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Abstract

Automatic fact verification has become an in-
creasingly popular topic in recent years and
among datasets the Fact Extraction and VER-
ification (FEVER) dataset is one of the most
popular. In this work we present BEVERS, a
tuned baseline system for the FEVER dataset.
Our pipeline uses standard approaches for doc-
ument retrieval, sentence selection, and final
claim classification, however, we spend con-
siderable effort ensuring optimal performance
for each component. The results are that BEV-
ERS achieves the highest FEVER score and
label accuracy among all systems, published
or unpublished. We also apply this pipeline to
another fact verification dataset, Scifact, and
achieve the highest label accuracy among all
systems on that dataset as well. We also make
our full code available1.

1 Introduction

The danger of misinformation online has gained
significant attention in recent years. This has
been reignited by the recent COVID-19 pandemic,
where social media sites and other entities were
tasked with identifying misleading content or false
content to warn users. Being able to develop sys-
tems to automate or build tools to improve this
process could reduce the need for human annota-
tors to mark content as being misleading or false.

The Fact Extraction and VERification (FEVER)
dataset (Thorne et al., 2018) is one the largest
and most popular datasets aimed at automated fact
verification. The FEVER dataset is comprised of
185,445 claims and uses a 2017 dump of Wikipedia
as the corpus to verify the claims, which results in
a corpus size of over 5,000,000 articles. For each
claim, the task is to find the relevant Wikipedia
page(s), the relevant sentence(s) within the page(s),
and finally given the relevant sentences and claim
determine if the claim is supported, refuted, or

1https://github.com/mitchelldehaven/bevers

there is not enough information. As such, a fairly
standard pipeline of a document retrieval system,
a sentence selection system, and a final claim clas-
sification system is used by most of the systems
for the task. The primary metric for the dataset
is FEVER score. The FEVER score requires both
that the predicted label is correct as well as at least
one piece of correct evidence being retrieved as
predicted evidence.

Much of the recent work has examined parts of
the pipeline and made novel improvements over
baseline approaches. For our system, rather than
making novel improvements against the baseline
pipeline, we instead tune each of these compo-
nents to ensure maximum performance. In fact, our
pipeline is quite similar to one of the first FEVER
systems to utilize Transformer models (Soleimani
et al., 2020). We call our system Baseline fact
Extraction and VERification System (BEVERS).
Despite its relative simplicity, our system attains
state of the art (SOTA) performance on the FEVER
blind test set. When applying our baseline pipeline
to another popular fact verification dataset, Sci-
fact (Wadden et al., 2020), our system achieves the
highest label F1 score on that dataset as well.

2 Related Work and Methods

2.1 Document Retrieval

The initial baseline for FEVER (Thorne et al.,
2018) utilized a standard TF-IDF document re-
trieval model. Hanselowski et al. (2018) improved
on this by using named entity recognition (NER) to
extract query terms from the claim text and query
those terms against WikiMedia’s API2, which has
become widely used among other systems. Re-
cently systems such as those from Stammbach
(2021) and Jiang et al. (2021) have used a combina-
tion of traditional IR approaches with Hanselowski
et al.’s (2018) NER approach. We follow a sim-

2https://www.mediawiki.org/wiki/API:Main_page

58

https://github.com/mitchelldehaven/bevers
https://www.mediawiki.org/wiki/API:Main_page


ilar setup, however, we replace the approach of
Hanselowski et al.’s (2018) use of WikiMedia’s
API. We similarly extract named entities to form
query terms, however, we run those against a fuzzy
string search system using the titles of the docu-
ments. For our TF-IDF, we build separate repre-
sentations for documents and titles. This is for two
reasons. First, it allows us to separately optimize
the parameters for titles and documents. Second, it
forces the retrieval system to give titles more atten-
tion as it is forced to retrieve half of all documents
based on the title alone. We give an ablation over
these design decisions in Appendix B.

