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Abstract

The continuous progress in Named Entity
Recognition allows the identification of com-
plex entities in multiple domains. The tradi-
tionally used metrics like precision, recall, and
F1-score can only reflect the classification qual-
ity of the underlying NER model to a limited
extent. Existing metrics do not distinguish be-
tween a non-recognition of an entity and a mis-
classification of an entity. Additionally, the
dealing with redundant entities remains unad-
dressed. We propose WRF, a Weighted Rouge
F1 metric for Entity Recognition, to solve the
mentioned gaps in currently available metrics.
We successfully employ the WRF metric for au-
tomotive entity recognition, followed by a com-
prehensive qualitative and quantitative analysis
of the obtained results.

1 Introduction

The continuous progress in Named Entity Recog-
nition (NER) allows the identification of complex
entities in multiple domains (Sharma et al., 2022).
The traditionally used metrics like precision, re-
call, and F1-score (Tjong Kim Sang and De Meul-
der, 2003) can only reflect the classification quality
of the underlying NER model to a limited extent
(Powers, 2015). The limitation of the entity recog-
nition evaluation metrics has been studied by many
researchers, which motivated them to modify the
existing or create new metrics (ACE08, 2008; Chin-
chor and Sundheim, 1993; Segura-Bedmar et al.,
2013) to tackle many corner cases (Ben Jannet
et al., 2014). This research work shows that still
many corner cases are not being addressed by the
existing metrics to date, to evaluate the true predic-
tion performance of the model. In the NER task,
the model needs to identify the entity and classify it.
After tokenizing the input text, all the tokens that
do not represent an entity of our interest are usually

∗Work done during an internship at Mercedes-Benz AG.

labeled as other (O). Existing metrics do not distin-
guish between a non-recognition of an entity and
a misclassification of an entity. Non-recognition
is the wrong classification of an entity as other,
whereas a misclassification is the wrong classifica-
tion of an entity as any of the other classes, apart
from other. Furthermore, the dealing of redundant
entities which are present in the predicted or tar-
get labels are not tackled by the above-mentioned
metrics and therefore should take into account too.

In this work, we show that the existing metrics
do not fit well for Automotive Entity Recognition
(AER). AER is the automotive domain-specific en-
tity recognition task. We propose WRF, a Weighted
Rouge F1 metric for Entity Recognition, to solve
the gaps in currently available metrics. The scien-
tific contribution is structured as follows: In Sec-
tion 2, we give insights into related work. The
currently available metrics, the identified metric
gap, and our proposed method WRF are explained
in Section 3. Section 4 deals with the fine-tuning of
a pretrained language model with an AER dataset
and the quantitative and qualitative evaluation com-
parison between existing metric and WRF. We will
end up this contribution with a conclusion in Sec-
tion 5.

2 Related work

The evaluation of entity recognition models is a cru-
cial task in the field of NLP. Several forums have
addressed meaningful entity recognition evaluation
metrics in the past. The entity recognition chal-
lenge (Tjong Kim Sang and De Meulder, 2003) at
the conference on computational natural language
learning 2003 (CoNLL2003) introduced the idea of
measuring the performance of the systems in terms
of precision, recall, F1, and its variations like F1-
micro, which considers the entity prediction to be
correct, only when the sequence of predicted labels
for the entire entity precisely matches the sequence
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Prediction: Repair costs (parts and labour) are often very high, since the workshop does not know which is
the faulty FP location and then also replaces the ekmv FP or replaces because of the consequential damage to

the scroll FP, (scroll tip TP is partially melted TP) by too high temperatures TP.

Target: Repair costs (parts and labour) are often very high, since the workshop does not know which is
the faulty location and then also replaces the ekmv or replaces because of the consequential damage to

the scroll, (scroll tip is partially melted) by too high temperatures.

