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Abstract

Language generation has been an important
task in natural language processing (NLP) with
increasing variety of applications especially in
the recent years. The evaluation of generative
language models typically rely on automatic
heuristics which search for overlaps over word
or phrase level patterns in generated outputs
and traditionally some hand-crafted reference
sentences in the given language ranging in
the forms from sentences to entire documents.
Language, on the other hand, is productive by
nature, which means the same concept can be
expressed potentially in many different lexical
or phrasal forms, making the assessment of
generated outputs a very difficult one. Many
studies have indicated potential hazards related
to the prominent choice of heuristics matching
generated language to selected references
and the limitations raised by this setting in
developing robust generative models. This
paper undertakes an in-depth analysis of
evaluation metrics used for generative models,
specifically investigating their responsiveness
to various syntactic structures, and how
these characteristics vary across languages
with different morphosyntactic typologies.
Preliminary findings indicate that while
certain metrics exhibit robustness in particular
linguistic contexts, a discernible variance
emerges in their performance across distinct
syntactic forms. Through this exploration, we
highlight the imperative need for more nuanced
and encompassing evaluation strategies in
generative models, advocating for metrics
that are sensitive to the multifaceted nature of
languages.

1 Introduction

In the context of Natural Language Processing
(NLP), evaluating generative models typically
refers to a two-fold process: while the generated
output should first of all be a grammatically and

semantically plausible utterance in the target lan-
guage, it should also fulfil in form or meaning the
requirements of a specific task the system is built
for. For instance machine translation model output
is typically assessed based on how well the system
output can represent the meaning of a sentence in
another language, while outputs of summarization
or question answering systems should be conveying
factual information about a given context represent-
ing information. The evaluation at hand can then
seek to gauge the accuracy, fluency, and appropri-
ateness of the output for the given application at
the same time.

While a through and accurate evaluation of any
NLP system should eventually involve human as-
sessment, due to time and cost considerations, a
prominent approach especially during system de-
velopment typically relies on automatic heuristics
which can provide costless reinforcement on the
sufficiency or efficacy of the model settings or re-
sources used in system development. Automatic
evaluation metrics are generally designed with the
principle of comparing the similarity of system
output to a gold-standard utterance presenting an
example of an accurate system output, by relying
on the rate of common words (Papineni et al., 2002;
Doddington, 2002). However, such metrics tend
to fall back significantly when the output happens
to contain a rephrased version of the context due
to stylistic or syntactic variations in the generative
process. Many languages with rich morphology
not only can change in form at the subword level
through inflectional or derivational transformations,
one can also observe free word order where the
same phrase can be written as a combination of the
words in many different orders, and still convey the
same meaning. In such cases, word-level metrics
are known to fail to capture accurate evaluations
(Culy and Riehemann, 2003; Callison-Burch et al.,
2006; Birch et al., 2010; Mathur et al., 2020). Alter-
natively, (Popović, 2015) proposed n-gram match-
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ing at the character level, which has been more ap-
propriate for the evaluation in morphologically-rich
languages. However, matching based approaches
still might miss semantic nuances in the gener-
ated language. Recent studies proposed the al-
ternative approach to use vector similarity in dis-
tributed representations (Zhang et al., 2019). This
method provides a better semantic notion over sim-
ple word matching heuristics, yet there is not a
well-established understanding on the robustness
of pre-trained language representations and how
well they may generalize across languages and do-
mains.