2.2 Sentence Selection

After retrieving documents, the next step is to score
evidence and form a ranking for the predicted evi-
dence of the claim. The simplest approach to do-
ing this is referred to as “point-wise” ranking, in
which each sentence is scored individually against
the claim. This is the approach utilized by most
systems. Soleimani et al. (2020) looked at im-
proving on this utilizing a pairwise approach to
ranking. Stammbach (2021) found that utilizing
document-wide context via sparse attention Trans-
formers improves on point-wise approaches. Our
system utilizes a simple point-wise approach to
sentence selection to form the predicted evidence.
We look at two cases, treating the task as both a
binary classification task and a ternary classifica-
tion task. In the binary case, the label set is simply
RELEVANT and IRRELEVANT with the softmax
score of RELEVANT being used for ranking. In the
ternary case, we use REFUTES, NOT ENOUGH
INFO, and SUPPORTS as the labels and use 1−
NOT ENOUGH INFO softmax score for ranking.
We randomly sample sentences from the document
retrieved from our document retrieval approach for
negative samples. In the binary case, these ran-
dom negative samples are assigned to the IRRELE-
VANT label class and all true evidence is assigned
to RELEVANT. In the ternary case, the negative
samples are assigned to NOT ENOUGH INFO, and
the true evidence is assigned to its respective labels,
REFUTES and SUPPORTS.

In addition, we utilize a process we call evidence-
based re-retrieval. The FEVER dataset includes hy-
perlink information for each sentence in the dataset.
This process takes the initial set of predicted ev-
idence for a claim and extracts additional docu-
ments based on hyperlinks found in the initial sen-

tences retrieved. Sentences from these additional
documents are scored and combined with the ini-
tial sentences to form a final top 5 predicted evi-
dence. This process is very similar to Stammbach’s
(2021) “multi-hop retrieval”, with slight differences
in how sentences are discounted when combining
the two sets of sentences. Stammbach sets evidence
from re-retrieved documents just above a prede-
fined threshold for selection to prevent re-retrieved
evidence from pushing evidence from the initial re-
trieval outside of the top 5. We similarly found that
simply combining both sets together actually hurts
recall, because evidence from re-retrieval some-
times pushes out relevant evidence from the initial
retrieval. In our approach, we scale the sentence
selection scores of the re-retrieved sentences by the
score of the original sentence that was responsible
for its retrieval. Thus, if evidence sj was retrieved
due to a hyperlink in si the final retrieval score is
score(si) × score(sj). Scaling this way reduces
re-retrieved evidence pushing evidence from the
initial retrieval from the top-5 selection. It also al-
lows re-retrieved evidence scores to be proportional
to the score of the initial evidence responsible for
its retrieval.

2.3 Claim Classification

The claim classification portion has recently seen
the most diversity in approaches to the task. The
initial Transformer approach of Soleimani et al.
(2020) formed predictions for each claim and evi-
dence pair, using a simple set of rules to aggregate
labels across the different pieces of evidence. Sub-
sequently, several works examined the use of graph
neural networks as the claim classification model
(Liu et al., 2020; Zhong et al., 2020), showing im-
provements over simply using Transformers due to
their ability to aggregate information over differ-
ent pieces of evidence. More recently, increasing
the size of the Transformer models and concate-
nating all evidence sentences together have shown
further improvements, with Jiang et al. (2021) us-
ing T5 (Raffel et al., 2020) and Stammbach (2021)
using DeBERTa V2 XL MNLI (He et al., 2021).
Finally, the previous SOTA among public systems,
ProofVER (Krishna et al., 2022), utilizes natural
language proofs generated via seq2seq models for
interpretable inference steps.

For our approach, we look at prediction over sin-
gleton, concatenated, and a mixed case. We predict
a top-5 evidence set for each claim for training us-
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Hyperparameter Values
Force Lowercase True, False
Force ASCII True, False
Norm L2, None
Sublinear TF True, False
Max Ngram 1, 2

Table 1: The hyperparameter search for our TF-IDF
system.

