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Abstract

In this work, we examine the vulnerability
of language models to universal adversarial
triggers (UATs). We propose a new white-
box approach to the construction of layerwise
UATs (LUATs), which searches the triggers
by perturbing hidden layers of a network. On
the example of three transformer models and
three datasets from the GLUE benchmark, we
demonstrate that our method provides better
transferability in a model-to-model setting with
an average gain of 9.3% in the fooling rate over
the baseline. Moreover, we investigate triggers
transferability in the task-to-task setting. Us-
ing small subsets from the datasets similar to
the target tasks for choosing a perturbed layer,
we show that LUATs are more efficient than
vanilla UATs by 7.1% in the fooling rate.

1 Introduction

One of the fundamental drawbacks of modern
neural networks is their vulnerability to adversarial
attacks (Szegedy et al., 2013; Goodfellow et al.,
2014), imperceptible perturbations to the data sam-
ples that leave the ground truth label unchanged
but are able to modify model prediction drastically.
The samples obtained as the result of these pertur-
bations are called adversarial examples. First dis-
covered for image datasets (Szegedy et al., 2013),
this phenomenon was then demonstrated for other
types of data, including natural language (Papernot
et al., 2016; Liang et al., 2017; Gao et al., 2018).

The originally proposed methods of adversarial
attack construction were sample-dependent, which
means that one can not apply the same perturba-
tion to different dataset items and expect equal suc-
cess. Sample-agnostic, or in other words, universal,
adversarial perturbations (UAPs) were proposed
in Moosavi-Dezfooli et al. (2017), where based
on a small subset of image data, the authors con-
structed perturbations leading to prediction change
of 80-90% (depending on the model) of samples.

They also showed that UAPs discovered on one
model could successfully fool another.

The generalization of the universal attacks to
natural language data was made by Wallace et al.
(2019). Short additives (triggers) were inserted at
the beginning of data samples, and then a search
over the token space, in order to maximize the prob-
ability of the negative class on the chosen data sub-
set, was performed. The found triggers turned out
to be very efficient at fooling the model, repeating
the success of UAPs proposed for images.

The conventional way to look for adversar-
ial examples is to perturb the output of a
model. Considering image classification neural net-
works, Khrulkov and Oseledets (2018) proposed to
search for perturbations to hidden layers by approx-
imating the so-called (p, q)-singular vectors (Boyd,
1974) of the corresponding Jacobian matrix. Then
one can hope that the error will propagate through
the whole network end, resulting in model pre-
diction change. They showed that this approach
allows obtaining a high fooling rate based on sig-
nificantly smaller data subsets than those leveraged
by Moosavi-Dezfooli et al. (2017).

In this paper, we aim to continue the investiga-
tion of neural networks’ vulnerability to univer-
sal adversarial attacks in the case of natural lan-
guage data. Inspired by the approach considered
by Khrulkov and Oseledets (2018), we look for the
perturbations to hidden layers of a model instead
of the loss function. In order to avoid projection
from embedding to discrete space, we use simplex
parametrization of the search space (see, e.g. (Dong
et al., 2021; Guo et al., 2021)). We formulate the
corresponding optimization problem and propose
the algorithm for obtaining its approximate solu-
tion. On the example of three transformer models:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020) and three GLUE
datasets (Wang et al., 2018) we demonstrate higher
efficiency of our method over the original approach
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Figure 1: LUATs (ours): Layerwise Universal Adversarial Triggers. The algorithm scheme, where ∇Fl is defined
in (8).

of Wallace et al. (2019) in the setting of model-
to-model and task-to-task transfer. We also show
that in the case of direct attack application, our
method demonstrates the results which are on par
with the baseline, where perturbation of the loss
function was realized. We hope that this technique
will serve as a useful tool for discovering flaws and
deepening our understanding of language neural
networks.

