Science at CMU. Sachin’s research tackles
critical technical problems in core language gener-
ation with deep learning, such as open-vocabulary
generation, detection and demotion of spurious con-
founders, and controllable generation.
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Vidhisha Balachandran (she/her) is a fourth-year
Ph.D. student at the Language Technologies Insti-
tute, School of Computer Science at CMU. Her
current research focuses on building interpretable
and reliable NLP models with a focus on summa-
rization, factuality, and KB-based reasoning.
Lucille Njoo (she/her) is a second-year PhD stu-
dent at the Paul G. Allen School of Computer Sci-
ence and Engineering at the University of Washing-
ton. She works in the intersection of NLP, ethics,
and computational social science, working on iden-
tifying societal harms in NLP models.
Antonios Anastasopoulos (he/him) is an Assistant
Professor at the Department of Computer Science
at George Mason University, USA. His research fo-
cuses on NLP for local and low-resource languages
and varieties, cross-lingual learning and multilin-
guality, and cross-lingual fairness.
Yulia Tsvetkov (she/her) is an Assistant Profes-
sor at the Paul G. Allen School of Computer Sci-
ence and Engineering at the University of Washing-
ton, USA. Her research focuses on computational
ethics, multilingual NLP, and machine learning for
NLP. She developed a course on Computational
Ethics in NLP and is teaching it at both undergrad-
uate and graduate levels since 2017, and she is a
co-chair of the ACL Ethics Committee.

4.2 Audience and Pre-Requisites
We expect participants from a wide array of back-
grounds, including researchers, engineers, and end
users of NLP technologies. Based on prior itera-
tions of the tutorial, we expect an audience size
of 50-100. No prior experience with NLP/ML is
required, but we believe that our tutorial will most
benefit those who are currently using NLP or are in-
tending to use NLP tools in the near future in their
research/products. An optional list of papers is
presented in our survey paper (Kumar et al., 2022).

4.3 Diversity
The content of this tutorial highlights the impact
of LMs on diverse users and therefore we aim to
reach wide and diverse audiences. We will adver-
tise this tutorial to diverse groups of researchers
(e.g., Masakane, LatinX, North Africans, disabled
in AI, indigenous in AI, Khipu) to bring in partici-
pants from various backgrounds. A previous ver-
sion of this tutorial attracted audience from diverse
gender, race as well as professional backgrounds
like researchers, beginners and industry practition-
ers. Accordingly, our content will be made accessi-

ble to such audiences. Our own team is also diverse
across multiple demographic attributes as well as
professional expertise.

5 Logistics

Previous Editions This is the second iteration
of the tutorial. The first edition of the tutorial was
presented at The Web Conference 2022. While the
previous iteration was focused to a general CS audi-
ence with less NLP background, this iteration will
be modified to be aligned more for NLP-focused
audience. This would entail including deeper tech-
nical specification of the interventions, including
data, models and objectives.

Our tutorial is related and complementary to
prior ACL tutorials related to bias and fairness in
NLP (Socially Responsible NLP at NAACL 2018,
Bias and Fairness in NLP at EMNLP 2019, Inte-
grating Ethics into the NLP Curriculum at ACL
2020). Complementary to the content of the above
tutorials which highlight social harms in NLP and
discuss their detection, primarily focusing on rep-
resentation learning and text classification, our tu-
torial will focus on practical methods to identify
and mitigate harms in large language models and
language generation.

Venue We prefer EMNLP or ACL, but any venue
would work for us.

Technical Requirements We will not require ad-
ditional equipment other than presentation material:
an LCD projector, a computer with PowerPoint and
Acrobat Reader, and internet connection.

Public Release We will publicly release all tu-
torial materials, including prerecorded lectures as
backup for the tutorial which will be uploaded prior
to the tutorial. These will be hosted on an open-
access platform and linked from our University
websites.

6 Ethics Statement

Although the aim of this tutorial is to improve the
safety and inclusivity of NLP technologies and
equip practitioners with tools to do so, we are well
aware that as a not perfectly-diverse group of re-
searchers we might incorporate our own biases into
tutorial stricture and its technical focus. We will
acknowledge this limitation in our tutorial, as well
as the fact that the field of computational ethics
is developing rapidly, and thus the content of our
tutorial is inherently incomplete.
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1 Introduction

Large language models such as GPT-3 (Brown
et al., 2020), BART, (Lewis et al., 2019) etc., have
advanced the state of the art in several natural
nanguage generation tasks such as text summa-
rization (Zhang et al., 2020) and machine transla-
tion (Liu et al., 2020). However when it comes to
open-ended tasks with a focus on creativity such
as generating stories (Fan et al., 2018a), poetry
(Ghazvininejad et al., 2016), or various forms of fig-
urative language (Chakrabarty et al., 2021), these
state-of-the-art language models are often found to
be inadequate.