Hyperparameter Values
Label Set binary, ternary
Negative Samples 5, 10, 20, 40
Learning Rate 1e-5, 6e-6, 3e-6
Label Smoothing 0.0, 0.1, 0.2

Table 2: The hyperparameter search our sentence selec-
tion model.

ing our document selection and sentence selection.
In the singleton case, we generate a prediction for
each piece of evidence using as input the ⟨claim,
evidence⟩ pairs. In the concatenated case, we con-
catenate all the evidence together and form the
input based on ⟨claim, evidence1, evidence2, . . .⟩.
For the mixed approach, we mix the singleton ap-
proach and concatenated approach together. For
the singleton and mixed approach, we have multi-
ple predictions for each claim. To aggregate these
into a single score, we use the softmax scores for
each prediction with the retrieval scores and train
a gradient boosting classifier (Friedman, 2001) on
these inputs to produce a single prediction. In the
singleton case, the input is a 5× 4 matrix (5 pieces
of evidence, 3 softmax scores and a retrieval score).
In the mixed case, the input is a 6 × 4 matrix (in-
cludes the additional concatenated input softmax
scores and the retrieval score, computed from the
average retrieval scores of the 5 pieces of evidence).
The singleton and concatenated approaches have
been used previously (Soleimani et al., 2020; Jiang
et al., 2021), while we are not aware of any works
that look at simply mixing these approaches to-
gether.

3 Experimental Setup

What we believe to be the source of improvements
for our system is hyperparameter tuning for each
component. We identify hyperparameters and po-
tential values and run a grid search to find the op-
timal configurations for each component. In this
section, we will go over each of the grid searches

Hyperparameter Values
Learning Rate 0.1, 0.3
Estimators 20, 40, 60, 80, 100
Max Depth 2, 4, 6, 8

Table 3: The hyperparameter search our gradient boost-
ing model.

providing additional details on the exact setup.
For our TF-IDF system, we utilize SciKit

Learn’s (Pedregosa et al., 2011) TF-IDF represen-
tation. In Table 1 we list the hyperparameters and
their candidate values used in the grid search. We
use recall @ 5 on the development set for finding
the best configuration. The fuzzy string search is
implemented using Sqlite’s spellfix1 virtual table3.
We set a simple edit distance threshold for retriev-
ing additional documents.

Our sentence selection hyperparameter tuning
is split into two sections. First, we optimize the
number of negative samples selected as well as
binary vs ternary classes for ranking. Since the
FEVER dataset does not provide evidence for NOT
ENOUGH INFO claims, negative samples must be
used to generate training examples for these. Using
the best selection from the initial setup, we tune
the learning rate and label smoothing. The candi-
date values for the tuning can be found in Table 2.
Given the imbalance in the training set and the bal-
anced nature of the dev and test set, we oversample
the minority classes so that label distribution in
the training set matches that of the dev and test
sets. We use the dev set for determining optimal
hyperparameter values. RoBERTa Large (Liu et al.,
2019) is used as the initial model for fine-tuning.

The claim classification tuning setup is quite
similar to sentence selection. We initially tune the
learning rate and label smoothing using the same
candidate values for the concatenated case. Instead
of tuning the model types of singleton, concate-
nated, and mixed, we simply use the best hyperpa-
rameter configuration and train a model for each
of these to draw final comparisons. Again, given
the imbalance in classes in the train set, we use
class weighting to compensate for this imbalance.
For fine-tuning we use RoBERTa Large MNLI and
DeBERTa V2 XL MNLI.

Finally, for the singleton and mixed approaches,
we use XGBoost (Chen and Guestrin, 2016) for
training a classifier to aggregate the predictions

3https://www.sqlite.org/spellfix1.html
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System Test LA Test FEVER
Soleimani et al. (2020) 71.86% 69.66%
KGAT Liu et al. (2020) 74.07% 70.38%
LisT5 Jiang et al. (2021) 79.35% 75.87%
Stammbach (2021) 79.20% 76.80%
ProoFVer Krishna et al. (2022) 79.47 % 76.82%
Ours (RoBERTa Large MNLI) singleton 78.01% 76.09%
Ours (RoBERTa Large MNLI) concatenated 79.14% 76.69%
Ours (RoBERTa Large MNLI) mixed 79.39% 76.89%
Ours (DeBERTa V2 XL MNLI) mixed 80.24% 77.70%

Table 4: Full system comparison for label accuracy (LA) and FEVER score on the blind test set.

into a single prediction. Similarly, we define a hy-
perparameter grid to find the optimal values. Since
the previous steps were all trained on the train set
and thus the softmax scores and retrieval scores
will be overly optimistic on the training set, we
instead train the XGBoost classifier on the dev set.
We use 4-fold cross-validation to find the optimal
configuration.