2 Framework

Let f : X → Y be a text classification model
defined for a dataset D = {xi, yi}Ni=1, where xi
is an input and yi is a corresponding label. Our
goal is to find a small perturbation to the original
input sequences that leads to a change in a model
prediction for the maximum possible number of
samples. Such perturbation could be modelled as
an insertion of a trigger, a token sequence t of
small length L, into a particular part of an input.
Following Wallace et al. (2019), we call such text
perturbations universal adversarial triggers (UATs).
In this paper, we focus on triggers concatenated
to the front of a sentence and denote a corrupted
sample as x̂ = t⊕x. It is also important to note that,
in contrast to Wallace et al. (2019), we consider
the unsupervised scenario when an attacker does
not have access to the labels. For evaluation we
follow Moosavi-Dezfooli et al. (2017) and use the
fooling rate (FR):

FR =
1

N

∑

x̂=t⊕x, x∈D
[f(x) ̸= f(x̂)]. (1)

Universal adversarial triggers. Before we dive
into the description of our approach, it is worth
depicting the original method of UATs. Restricting
themselves to the white-box setting, Wallace et al.
(2019) showed that an efficient way to find UATs
could be performed through the optimization of the

first-order expected loss approximation:

max
t∈VL

Ex,y∼µ⟨∇tnL(tn ⊕ x, y), t− tn⟩, (2)

where µ is a distribution of input data, tn denotes
the trigger found after the n-th iteration, V stands
for the token vocabulary and the initial trigger t0

can be chosen as the L-time repetition of the word
"the". For simplicity, here (and below in similar
situations), by t, we mean its embedding if the
gradient is taken with respect to it or if it appears
as a term in a scalar product.

In order to find the optimal perturbation within
each iteration, the expectation in (2) is relaxed with
the average over a batch, and maximization is per-
formed for each trigger token independently:

max
tj∈V

∑

x,y∈batch

⟨∇tnj
L(tn ⊕ x, y), tj − tnj ⟩, (3)

where j is the token index. After solving (3), the
next trigger tn+1 is selected via beam search over
all the token positions.

Our approach: layerwise universal adversar-
ial triggers (LUATs). In (3), we face the optimiza-
tion problem over a discrete set of tokens from the
vocabulary V . To overcome this issue, let us relax
(3) using the probability simplex model for every
token. In this case, a trigger can be represented
as t = WV , where V is a vocabulary matrix and
Wmn is a probability of the n-th token from vocab-
ulary to be selected at position m. Then (3) can be
rewritten as follows:

max
W∈S

∑

x,y∈batch

⟨∇tnL(tn ⊕ x, y),WV − tn⟩, (4)

where S = {W | W1 = 1, W ≥ 0} and W ≥ 0
denotes an element-wise inequality. In this for-
mulation, the search for the solution is done by
performing optimization of the weights W over the
simplex S.
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Our approach can be seen as an extension of
(4) to the perturbation of hidden layers. This is
inspired by Khrulkov and Oseledets (2018), who
applied this idea to find UAPs for fooling image
classification neural networks. Given a layer l, the
optimization problem, in this case, can be similarly
obtained via the Taylor expansion:

l(x̂)− l(x̂n) ≈ Jl(x̂
n)(x̂− x̂n)

∥l(x̂)− l(x̂n)∥qq → max
t∈VL

, (5)

where x̂n = tn ⊕ x, q is a hyperparameter to be
fine-tuned and Jl(x) is the Jacobian operator corre-
sponding to a layer l:

Jl(x) =
∂l(x)

∂x
. (6)

Bringing (4) and (5) together we obtain

max
W∈S

Fl(W ) =

max
W∈S

∑

x∈batch

∥Jl(tn ⊕ x)(WV − tn)∥qq.
(7)

In contrast to (3), finding the optimal solution of
(7) is computationally infeasible. Indeed, the prob-
lem (3) allows a brute-force approach for finding
the optimal token for each trigger position since it
requires computing the gradient only once for each
iteration. On the other hand, in our case, a brute-
force computation is very cumbersome since, for
each iteration, it would require computing the Ja-
cobian action for every batch, token candidate and
position, resulting in O(LB|V|) forward-backward
passes, where B is the number of batches in an iter-
ation. Luckily, Fl(W ) is convex and can be lower
bounded via a tangent line, where the gradient is
calculated as follows:

∇Fl(W ) =
∑

x∈batch

J⊤
l (x̂n)ψq(Jl(x̂

n)(WV − tn))V ⊤, (8)

where ψq(x) = sign(x)|x|q−1. Therefore, our task
is reduced to finding the solution to the linear prob-
lem with the simplicial constraint:

max
W∈S

⟨∇Fl(W
∗),W ⟩, (9)

where ∇Fl(W ) is given by (8) andW ∗ denotes the
point where we perform the linear approximation.
The final problem (9) has a closed-form solution

(see the Appendix A for more details) and, as a re-
sult, we reduced the number of forward-backward
computations to O(B).