While valuable, each metric has its challenges,
especially given the intricate tapestry of global lan-
guages. Previous work has compared the perfor-
mance of evaluation metrics in different tasks (Liu
et al., 2016; Shen et al., 2022; Moghe et al., 2022),
however, a task-agnostic analysis that focuses on
providing insight on the assessment of generaliza-
tion capability in generative language models and
its measurement across languages with different
syntactic typology has never been performed. Our
study embarks on an extensive examination of eval-
uation metrics within a linguistic framework where
our objective is to understand how these metrics
perform in capturing the essence of rephrased lan-
guage and generalize across diverse syntactic struc-
tures and linguistic complexities. For this purpose,
we select four prominent automatic evaluation met-
rics representative of a different approach to eval-
uation metric formulation: BLEU (Papineni et al.,
2002), chrf (Popović, 2015), NIST (Doddington,
2002) and BERTScore (Zhang et al., 2019) and use
these metrics to compute the similarity across col-
lections of sentences that are paraphrases of each
other, in 71 different languages from 12 distinct
language families, and measure how different lin-
guistic features affect the applicability of each met-
ric in similarity detection across paraphrased lan-
guage. Our study aims to extend the understanding
of evaluation metric performance and highlights
potential gaps and areas for further research in con-
sidering the future of generative models and how
they can be better developed to capture linguistic
nuances. Through this endeavor, we aim to refine
the evaluation process for generative models across
multiple languages and promote the study of gener-
ative models in potentially many new under-studied
languages.

2 Evaluation Metrics for Language
Generation

In this study, we focus on sentence-level generation
and adopt four commonly used evaluation metrics
developed for the automatic evaluation of machine
translation. Here we briefly define the formulation
of each method.

2.1 BLEU (Bilingual Evaluation Understudy)
Introduced by Papineni et al. (2002), BLEU was
one of the first automated metrics comparing
machine-generated translations to human reference
translations. The BLEU score, typically between 0
(worst) and 1 (best), is given by:

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
(1)

where:

• BP is the brevity penalty,

• wn are the weights for each n-gram (usually
set to 1/N),

• pn is the precision for the n-th n-gram.

Usually, if a candidate sentence is shorter, the
n-gram tends to get a higher score. The brevity
penalty helps control this effect by scaling the fre-
quency over the sentence length.

BP =

{
1 if c > r
exp(1−r/c) if c ≤ r

(2)

The second term in Eq. 2.1 ensures all n-grams’s
weights be uniformly distributed. Since the overall
accuracy decreases with the increase of n-gram, the
general n-gram is taken as 4-gram.

2.2 chrF
Building on BLEU’s success, chrF is a metric
that assesses n-gram similarity at the character
level, intuitively more suitable for the evaluation
of morphologically-rich languages. The overall
CHR-F score is the weighted harmonic mean of
the F-scores for each n-gram size. The weights are
determined by the frequency of each n-gram size
in the reference text.

chrF = 2× P ×R

P +R
(3)

where:
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• P is character-level precision,

• R is character-level recall.

Unlike BLEU, the metric is not sensitive to the
position of the n-grams in the sentence, making it
a more flexible and robust metric.

2.3 NIST

Developed by the National Institute of Standards
and Technology1, NIST improves upon BLEU’s
formulation, with an emphasis on rewarding rare
n-grams. The NIST score is given by:

NIST =

∑N
n=1wn log pn∑N

n=1wn

(4)

where:

• wn are the weights for each n-gram, which
are adjusted based on the informativeness of
the n-gram,

• pn is the precision for the n-th n-gram.

2.4 BERTScore

A more contemporary metric, BERTScore, taps
into BERT’s contextual embeddings to determine
text quality. The similarity between a system output
and reference sentence is computed as:

Pscore =
1

NP

NP∑

i=1

NR
max
j=1

cos(ePi , eRj )

Rscore =
1

NR

NR∑

j=1

NP
max
i=1

cos(ePi , eRj )

F1score =
2 · Pscore ·Rscore

Pscore +Rscore

where:

• NP and NR are the number of tokens in P
and R, respectively.

• ePi and eRj are the BERT embeddings of the
i-th token in P and the j-th token in R, re-
spectively.

• cos denotes the cosine similarity between two
vectors.

1https://www.nist.gov

3 Experimental Methodology

Metrics have undeniably evolved over time, mirror-
ing the advancements in generative models. The
above metrics represent this transformation, show-
casing the progression from rudimentary n-gram
matching to nuanced evaluations via deep learning
embeddings. a desired property in each generative
language model is to be able to produce plausible
language in as many stylistic or syntactic variations
the language allows. In order to assess how sensi-
tive each metric is to generalization in the subword
or phrase level syntactic structures, i.e. rephrasing,
we design a set of experiments that compute simi-
larity between paraphrased utterances in different
languages.