4 Results

System Dev Recall @ 5
Hanselowski et al. (2018) 87.10%
Liu et al. (2020) 94.37%
Soleimani et al. (2020) 88.38%
Jiang et al. (2021) 90.54%
Stammbach (2021) 93.62%
Ours 92.03%
+ re-retrieval 94.41%

Table 5: The results of several sentence selection sys-
tems in terms of recall @ 5 on the dev set.

For sentence selection, the primary metric used
is recall @ 5. This is due to the fact that when com-
puting FEVER score, the scoring metric will only
consider up to 5 pieces of predicted evidence. In
Table 5 we compare our sentence selection system
against several other top systems on the dev set. As
can be seen, our sentence selection system outper-
forms all previous systems in terms of recall @ 5
on the dev set. This is despite using a substantially
smaller model relative to Jiang et al.’s (2021) T5
approach as well as only using pointwise scoring
for sentence selection as opposed to Stammbach’s
(2021) full document context approach. We sep-
arate our results from using initial retrieval and
including evidence-based re-retrieval, which shows
a very large improvement in recall by doing re-

retrieval, consistent with Stammbach’s (2021) find-
ings.

For claim classification results, we present the
entire end-to-end results for our system in Table 4.
The simple approach of mixing the singleton and
concatenate approaches gives a small improvement,
although is not a substantial source of improvement.
Despite the singleton approach being incapable of
modeling claims that require multi-hop evidence,
it still performs well. Despite using a relatively
smaller model of 300 million parameters when
compared to 3 billion with T5 and 900 million
with DeBERTa V2 XL MNLI, our RoBERT Large
MNLI system achieves the highest FEVER score
among all published systems. When we utilize De-
BERTa V2 XL MNLI using our mixed approach,
we achieve the highest label accuracy and FEVER
score amongst all systems, published or unpub-
lished, on the blind test set.

5 Beyond FEVER: Scifact

System SS + L Abstract LO
Pradeep et al. (2021) 58.8 64.9
Zhang et al. (2021) 63.1 68.1
Wadden et al. (2022) 67.2 72.5
Ours 58.1 73.2

Table 6: System comparison for SS + L F1 score and
Abstract LO F1 score on SciFact blind test set.

To test this pipeline for automatic fact verifi-
cation beyond the FEVER dataset, we also apply
these methods to the SciFact dataset (Wadden et al.,
2020). SciFact is very similar in structure to the
FEVER dataset, however, the corpus is composed
of scientific articles. A source of difficulty is that
claims are often phrased in lay terms, which can
be a stark difference in form from how topics are
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presented in scientific articles. The overall size of
the dataset is quite a bit smaller as well, contain-
ing only 1,409 claims and 5,183 article abstracts,
which serve as the corpus. Despite this, we keep
our pipeline nearly identical to FEVER, excluding
only the fuzzy string search component. We follow
the approach of Wadden et al. (2022) for improv-
ing the initial models for finetuning given the low
resource nature of the dataset.

We show the results of our pipeline in Table 6
compared to the current SOTA (Wadden et al.,
2022) and other top systems. The metrics reported
are sentence selection + label (SS + L) and abstract
label only (Abstract LO). These metrics roughly
correspond to FEVER Score and label accuracy for
FEVER. As can be seen in the SS + L metric, the
simplicity of our document retrieval system appears
to hold the overall system back. Our system only
uses TF-IDF whereas the three others add neural re-
rankers on top of their retrieval. Despite this, on the
Abstract LO metric our system achieves the highest
F1 score on the blind test set, outperforming the
SOTA on this metric.

6 Conclusion

We presented BEVERS, a strong baseline approach
for the FEVER and SciFact datasets. Despite being
similar to previous works in structure (Soleimani
et al., 2020) and utilizing little in terms of novel im-
provements, our system was able to achieve SOTA
performance on FEVER and the highest label ac-
curacy on SciFact. We primarily attribute these
improvements to diligent hyperparameter tuning
and error analysis. While several previous works
have shown novel contributions to portions of the
pipeline can yield improvements, in this work we
show a well-tuned baseline is very strong.