- Failure location Failure type

True Positives (TP)
False Positives (FP)

False Negatives (FN)

1 (scroll tip)
2 (ekmv, scroll)

-

2 (partially melted, too high temperatures)
1 (faulty)

-

Recall
Precision
F1-Score

1/(1+0) = 1.00
1/(1+2) = 0.33

0.50

2/(2+0) = 1.00
2/(2+1) = 0.67

0.80

F1 micro 0.67 (TP=3, FP=3, FN=0)

Table 1: A practical use-case for F1-score calculation. The target describes the gold annotated labels by humans.
Recall, Precision, and F1-Score are computed based on the target and prediction entities. The metrics were calculated
separately for failure location and failure type. Underlined entities are defined as the beginning of an entity
sequence.

of true labels, token by token (Tjong Kim Sang
and De Meulder, 2003). In other words, there is no
room for variation or flexibility in the sequence of
tokens used to represent the entity in the predicted
label and the true label. F1 metric and its vari-
ants are widely used in the entity recognition field
(Yadav and Bethard, 2018). The automatic con-
tent extraction (ACE08, 2008) research program
provided three additional metrics for evaluating
entity recognition tasks, which are defined as en-
tity scoring, relation scoring, and event scoring.
Chinchor and Sundheim (1993) defined different
classification categories such as partial and spuri-
ous, to compare the response of a system against
the target annotation. Partial is defined as the pre-
dicted entity and the target entity is judged to be a
near match, whereas spurious is the hypothesising
of an entity by the model. They build up a new
metric called error per response fill, based on their
classification categories. The idea is to go beyond
simple strict classification and provide flexibility in
evaluation. Building upon the categories defined by
Chinchor and Sundheim (1993), Segura-Bedmar
et al. (2013) created four schemes to provide more
flexible evaluations, namely strict evaluation, ex-
act boundary matching, partial boundary matching,
and type matching, which solve a wider range of
use cases displayed in Section 3.2. Fu et al. (2020)
introduced an interpretable evaluation method for
entity recognition tasks. The method offers possi-

ble insights into the underlying reasons behind the
differences between the performances of the mod-
els, which is not attainable through conventional
metrics.

3 Method

3.1 Automotive Entity Recognition

AER deals with the identification of failure loca-
tions and failure types in unstructured customer
feedback texts in the automotive warranty and
goodwill area (W&G). In the automotive indus-
try, these identified entities are used to eliminate
frequent failures and improve product quality. We
display automotive W&G text for visualization pur-
poses. The following sentence was classified with
a BERT-base uncased (Devlin et al., 2019) token
classification model, which was fine-tuned with an
AER-labeled dataset (details for training in Section
4.1).

Repair costs (parts and labour) are often very
high, since the workshop does not know which is

the faulty location and then also replaces the ekmv
or replaces because of the consequential damage
to the scroll, (scroll tip is partially melted) by too

high temperatures.

The automotive entity classifications based on
the fine-tuned BERT-model are displayed in the
following example sentence.
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Prediction 1: Repair costs (parts and labour)
are often very high, since the workshop does not know
which is the faulty location and then also replaces the

ekmv FP or replaces because of the consequential damage
to the scroll FP, (scroll tip TP is partially melted) by too

high temperatures.

Prediction 2: Repair costs (parts and labour)
are often very high, since the workshop does not know
which is the faulty location and then also replaces the

ekmv FP or replaces because of the consequential damage
to the scroll, (scroll tip TP is partially melted) by too

high temperatures.

Calculation Recall: 1.00 Precision: 0.33 F1-score: 0.50 Recall: 1.00 Precision: 0.50 F1-score: 0.67

Problem
The classification result of scroll (multiple occurrences) should not affect the evaluation metric,

since it neither conveys any useful information nor any wrong information.
The repetitive and redundant entities influence the F1.

Table 2: The problematic use-case for F1-score calculation. We display the calculation of the entity failure location
for simplicity reasons.

Repair costs (parts and labour) are often very
high, since the workshop does not know which is
the faulty FP location and then also replaces the

ekmv FP or replaces because of the consequential
damage to the scroll FP, (scroll tip TP is partially

melted TP) by too high temperatures TP.

3.2 NER evaluation schemas

The use cases which can be dealt with by
CoNLL2003 metrics are displayed in Table 7. Use
cases which can be exclusivly handled with the
SemEval’13 metrics are displayed Table 8.