The principal reason for this is that, in addition
to composing grammatical and fluent sentences
to articulate the intended content, these tasks usu-
ally also require extensive world and common-
sense knowledge, as well as discourse modeling,
to make sure the outputs maintain long-term coher-
ence while remaining creative. It should also be
noted that current approaches to text generation for
specialized tasks require lots of training data for
supervision. However, most existing corpora for
creative forms of text are limited in size. Even if
such a corpus existed for creative tasks, learning
the distribution of existing data and sampling from
it will unlikely lead to truly novel, creative out-
put. Creative composition requires deviating from
the norm, whereas standard generation approaches
seek to mimic the norm.

This tutorial aims to bring awareness of the im-
portant and emerging research area of open-domain
creative generation, with a focus on language gen-
eration while also touching on multi-modal genera-
tion (e.g., image captioning, visual metaphors, and
visual story generation). It targets natural language
processing (NLP) and artificial intelligence (AI)
researchers as well as creative writing practitioners
who are interested in building systems that are ca-
pable of emulating as well as augmenting human

creativity.
In particular, we will review recent studies on

creative language generation both at the sentence
level as well as longer forms of text. We will pro-
vide the audiences with a holistic view of 1) the
importance and challenges of building creative lan-
guage generation systems; 2) methods for different
forms of creative language generation such as story
(Yang et al., 2022; Yao et al., 2019), poetry (Tian
and Peng, 2022), humor (He et al., 2019; Mittal
et al., 2022), metaphors (Chakrabarty et al., 2021;
Stowe et al., 2021; Chakrabarty et al., 2020b), sar-
casm (Chakrabarty et al., 2020a), and hyperbole
(Tian et al., 2021) 3) how can models for creativ-
ity infer user intention and preferences, allow for
fine-grained control, and take (natural language)
feedback? In particular, how could the recent ad-
vancement of AI shape the future workforce for
creativity? We will conclude the tutorial by outlin-
ing future research directions in this area.

2 Tutorial Outline

In this tutorial, we will review the history of cre-
ative language generation both in shorter and longer
forms. Then, we will move to the recent ad-
vances in creative language generation that employ
transformer-based language models as well as ex-
ternal world knowledge from existing resources.
We will also touch upon how much creativity can
we elicit from larger models like GPT3 (Brown
et al., 2020) and where they are still lacking. Fi-
nally, we will discuss the real-world implications
of creative language generation and how humans
can interact or collaborate with these models to
satisfy their specific needs. In particular, we will
present recent community efforts in the following
topics:

1. Reviewing the history of creative language
generation and how neural methods have
shown considerable improvements over prior
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approaches.

2. Introductions to contemporary methods for
creative text generation along three main axes
content planning for long-form creative text
generation, figurative language generation
with commonsense knowledge and the sur-
prisal or twist factor which we term the XFac-
tor in creative NLG

3. Discussion on how large-pretrained language
models such as GPT-3 can perform creative
language generation tasks and what are some
of its benefits and where we can still have
targeted improvements.

4. Introduction to the challenges in evaluating
creative text. What are the possible dangers of
relying on crowd workers from Amazon Me-
chanical Turk (Karpinska et al., 2021; Clark
et al., 2021)? What are the tradeoffs of using
expert vs crowd worker evaluation of creativ-
ity in language generation (Chakrabarty et al.,
2023a)?

5. Examining how advances in creative NLG
have opened up directions of research in the
co-creative domain. How do amateur and
skilled writers benefit from these models?
How do these models fit into existing creative
writing workflows? And how does this tech-
nology needs to improve to become more im-
pactful and useful to end users?

6. Lessons learned open challenges, and discus-
sion about how to build robust, reliable, and
useful systems for creative language.

3 History

Due to the lack of vast research on creative lan-
guage generation and its importance in training
and testing generative models, it is necessary
to have a cutting-edge tutorial on an emerging
and timely topic. We are unaware of any tutori-
als on the exact same topic in the past 4 years’
ACL/EMNLP/EACL/NAACL conferences, with
the only exception of the ACL 2020 tutorial (Mou
and Vechtomova, 2020) on Stylized Text Genera-
tion: Approaches and Applications. The tutorial
was mainly about style transfer. While there are
some overlaps between style transfer and creative
language generation, we believe our tutorial will
benefit the audiences in terms of learning the vast

landscape of creative language generation in the
age of pre-trained language models. Finally, our tu-
torial will also touch upon human-AI collaboration
for creativity as well as creativity for vision and
language tasks which has not been touched upon in
prior tutorials.