7 Limitations

As shown with SciFact, this pipeline struggles in
situations where there is a mismatch in how claims
are phrased and how evidence is phrased in the cor-
pus. Since our retrieval method is term-based, syn-
onymous terms are often missed, and thus in such
systems utilizing neural retrieval methods will of-
fer better performance. In addition, this work does
not thoroughly examine which design decisions or
approaches led to the improvements seen in this
pipeline. We note that evidence-based re-retrieval
does give substantial improvements, yet even with-
out re-retrieval, our sentence selection outperforms

most previous systems by a substantial margin, so
it is not the sole source of improvement.
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A Optimal Hyperparameter Settings

In Table 7 we show the optimal hyperparameter
settings for the various TF-IDF configurations. To
minimize space, we use "Cat" to refer to the con-
catenated TF-IDF setup. In Table 8 and Table 9
we show the optimal hyperparameter values for
sentence selection and claim classification mod-
els. Finally, in Table 10 we include the optimal
hyperparameter values for the XGBoost classifier.

Hyperparameter Cat Title, Document
Force Lowercase True True, False
Force ASCII True True, True
Norm None L2, None
Sublinear TF True True, True
Max Ngram 2 2, 2

Table 7: Optimal hyperparameters for the concatenated
and separated TF-IDF configurations.

Hyperparameter Optimal Value
Label Set Ternary
Negative Samples 10
Learning Rate 3e-6
Label Smoothing 0.0

Table 8: Optimal hyperparameters for sentence selection
model.

Hyperparameter Optimal Value
Learning Rate 3e-6
Label Smoothing 0.2

Table 9: Optimal hyperparameters for claim classifica-
tion model.

B Ablation Studies

In Table 11 we show the impacts of various design
choices for document retrieval and their impacts
on sentence selection. We use our best sentence
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Hyperparameter Optimal Value
Max Depth 2
Number of Estimators 60
Learning Rate 0.3

Table 10: Optimal hyperparameters for XGBoost aggre-
gation classifier.

selection model for ranking the sentences retrieved
by the document retrieval approaches. Previous
works use OFEVER from the original paper as a
metric for comparing document retrieval methods,
however, OFEVER does not account for different
approaches retrieving different numbers of docu-
ments given that is an oracle approach. Thus, we
find measuring the sentence selection in this way
gives a better representation of improvements.

Retrieval Approach Dev Recall @ 5
TF-IDF (concatenated) 84.49 %
+ fuzzy string search 91.35 %
+ document re-retrieval 93.58 %
TF-IDF (separated) 87.09 %
+ fuzzy string search 92.03 %
+ document re-retrieval 94.41%

Table 11: Dev set recall @ 5 using various document
retrieval approaches.

In Table 12 we compare our claim classifica-
tion setup with KGAT’s. Rather than utilizing
our document retrieval and sentence selection, we
use KGAT’s sentence selection outputs which they
make publicly available. This allows for a more
direct comparison since we are using the same evi-
dence for forming predictions. The only changes
we make: re-score the top 5 evidence from KGAT’s
sentence selection using our own best sentence
selection model and re-train the gradient boost-
ing classifier. Despite using the same evidence as
KGAT, our claim classification still outperforms
using either RoBERTa Large or RoBERTa Large
MNLI. So while some of the improvement in our
system is attributable to improvements in docu-
ment retrieval and sentence selection our approach
to claim classification still outperforms previous
systems when using the same retrieval outputs.
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Author (Model) Test LA Test FEVER
KGAT (RoBERTa Large) (Liu et al., 2020) 74.07 % 70.38 %
KGAT (CorefRoBERTa) (Ye et al., 2020) 75.96 % 72.30 %
Ours (RoBERTa Large) 76.60 % 73.21 %
Ours (RoBERTa Large MNLI) 77.95 % 74.08 %

Table 12: Comparison between KGAT’s claim classification and ours. We use KGAT’s released outputs for evidence
retrieval, so differences in performance are not attributable to improvements in our system’s retrieval approach.
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