The use case in Table 9 is missing according to
our investigation (Section 3.1). Redundant entities
do not contribute to the failure elimination process
in the automotive industry, and result in an impre-
cise calculation of the F1 score. To illustrate the
problem of calculating the F1-Score, we take the
example sentence from Section 3.1 for calculating
the metrics precision, recall, and F1-Score. The
metrics calculation is done in Table 1. The problem
of using the F1-Score metric is shown in Table 2.

3.3 WRF: Weighted Rouge-F1 metric for
Entity Recognition

Rouge score (Lin, 2004) is commonly used in text-
generation tasks to compare the model-generated
text against the reference or a set of human-
generated reference texts (Schluter, 2017). It has
several variants, such as Rouge-N, Rouge-L, and
Rouge-W. Our interest is centered on the Rouge-N
variation, specifically in the unigram version, the
Rouge-1 F1 (R1-F1). For our particular use case,
there is no necessity to match lengthier sequences
of multiple words or n-grams because the major-
ity of the entities associated with failure location
and types are single words or unigrams. Since this
research deals with the classification task, the first

step is to create two texts from the predicted and
target entities, to compare and evaluate the quality
of predictions using the rouge score. The need to
adapt a commonly used text-generation evaluation
metric for the classification task and how it will be
beneficial will be made clear before the end of this
section. The example described in subsection 3.1
is used to evaluate the failure location and failure
type predictions using the R1-F1 in Table 3.

R1-Precision =
countmatch(gram1)

count(gram1)model
(1)

R1-Recall =
countmatch(gram1)

count(gram1)reference
(2)

R1-F1 = 2× PrecisionRP1 ×RecallRR1

PrecisionRP1 +RecallRR1
(3)

where countmatch(gram1) refers to the num-
ber of unigram matches found between the model
prediction and the reference, count(gram1)model

refers to the number of unigrams in the model pre-
diction, and count(gram1)reference refers to the
number of unigrams in the reference. The initial
step in evaluating entity recognition performance
using R1-F1 is to construct two strings, P and T,
using the predicted and target entities. The string P
is the concatenation of predicted entities, whereas
the string T is the concatenation of target entities.
Mc determines the number of unigrams that P and
T have in common. R1-Precision is calculated as
the ratio of Mc to Pc, where Pc is the total number
of unigrams in P. R1-Recall is calculated as the
ratio of Mc to Tc, where Tc is the total number of
unigrams in T. R1-F1 is calculated as the harmonic
mean of recall and precision. The repetitive words
are taken into account during the computation of
Pc.
A new evaluation metric called Weighted Rouge
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Prediction: Repair costs (parts and labour) are often very high, since the workshop does not know which is
the faulty FP location and then also replaces the ekmv FP or replaces because of the consequential damage to

the scroll FP, (scroll tip TP is partially melted TP) by too high temperatures TP.

Rouge-1 F1-score (unigram)

Form string T from target entities scroll tip partially melted too high temperatures

Form string P from predicted entities faulty ekmv scroll scroll tip partially melted too high temperatures

Mc: No. of unigram (word) matches between P & T 7 (scroll tip partially melted too high temperatures)

Pc: No. of word in P 10

Tc: No. of word in T 7

Calculation
R1-Precision = Mc/Pc = 7/10 = 0.70 Rouge-1 Precision (Equation 1)

Rouge-1 Recall (Equation 2)
Rouge-1 F1 (Equation 3)

R1-Recall = Mc/Tc = 7/7 = 1.00
R1-F1-score = 0.82

Conclusion
To measure the prediction performance of the AER-specific

W&G-BERT model, we choose an modified Rouge-1 F1-Score
(WRF: Weighted Rouge F1 metric for Entity Recognition).

Table 3: Rouge-1 F1-score calculation.