By the nature of their design, some metrics may
be able to capture certain typological forms and
patterns better than others, and thus correlate bet-
ter with languages with those features. In order
to test how each metric may suit better capturing
grammatical generalization in different languages,
we perform an in-depth analysis over the similarity
scores and how well they correlate with different
types of linguistic features.

3.1 Data

The experiment uses data from the TaPaCo Dataset
(Scherrer, 2020), which is a multilingual para-
phrase corpus extracted from the Tatoeba plat-
form2, an online platform that collects translations
via crowd-sourcing that allows the public mass to
provide translations and annotations to sentences.
The TaPaCo dataset is built by matching sentences
within the Tatoeba database via context automati-
cally based on the multilingual pivoting approach
introduced by Lewis and Steedman (2013). The
matched sentences are organized in sets with veri-
fied non-trivial accuracy of between 50 to 75 per-
cent. The database consists of roughly 1.9 mil-
lion sentences, with a range of 200 to 250,000 sen-
tences in each language. Of the 73 languages in the
TaPaCo dataset, 42 are languages from the Indo-
European language family group, the remaining 31
are composed of languages from various families
such as Afro-Asiatic, Austronesian, Sino-Tibetan,
Turkic, Uralic, and other constructed languages.
Only the paraphrased sentences from the TaPaCo
dataset are used in the experiment to compute the
metric scores for each language. Any annotations

2https://tatoeba.org
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of the sentences are stripped from the data when
computing the metric scores from the sentences.

3.2 Metrics

In our experiments, we use the nltk (Natural Lan-
guage Toolkit) version 3.7 for calculating BLEU,
chrF and NIST scores.

Typological feature data for 73 languages were
surveyed from the URIEL database (Littell et al.,
2017) that contains a collection of language typol-
ogy data via the lang2vec3 library. This database
was initially developed as part of DARPA’s (De-
fence Advanced Research Project Agency’s Low
Resource Language for Emergent Incidents project)
LORELEI project to develop tools for automated
human language technology for low resource lan-
guages. For our examination, we select five cate-
gories of language typological features:

1. geography (“geo”) – Geographic distances be-
tween languages on the globe

2. syntax average (“syntax_average”) – an aver-
age score representing the distinctness of the
paradigms observed in a given language in
terms of syntax

3. phonology average (“phonology_average”) –
an average score representing speech sounds
production rules of a language

4. inventory average (“inventory_average”) – an
average score representing features related to
phonetic inventories or the lexical patterns of
a language

5. learned (“learned”) – a learned predictive fea-
ture dataset used for typological predictions

Feature datum of the 71 languages selected corre-
sponding to the overlapping languages between the
TaPaCo dataset and the feature data for languages
available in the lang2vec database are surveyed
for this experiment. Each set of the typological
feature data is given as a single high-dimensional
vector that represents the feature datum of the lan-
guage in question in numerical values. Some rep-
resent the presence or absence of certain features
in the language. Thus, the average feature score of
languages cannot be collected trivially by taking
means of the independent numerical scores. In or-
der to preserve data, these high dimensional feature

3https://github.com/antonisa/lang2vec

vectors are transformed into one-dimensional vec-
tors with one point for each language using PCA
(Principal Component Analysis) (Bro and Smilde,
2014) to be compared with the metric scores com-
puted using the TaPaCo data. To collect the metric
scores on the TaPaCo dataset, sentences within the
same paraphrased group in the same language are
split off into pairs in order to compute their metric
scores. A mean average of the scores from then
sentence pairs in each language is taken to repre-
sent the language’s score evaluated by a particular
metric. Finally, to examine the correlation rela-
tion between the typological features of a language
and the evaluation metric performances on the lan-
guage as a whole, Pearson’s correlation coefficient
was computed between each different metric score
and the average transformed typological feature.
Figures 1 to 5 illustrate how typological features
are distributed across language families in linguis-
tic features, such as syntax, phonology, inventory,
geology, etc.