4 Prerequisite Knowledge

Our target audience is general NLP conference at-
tendances; therefore, no specific knowledge is as-
sumed of the audience except basic machine learn-
ing and NLP background:

• Familiar with common natural language pro-
cessing concepts (e.g., word representation,
syntax, semantics) as found in an introductory
NLP course.

• Familiar with the problems/setups of (open-
domain) generation and creative forms of text
such as story, poetry, metaphors etc

• Has basic knowledge about machine learn-
ing models such as deep neural net-
works, classifiers, and pre-trained mod-
els such as BERT (Devlin et al., 2019),
DALLE (Ramesh et al., 2021, 2022),
GPT2 (Radford et al., 2019), GPT3 (Brown
et al., 2020) BART (Lewis et al., 2020).

5 Tutorial Content

This tutorial presents a systematic overview of the
history and the frontier of creative language gener-
ation. We will also introduce methods for sentence
level and longer forms of creative language gener-
ation, and careful consideration in designing the
evaluation of model outputs as well as how LLM’s
can aid in providing assistance during the process
of creative writing.We will then do deep dives. The
detailed contents are outlined below.

5.1 Motivation, History, and Challenges [20
mins]

We will first motivate the importance of the prob-
lem by looking into works from psychology that
examine what it means to be creative (Torrance,
1966) and then demonstrating practical applica-
tions of models that can produce creative outputs.
Then, we will outline the challenges of building
and evaluating creative generation models and sys-
tems. We will also include a brief introduction to
the history of creative language generation and how
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many of the challenges encountered by the commu-
nity when developing contemporary language mod-
els share parallels with those faced by researchers
working on these problems prior to the advent of
statistical and neural techniques in NLP.

5.2 Recent Methods for Creative Generation
[75 mins]

We detail various contemporary methods for cre-
ative text generation along three main axes charting
progress in each. [VP: This could use a bit more
punch]

Content Planning - “Austen’s Plots” [30 min]
In this section, we will discuss how approaches to
control the content of the generated text by sketch-
ing a plan (Yao et al., 2019) has enabled pre-trained
language models to generate higher quality stories
with coherent plot lines (Goldfarb-Tarrant et al.,
2020; Rashkin et al., 2020) as well as poetry with
form constraints like sonnets (Tian and Peng, 2022).
We then discuss the recent phase shift to adapting
this style of content planning to large language
models such as GPT3 to generate even longer, yet
coherent, stories (over 1000 words) via recursive
prompting (Yang et al., 2022, 2023).

Figurative Language Generation with Common-
sense Knowledge - “The Bard’s Metaphors” [30
minutes] Pre-trained language models typically
excel at understanding the literal meaning of the
text and generating responses accordingly. How-
ever, when it comes to creative tasks, they often
struggle to effectively employ figurative language,
which is essential for adding depth and nuance to
the text. We will discuss how incorporating com-
monsense knowledge from external sources (Bosse-
lut et al., 2019) enables models to better generate
similes and metaphors (Chakrabarty et al., 2020b;
Stowe et al., 2021; Chakrabarty et al., 2021) and
sarcasm (Chakrabarty et al., 2020a). Finally, we
examine how chain-of-thought prompting can elicit
better figurative language understanding that was
learned during the pre-training of large language
models resulting in opportunities to generate higher
quality illustrations for the same (Chakrabarty et al.,
2022b).

The X-factor - “Dickens’ Twist” [15 minutes]
Finally, there is the ineffable quality of creative
writing which grips the reader to keep turning the
page. While this element is most challenging to
recreate from language models, we discuss works

that attempt to do so by learning word-level rela-
tionships to generate puns (He et al., 2019) and
break down intangible qualities such as humor into
their basic principles for modeling (Tian et al.,
2022).

5.3 Challenges in Evaluation of Creative NLG
outputs [20 mins]

As the community makes progress in improving the
various elements of the creative generation process,
benchmarking progress becomes more challeng-
ing. One of the common practices in evaluating
creative output is relying on crowd worker judg-
ments from platforms such as Amazon Mechanical
Turk. However, there are multiple challenges in
these evaluations (Karpinska et al., 2021; Clark
et al., 2021) such as crowd-workers spending lim-
ited time on reading and evaluating outputs, under-
specified instructions for evaluation, variability in
judgments across the same set of workers across dif-
ferent times, constructing proper qualification tests,
setting up proper wages for crowd workers. A more
promising alternative is to look into how experts
might be better suited to evaluating outputs from
creative NLG systems because their expectations
might differ from amateur crowd workers (Clark
and Smith, 2021). We discuss how recent work has
delved back into the fundamentals of creativity to
design evaluation axes based on the Torrance tests
of creative thinking (Torrance, 1966) and measure
these using expert judgments (Chakrabarty et al.,
2023a).