F1 (WRF) is introduced in Table 4. Since we are
interested in the unigram matching, it is weighed
R1-F11, to mitigate the issues described in subsec-
tion 3.2 and Table 2. This is a modified version
of R1-F1 for entity recognition from Table 3. The
example from subsection 3.1 is taken to explain
the computation of WRF. The displayed sentence
consists of entities belonging to both failure loca-
tion and type. The calculations of P, T, Pc, Tc, Mc,
R1-Recall, R1-Precision, and R1-F1 must be per-
formed, as described in Table 3 for both classes.
But in WRF computation, if there is more than one
class in the given example, one more class needs
to be considered. The calculation for the combined
class is shown in Table 4. During the formation
of strings P and T for the combined class, entities
belonging to all the classes are considered, unlike
the computation involved for individual classes.
The combined class considers misclassifications
related to entities to be correct, except when they
are misclassified as other. The individual classes
(failure location and failure type) consider misclas-
sifications related to entities to be equivalent to
misclassifications classified as other.

R1-F1 for entity recognition is also affected by
repetitive entities (Table 3).

When compared to Table 3, the additional step
in Table 4 is to eliminate the repetitive unigrams
after forming the strings P and T, which results in
Pu and Tu respectively. R1-F1 is computed for all
the individual classes and the combined class sep-

1Hereafter, all mentions of WRF represent the weighted
R1-F1.

arately by using the R1-Recall and R1-Precision
formulas described in Table 3. The WRF is com-
puted by taking a weighted sum of all the R1-F1
values. The example in Table 4 has two classes (ig-
noring IOB2 format). By including the combined
class, the total number of classes involved for WRF
calculation is three. γ1, γ2, and γ3 are used as three
weights for the weighted summing step of WRF.
The correct weight-based parameter configuration
require domain-specific expert knowledge depend-
ing on the underlying use case. The weight of each
class determines the importance of that class. If
the identification entities is more crucial than the
correct classification, the weight of the combined
class is defined to outweight the weight of individ-
ual classes. If the correct classification of entities
is more important than just identification, then the
weight of the combined class is lower than individ-
ual class weights. We used two sets of weights in
our analysis: WRFstrict and WRFlenient. WRFstrict
assigns an equal weight of 0.33 to all three classes,
while WRFlenient gives γ1 and γ2 a weight of 0.25
each and assigns double weightage (0.5) to γ3.

Subsection 3.2 shows the problem by computing
the F1 score. The evaluation metric of both sen-
tences should be the same since their predictions
convey the same information (Table 2). Due to the
repetitive and redundant entity predictions, the F1
score gets influenced, resulting in different values.
Table 5 describes how the issue is solved by using
WRF. Table 5 first outlines the procedure of creat-
ing string P by concatenating the predicted failure
location entities, and string T by concatenating the
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E.g. Subsection 3.1
(Multiclass example)

Weighted R1-F1 score for entity recognition

Failure Location Failure Type Failure Location & Type (combined)

Form string P from
predicted entities

ekmv scroll scroll tip
faulty partially melted
too high temperatures

faulty ekmv scroll scroll tip
partially melted too high temperatures

Form string T from
target entities

scroll tip
partially melted

too high temperatures
scroll tip partially melted

too high temperatures

Pu: Keep only unique
words in P

ekmv scroll scroll tip
faulty partially melted
too high temperatures

faulty ekmv scroll scroll tip
partially melted too high temperatures

Tu: Keep only unique
words in T

scroll tip
partially melted

too high temperatures
scroll tip partially melted

too high temperatures

R1-F1 with Pu & Tu
(Table 3)

0.80 0.91 0.88

Interpretation
Treats misclassification of entities as equal

to misclassifications belonging to „other“ class.
Treats misclassification of entities as correct

except misclassifications as „other“ class.

Weighted Rouge-1
F1-Score (WRF)

γ1∗ R1-F1Failure Location + γ2∗ R1-F1Failure Type + γ3∗ R1-F1Combined (C = 2)

with
∑K

i=1 γi = 1, where K =

{
C , if C = 1

C + 1 , if C > 1
and C is the number of classes

(ignoring B- and I- prefixes)

Motivation of γ1, γ2, γ3
γ1, γ2, γ3 are weighting factors which require domain-specific expert knowledge:

γ3 > 0.333, if the identification of entities is more important than the correct classification.
γ3 <= 0.333, if the correct classification is more important than just detection of entities.