4 Results

The metric scores graph (Fig. 6) presents the dis-
tribution of all metric scores computed over para-
phrases and organized by language family:

• Constructed Languages: toki(Toki Pona),
tlh(Klingon; tlhIngan-Hol), vo(Volapük),
jbo(Lojban)

• Afro-Asiatic: ar(Arabic), ber(Berber),
he(Hebrew), kab(Kabyle)

• Austroasian: id(Indonesian), tl( Tagalog),
war(Waray), Creolecbk(Chavacano)

• Indo-European: af(Afrikaans),
be(Belarusian), bg(Bulgarian), bn(Bengali),
br(Breton), ca(Catalan), cs(Czech),
da(Danish), de(German), el(Greek),
en(English), eo(Esperanto), es(Spanish),
fr(French), gl(Galician), gos(Gronings),
hi(Hindi), hr(Croatian), hy(Armenian),
io(Ido), is(Icelandic), it(Italian), kw(Cornish),
la(Latin), lfn(Lingua Franca Nova),
lt(Lithuanian), mk(Macedonian),
mr(Marathi), nb(Norwegian Bokmål),
nds(Low German), nl(Dutch), orv(Old
Russian), pes(Iranian Persian), pl(Polish),
pt(Portuguese), ro(Romanian), ru(Russian),
sl(Slovenian), sr(Serbian), sv(Swedish),
uk(Ukrainian), ur(Urdu)
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Figure 1: Scatter Cluster Plot of Syntactic Information
of languages, grouped by language family

Figure 2: Scatter Cluster Plot of Inventory Information
of languages, grouped by language family

Figure 3: Scatter Cluster Plot of Geology Information
of languages, grouped by language family

Figure 4: Scatter Cluster Plot of Phonetic Information
of languages, grouped by language family

• International auxiliary language:
ia(Interlingua), ie(Interlingue)

• Japonic: ja(Japanese)

• Koreanic: ko(Korean)

• Language Isolate: eu(Basque)

• Niger–Congo: rn(Kirundi)

Figure 5: Scatter Cluster Plot of Learned Information
of languages, grouped by language family

• Sino-Tibetan: cmn(Mandarin Chinese),
wuu(Wu Chinese), yue(Yue Chinese)

• Turkic: az(Azerbaijani), ota(Turkish,
Ottoman), tk(Turkmen), tr(Turkish), tt(Tatar),
ug(Uyghur)

• Uralic: et(Estonian), fi(Finnish),
hu(Hungarian)

On average, we observe the highest BLEU
scores are computed in the Creole language with
0.3692516 points followed by the Indo-European
language family, with an average of 0.2861689.
Average BLEU scores for Japonic, Koreanic,
Niger-Congo, Afro-Asiatic, Turkic and Uralic lan-
guages are much lower with scores ranging as
0.14158, 0.196627, 0.177759, 0.0.23553, 0.22831
and 0.2283065, respectively. For these language
groups with relatively complex morphology, we ob-
serve the chrF scores, on the other hand, to be much
higher on average, with scores of 0.43876 in Tur-
kic, 0.50198 in Uralic, 0.48934 in Afro-Asiatic and
0.50487 in Niger-Congo languages. In Japonic, Ko-
reanic and Sino-Tibetan languages, the scores are
relatively low, with 0.38995, 0.35384 and 0.30561
respectively, indicating neither n-gram matching
based metric are able to capture the rephrasing in
example sentences.

NIST scores are also highest for the Indo-
European languages with an average of 0.80087
and AustroAsiatic languages with an average score
of 0.70759, however, the scores relatively remain
high for morphologically-rich languages, such as
in Afro-Asiatic family, the average NIST score is
0.71675, followed by 0.64827 in Turkic, 0.69190
in Uralic languages, indicating a general improve-
ment for better balancing the more frequent and
rare n-gram statistics. In Koreanic and Niger-
Congo the scores are very low, with 0.47798 and
0.37228, respectively.