5.4 Human AI Collaboration for Creativity
[30 mins]

Recent developments in natural language gener-
ation (NLG) using large language models have
brought us closer than ever to the goal of build-
ing AI-powered creative writing tools. In this
section, we will discuss the potential of NLG to
have a significant impact in the creative writing
domain–especially with respect to brainstorming,
generation of story details, and research assistance
(Chakrabarty et al., 2023b). We will focus on differ-
ent interaction interfaces for AI-assisted creativity,
the extent to which they understand user intent,
and finally, whether the human-AI collaboration
improves the final creative output. We will end this
section with the positives as well as limitations of
current models as identified by expert and profes-
sional writers.
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5.5 Conclusion, Future Directions, and
Discussion [25 min]

We will conclude the tutorial by discussing future
directions to build impactful, reliable and useful
systems for creative language generation.

6 Tutorial Coverage and Suggested
Reading List

While the tutorial will include our own work
(Yao et al., 2019; He et al., 2019; Mittal et al.,
2022; Goldfarb-Tarrant et al., 2020; Chakrabarty
et al., 2020b, 2021; Akoury et al., 2020; Stowe
et al., 2021; Tian et al., 2021; Tian and Peng,
2022; Padmakumar and He, 2022; Chakrabarty
et al., 2022a; Yang et al., 2022), we anticipate that
roughly 40% of the tutorial content will be pulled
from work by other researchers in NLP and ma-
chine learning communities include but not limited
to (Ghazvininejad et al., 2016; Fan et al., 2018b,
2019; Van de Cruys, 2020; Riedl and Young, 2010;
Lin and Riedl, 2021; Brahman and Chaturvedi,
2020; Mirowski et al., 2023; Clark et al., 2021).
A more comprehensive list of related papers will
be provided before the tutorial.

7 Tutorial Instructors

Our instructors consist of experts who have con-
ducted research in different aspects related to the
tutorial topic.

Nanyun (Violet) Peng Nanyun (Violet) Peng is
an Assistant Professor in the Department of Com-
puter Science at the University of California Los
Angeles. She received her Ph.D. in Computer Sci-
ence from Johns Hopkins University. Her research
focuses on the generalizability of NLP technolo-
gies, with applications to creative language gen-
eration, low-resource information extraction, and
zero-shot cross-lingual transfer. Her works have
won the Outstanding Paper Award at NAACL 2022,
the Best Paper Award at AAAI 2022 Deep Learn-
ing on Graphs workshop, and have been featured an
IJCAI 2022 early career spotlight. She has given a
tutorial at NAACL 2018 on information extraction.

Tuhin Chakrabarty Tuhin Chakrabarty is a
Ph.D. candidate in Computer Science at Columbia
University and a part of the Natural Language Pro-
cessing group, where he is advised by Smaranda
Muresan. His research is supported by the
Columbia Center of Artificial Intelligence & Tech-
nology (CAIT) and Amazon Science Ph.D. Fellow-

ship. He was also a fellow at The New York Times
R&D team working on Natural Language Gener-
ation. His overarching research question centers
around how we can use large language models for
creativity. He has published several papers in vari-
ous NLP conferences and journals including ACL,
NAACL, TACL and EMNLP.

He He He He is an Assistant Professor of Com-
puter Science and the Center for Data Science at
New York University. She is affiliated with the
CILVR Lab, the Machine Learning for Language
Group, and the Alignment Research Group. Her
research focuses on building intelligent systems
that can communicate with humans effectively and
enable individuals to achieve their goals. Today’s
systems are often opaque, brittle, and difficult to
control, which limits their usefulness in human-
centered applications. To make them our trustwor-
thy collaborators, her research aims to (i) under-
stand the computational foundation of generaliza-
tion in novel scenarios, and (ii) build interactive
systems that align with users’ goals. She has given
a tutorial at EMNLP 2021 on robustness and adver-
sarial examples in NLP.

Vishakh Padmakumar Vishakh Padmakumar is
a Ph.D. student in Data Science at New York Uni-
versity advised by He He. His research is broadly in
the field of natural language processing and human-
AI collaboration with a focus on collaborative text
generation for creative writing tasks and other in-
teractive settings. Prior to this, he was a Graduate
Research Associate at the NYU Center for Social
Media and Politics working on political stance clas-
sification and multimodel content sharing in online
disinformation campaigns. He has published pa-
pers at several NLP and machine learning venues
including ACL, EMNLP, and ICML and was the
chair of the ACL 2023 Student Research Work-
shop.
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