WRFstrict
γ1 = γ2 = γ3 = 0.333

WRFstrict = γ1 ∗ 0.80 + γ2 ∗ 0.91 + γ3 ∗ 0.88 = 0.86
if C > 1, then γC+1 = γi

where i ∈ [1, C]

WRFlenient
γ1 = γ2 = 0.25, γ3 = 0.50

WRFlenient = γ1 ∗ 0.80 + γ2 ∗ 0.91 + γ3 ∗ 0.88 = 0.87
if C > 1, then γC+1 = 2 ∗ γi

where i ∈ [1, C]

Table 4: WRF-calculation. For presentation reasons, we displayed the calculation just in a simplified version of
failure location and failure type, instead of using the IOB2 format. Nevertheless, the WRF calculation can be
done with every entity recognition annotation format. γ1, γ2, γ3 weighting factors can be chosen depending on the
application domain by an expert. WRF can ensure prioritization of the identification of entities over the classification
correctness of entities depending on the needs of the use case.

Prediction 1: Repair costs (parts and labour)
are often very high, since the workshop does not know
which is the faulty location and then also replaces the

ekmv FP or replaces because of the consequential damage
to the scroll FP, (scroll tip TP is partially melted) by too

high temperatures.

Prediction 2: Repair costs (parts and labour)
are often very high, since the workshop does not know
which is the faulty location and then also replaces the

ekmv FP or replaces because of the consequential damage
to the scroll, (scroll tip TP is partially melted) by too

high temperatures.

String T scroll tip scroll tip

String P ekmv scroll scroll tip ekmv scroll tip

Pu: Keep only unique words in P ekmv scroll scroll tip ekmv scroll tip

Tu: Keep only unique words in T scroll tip scroll tip

WRF
(C = 1) and
γ1 = 1.0

WRF = 0.80 WRF = 0.80

Insight The classification result of the repetitive scroll occurrence is not
affecting the WRF.

Table 5: How WRF solves the issue.
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- F1-score Weighted Rouge-1 F1-Score (WRFstrict)

Failure Location (FL) 0.777 0.866

Failure Type (FT) 0.821 0.842

Failure Location and Type (Combined) (FC) - 0.872

MeanFL,FT,FC (0.795) 0.860

Table 6: Experimental results based on the test set described in 4.1. We report the metrics F1-score and WRFunigram

scores. The regularization terms γ1, γ2, and γ3 are set to 0.333 (equally weighted). The score in bracket is calculated
without regularization term γ and without consideration of FCombined.

target failure location entities. The strings Pu and
Tu were generated by removing any duplicate uni-
grams. Computing WRF as demonstrated in Table
4 involves calculating the weighted sum of R1-F1
for all classes, including the combined class. There
is no distinction between WRFstrict or WRFlenient in
Table 5 since there is only one class involved (fail-
ure location). The insight obtained from Table 5
is, WRF is not affected by repetitive and redundant
entities since the resulting WRF metric for both
prediction examples is equal.

4 Experimentation

4.1 Training
We used 4 NVIDIA Tesla V100 PCIE 16GB GPUs
for the fine-tuning of the BERT base-uncased
model to the respective AER downstream task over
12 epochs with patience of 4 for early-stopping.
The batch size for training was set to 16 with a max-
imum input sequence of 512. The labeled dataset
consists of 5,487 sentences. We defined a 4,005
training, 475 validation, and 1,007 test set split.
AdamW was chosen as an optimizer with a learn-
ing rate of 1e-4. The learning rate is decreased by
a factor of 0.1 whenever the loss decrease stops.

4.2 Quantitative Evaluation
The experiments are performed with the AER test
data set by using the fine-tuned BERT-base uncased
model. We report the metrics F1-score and WRF.
The results are shown in Table 6.