27



Finally, the distributed semantic similarity score
BERTScore obtains the overall, with an average of
0.8684 in Indo-European, ranging to slightly dif-
ferent values in different language families with
0.8268 in Turkic, 0.85171 in Uralic, 0.87922 in
Afro-Asiatic, 0.84763 in Niger-Congo, 0.87247 in
Koreanic and 0.86648 in Japonic languages, sug-
gesting to be the most applicable metric across
languages with varying typological characteristics.

We further explore the details of how each metric
respond to different linguistic aspects of language
by analyzing the correlation between evaluation
metric scores and various linguistic typological fea-
tures. Our analysis yields a spectrum of results that
underscore the intricacies of language generation
evaluation. Considering the provided correlation
coefficients:

Syntactic Average:

• BLEU, chrF, and NIST: exhibited negative
correlations with syntactic construction, im-
plying that as syntactic complexity increases,
thet fall back in capturing similarities in the
outputs and reference language utterances.
This might hint that these metrics struggle to
capture syntactic nuances, or the general pro-
cess of rephrasing that we explicitly integrate
in our experimental setting, which is not sur-
prising due to their heavy relying on ordered
sequential patterns.

• BERTScore: exhibits a positive correlation
suggesting its potential aptness in gauging
syntactic richness or its increased robustness
to languages with complex syntactic patterns.

Geography:

• BLEU and BERTScore: Both metrics in-
dicate a relationship between geographical
distances and their evaluation scores, possi-
bly hinting at regional linguistic patterns that
these metrics are sensitive to. These results
are in line with the metric scores in Figure 6
and how they show clear differences across
language families from different geographical
locations in the distribution of either metric.

• chrF and NIST: Negative correlations may
imply a diminished sensitivity or lack of sig-
nificance related to geographical linguistic nu-
ances or a different type of sensitivity to re-
gional patterns.

Inventory:
• Most metrics showed a negative inclination

with the exception of NIST, which had a very
marginal positive correlation. This could sig-
nify a negative relationship between the effect
of phonetic inventories to the specific task of
similarity in case of varied syntactic expres-
sion. Notably, BERTScore’s significantly neg-
ative score could highlight a potential shortfall
of n-gram based methods being able to cap-
ture lexical variety and how it may reflect in
the generated language.

Phonology:
• BLEU, CHAR-F, and NIST: leaning nega-

tive, suggest that traditional metrics might not
be fully equipped to capture the richness of
speech sound production rules.

• BERTScore: Moves in a positive direction,
suggesting that embedding-based metrics like
BERTScore might offer a new perspective
to represent cross-lingual distributed informa-
tion.

Learned:
• We find mixed results with learned linguistic

feature representations. Our findings indicate
that the sensitivity of metrics to learned predic-
tive feature datasets is varied. BLEU, CHAR-
F, and NIST have negative correlations, in
contrast with BERTScore which has positive
correlation, emphasizing the potential align-
ment of data-driven approaches in their dis-
tributed nature of information.

In sum, while some evaluation metrics manifest
robustness in certain linguistic dimensions, clear
disparities are evident across different syntactic
and typological realms. Our findings propose sig-
nificant differences in applicability of certain eval-
uation metrics to sets of language families with
general typological differences in their syntactic
characteristics. We find n-gram based metrics like
BLEU to be very limited in applicability to rela-
tively simple syntactic constructions observed in
Indo-European languages, however, generally fail-
ing to provide any informative score in majority of
language families with the common characteristic
of complex morphosyntactic properties. Although
chrF was developed in a way to cope with this
limitation, we still fail to find it robust enough to
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Figure 6: The fluctuation of average scores of different languages computed using different metrics. Each language
family is represented with a different color (Constructed: Maroon, Afro-Asiatic: Orange, Austroasiatic: Pink,
Austronesian: Lemon, Creole: Pine, Indo-European: Blue, International Auxiliary Language: Teal, Japonic: Grey,
Koreanic: Crocodile, Language Isolate: Brown, Niger-Congo: Emerald, Sino-Tibetan: Crimson, Turkic: Purple,
Uralic: Olive). The evaluation results in each language are presented using the metric scores BLEU (darkest tone),
chrF (middle tone) BERTScore (lighter tone) and NIST (lighest tone), respectively.
∗∗NIST scores are scaled to the range of 0 to 1 using the formula: scaled_score = NIST _score−min_NIST