4.3 Qualitative Evaluation
In order to validate the WRF evaluation score, we
will randomly select a subset of 60 samples from
the test set and use the supervised model according
to subsection 4.1 to predict the entities from this
subset. We will then compare the predictions of
the model using the WRF and F1 metrics. Accord-
ing to subsection 3.3, WRF is expected to evalu-
ate the model predictions more accurately than F1,

because F1 can be impacted by the existence of
redundant and repeated entities. Three major cases
for evaluation comparison are displayed in Tables
10 - 14. The F1 score is higher than the WRF score
in 7 out of 60 (11,67%) cases. If the model’s pre-
dictions of repeating entities are also correctly clas-
sified, i. e., the target labels also contain repetitive
entities, then F1_micro overestimates the model’s
performance, leading to a larger value (Table 13).

A higher WRF score compared to the F1 score
was identified in 25 out of 60 sentences (41,67%).
The model does not predict repetitive entities in
a correct way. The calculation of WRF does not
take mispredicted redundant entities into account.
Furthermore, the F1 score declares a mispredicted
entity within a correctly labeled sequence of en-
tities as an overall failure of the entire sequence
(Table 10 - Table 12). The WRF and f1 score are
equal if both, the prediction entity set and target
entity set matches (Table 14). We identified 28
out of the 60 examples (46,66%) for this use case.
Additional examples cannot be provided due to
confidentiality constraints.

5 Conclusion

We present to the research community a new metric
called WRF to fill the evaluation gap in the entity
recognition evaluation. We used a weighted form
of the Rouge unigram F1, which differentiates be-
tween misclassification and non-recognition of enti-
ties. WRF is also able to handle redundant entities.
The newly developed metric was applied success-
fully within AER. It is beneficial for the practical
use case to make it more focused on correct clas-
sification or just the identification of entities. It is
possible to optimize the weights of WRF according
to its practical use case by the parameters γ1,2,3.
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Usecase Text string Target Entity string Prediction Entity string

... ... ...
scroll B-Failure_Loc B-Failure_Loc

tip I-Failure_Loc I-Failure_Loc
is O O

partially B-Failure_Type B-Failure_Type
1 melted I-Failure_Type I-Failure_Type

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type
... ... ...

scroll B-Failure_Loc B-Failure_Loc
tip I-Failure_Loc I-Failure_Loc
is O O

partially B-Failure_Type B-Failure_Type
2 melted I-Failure_Type I-Failure_Type

by O B-Failure_Loc
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type
... ... ...

scroll B-Failure_Loc O
tip I-Failure_Loc O
is O O

partially B-Failure_Type B-Failure_Type
3 melted I-Failure_Type I-Failure_Type

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type

Table 7: Use cases that can be dealt with the metrics by CoNLL2003. The first use-case describes the full match of
the target string and the prediction string. The second use-case describes the hypothecation of an entity, while the
third use-case deals with the case of a missing entity prediction. Only a segment of the complete W&G sentence
(Section 3.1) is listed in tabular form.
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Usecase Text string Target Entity string Prediction Entity string

... ... ...
scroll B-Failure_Loc B-Failure_Type

tip I-Failure_Loc I-Failure_Type
is O O

4 partially B-Failure_Type B-Failure_Type
melted I-Failure_Type I-Failure_Type

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type
... ... ...

scroll B-Failure_Loc B-Failure_Loc
tip I-Failure_Loc I-Failure_Loc
is O B-Failure_Type

partially B-Failure_Type I-Failure_Type
5 melted I-Failure_Type I-Failure_Type

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type
... ... ...

scroll B-Failure_Loc B-Failure_Loc
tip I-Failure_Loc I-Failure_Loc
is O B-Failure_Loc

partially B-Failure_Type I-Failure_Loc
6 melted I-Failure_Type I-Failure_Loc

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type

Table 8: Use cases that can be dealt with the metrics by SemEval’13. The fourth use-case describes the wrong
assignment of a predicted entity type. The fifth use-case describes the wrong definition of entity boundaries, while
the sixth use-case deals with both a wrong entity type assignment and a wrong boundary definition. Only a segment
of the complete W&G sentence (Section 3.1) is listed in tabular form.
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Usecase Text string Target Entity string Prediction Entity string

... ... ...
scroll O B-Failure_Loc

... ... ...
scroll B-Failure_Loc B-Failure_Loc

tip I-Failure_Loc I-Failure_Loc
7 is O O

partially B-Failure_Type B-Failure_Type
melted I-Failure_Type I-Failure_Type

by O O
too B-Failure_Type B-Failure_Type
high I-Failure_Type I-Failure_Type

temperatures I-Failure_Type I-Failure_Type

Table 9: Use case which can not be dealt with CoNLL2003 or SemEval’13 metrics. Only a segment of the complete
W&G sentence (Section 3.1) is listed in tabular form.