max_NIST−min_NIST with
max_NIST = 1.900 and min_NIST = 0.
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Syntactic Geography Inventory Phonology Learned
BLEU -0.18217 0.22827 -0.09892 -0.18603 -0.13972
NIST -0.16295 -0.35622 0.02184 -0.14601 -0.18125
chrF -0.18701 -0.13178 -0.12033 -0.18603 -0.0402

BERTScore 0.35427 0.17401 -0.30546 0.16748 0.16193

Table 1: Correlation results between each metric and typological feature

be applicable to different language families, but, a
better alternative in a subset of agglutinative lan-
guages like Turkic and Uralic language families. A
not well-adopted metric in the recent years, NIST
had shown interestingly robust performance across
languages supported by a more balanced formu-
lation in n-gram statistics, as indicated in its abil-
ity to perform relatively well in the evaluation of
language generated in sparse languages. The dis-
tributed space similarity metric BERTScore had
in overall the best results in being able to cap-
ture syntactic, semantic and phonological infor-
mation across languages much better compared to
all other surface-level heuristics. We remain to fu-
ture work how well it generalizes across languages
and domains with limited data available to build
pre-trained representations.

The insights gleaned underscore the imperative
for a multifaceted, holistic approach to evaluation,
one that is attuned not only to textual fidelity but
also to the vast tapestry of linguistic features that
define our global languages. Future endeavors in
the realm of NLP should prioritize the development
and refinement of evaluation metrics that genuinely
reflect the richness of human languages.

5 Conclusion

This paper provided an analytic study on the eval-
uation of language generation and how optimal
evaluation measures can be developed in a task-
agnostic way that can generalize well across differ-
ent rephrasing choices that are common in natural
language. In order to provide insight on the ap-
plicability of commonly used evaluation metrics
for language generation, we performed extensive
experiments on multilingual paraphrase collections
and measured the robustness and efficacy of each
metric in capturing syntactic variations across lan-
guages with varying syntactic typology. Our find-
ings confirm the general fallback of surface level
matching based heuristics in both applicability and
accuracy across languages with different character-
istics, and suggest the future of evaluation in lan-

guage generation lies in the direction of pre-trained
language representation. We hope our study helps
better understand how more robust evaluation met-
rics can be developed, eventually promoting more
studies in the development of generative models in
many under-studied language families.

Limitations

In spite of the task-agnostic evaluation setting
adopted in our study, it’s worth discussing potential
limitations on the applicability of our findings when
deployed in specific generative tasks or domains.
Our study mainly aims to inspire a more general
approach to the design of evaluation of language
generation, with a focus on linguistic typology and
how syntactic characteristics may affect the effi-
cacy of evaluation metrics of different nature. In
this scope, we adopt two major types of approaches
to metric formulation, surface level heuristics and
distributed semantic space similarity comparison.
There may exist additional metrics not in the scope
of this project, which we leave the reader to exper-
iment with in similar settings. In this context, we
do not strongly suggest the adoption of a partic-
ular metric, but generally aim to provide a novel
perspective on different language families and how
their typological characteristics should be consid-
ered in metric design. Eventual deployment of a
particular metric in a given task may yield addi-
tional insight on another level that may not have
been captured in our specific experimental design.
We invite all readers to beware again the nature
of controlled scientific methodology and how each
experimental setting is refined to verify a particular
scope and hypothesis.
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