Prediction
steering wheel trim on left side trim not flush - sticking outward ( looks warped )
removed and replaced drivers steering wheel - ok . cv

Target
steering wheel trim on left side trim not flush - sticking outward
( looks warped) removed and replaced drivers steering wheel - ok . cv

Calculated F1-Score 0.440

Calculated WRF
with γ1,2,3 = 0.333

0.820

Table 10: Case 1.1: WRF > F1-Score. If the model’s predictions for repeating entities are incorrectly classified, i.
e., the target labels do not contain repetitive entities, then F1micro underestimates the model’s performance and
produces a lower value. The second occurrence of the steering wheel is wrongly predicted as an entity by the model,
unlike the first occurrence. This sentence has been artificially generated to simulate typical customer feedback
patterns.

Prediction overhead control panel will not close properly ; replaced overhead control
pane for sunglasses compartment compartment would not clos e completely.

Target overhead control panel will not close properly ; replaced overhead control
pane for sunglasses compartment compartment would not clos e completely.

Calculated F1-Score 0.530

Calculated WRF
with γ1,2,3 = 0.333

0.830

Table 11: Case 1.2: WRF > F1-Score. The entity will not close properly predicted by the model will be misclassified
since the F1micro score looks for a perfect match of the whole entity and the corresponding target entity is only not
close properly. WRFstrict will therefore be higher in this situation. This sentence has been artificially generated to
simulate typical customer feedback patterns.
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Prediction
blower has a noise ; rumbling noise ; blower motor ;r & r glovebox
and removed old blower motor due to it being noisy . replace d with a
new blower motor and operated toverigy the repair .

Target
blower has a noise ; rumbling noise ; blower motor ;r & r glovebox
and removed old blower motor due to it being noisy . replace d with a
new blower motor and operated toverigy the repair .

Calculated F1-Score 0.910

Calculated WRF
with γ1,2,3 = 0.333

1.000

Table 12: Case 1.3: WRF > F1-Score. If a model incorrectly classifies an entity but that entity is part of another
entity that was correctly classified, then F1micro underestimates the model’s performance. For example, blower is
a misclassified entity, but blower motor is a correctly classified entity. Intuitively, the model should not be penalized
in this situation, but F1micro underestimates the model’s performance. This sentence has been artificially generated
to simulate typical customer feedback patterns.

Prediction guest states rumble coming out of the fan system at a higher level ofspeed ,
like a chattering ; found blower motor imbalance , replace blower motor.

Target guest states rumble coming out of the fan system at a higher level ofspeed ,
like a chattering ; found blower motor imbalance , replace blower motor.

Calculated F1-Score 0.910

Calculated WRF
with γ1,2,3 = 0.333

0.840

Table 13: Case 2: WRF < F1-Score. The WRF calculation leads to a lower metric value compared to the F1-Score.
If the model’s predictions of repeating entities are also correctly classified, i. e., the target labels also contain
repetitive entities, then F1micro overestimates the model’s performance, leading to a larger value. For example,
blower motor is the repeated entity predicted by the model, and all occurrences are correctly classified in both cases.
This sentence has been artificially generated to simulate typical customer feedback patterns.

Prediction left front seat cushion cover cracking ; verified leather is starting to crack
; replaced seat bottom leather on drivers seat.

Target left front seat cushion cover cracking ; verified leather is starting to crack
; replaced seat bottom leather on drivers seat.

Calculated F1-Score 1.000

Calculated WRF
with γ1,2,3 = 0.333

1.000

Table 14: Case 3: WRF = F1-Score. The prediction entity string matches the target entity string. Both, WRF and
F1 score calculate the maximum result. This sentence has been artificially generated to simulate typical customer
feedback patterns.
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