Concerning the initialization of W ∗, we take the
uniform distribution over all the vocabulary tokens
for each token position in a trigger. Within each
iteration, we perform only one step with respect
to W in order to reduce computation time and ob-
serve that it is sufficient for breaking the models
efficiently.

Finally, since the found after a given iteration
weight matrix W in the worst case has only one
non-zero element per row (see Appendix A), we
can get into a local maximum unless we guess the
proper initialization. Therefore, similarly to Wal-
lace et al. (2019), we perform a beam search over
the top-k candidates. In order to realize it, it is
necessary to define the ranking criterion for choos-
ing the best option at each search step. For this
purpose, we use the FR. The overall algorithm is
presented in Algorithm 1 and Fig. 1.

Algorithm 1: LUATs: Layerwise Universal
Adversarial Triggers

Input: Dataset D, victim model, tokenizer,
q, layer to attack l, trigger length L,
top-k, beam size b

Output: Trigger t
1 t = tokenizer(the . . . the︸ ︷︷ ︸

L times

)

2 W = 1
|V|ones(L, |V|)

3 while FR increase do
4 Sample batch X
5 Compute ∇Fl(W ) over batch
6 candidates = Select indices of k

largest entries of ∇Fl(W ) for each
token position

7 t = BeamSearch(D, candidates, b) to
maximize FR

3 Experiments

In this section, we present a numerical study of
the proposed layerwise adversarial attack frame-
work on text classification datasets. The code is
publicly available on GitHub1.

3.1 Setup
Datasets. As in the work of Wang et al. (2021),

we consider only a subset of tasks from the GLUE
1https://github.com/sb-ai-lab/nlp-layerwise-fooler
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benchmark. In particular, we use SST-2 for the
sentiment classification, MNLI (matched), QNLI,
RTE for the natural language inference and MRPC
as the paraphrase identification. We exclude CoLA,
which task is to define whether the input is gram-
matically correct or not, and universal triggers are
highly probable to change most of the ground-truth
positive labels to negative. Finally, WNLI is not
considered because it contains too few examples.
We conduct our experiments using the validation
set for attack fitting and the test set for evaluation.

Models. We focus our consideration on three
transformer models: BERT base, RoBERTa base
and ALBERT base using the pre-trained weights
from the TextAttack project (Morris et al., 2020)
for most of the model-dataset cases. For some of
them, the performance was unsatisfactory (all the
models on MNLI, ALBERT on QNLI, RoBERTa
on SST-2, RTE ), and we fine-tuned them on the
corresponding training sets (Mosin et al., 2023).
To train our attack, we use existing GLUE datasets
splits. The detailed statistics is presented in Tab. 1

Hyperparameters. In our experiments, we in-
vestigate the attack performance depending on the
dataset, model, layer l (from 0 to 11), trigger length
L ∈ {1, 2, 3, 4, 5, 6} and q ∈ {2, 3, 4, 5, 7, 10}.
For each dataset, model and trigger length, we per-
formed a grid search over l and q. The other param-
eters, such as top-k and the beam size, remain fixed
to the values obtained from the corresponding abla-
tion study. In all experiments, we use a batch size
of 128. Finally, we define the initialization of W as
the uniform distribution over the vocabulary tokens
for each position in a trigger (see Algorithm 1).

Token filtration and resegmentation. Trans-
formers’ vocabulary contains items such as sym-
bols, special tokens and unused words, which are
easily detected during the inference. To increase
triggers’ imperceptibility, we exclude them from
the vocabulary matrix during optimization leaving
only those which contain english letters or num-
bers.

Another problem appears since a lot of tokens
do not correspond to complete words but rather
pieces of words (sub-words). As a result, if the
first found token corresponds to a sub-word, one
encounters the retokenization, meaning that, after
converting the found trigger to string and back, the
set of the tokens can change. Moreover, sometimes
one has to deal with appearing symbols such as
"##" in a trigger. In this case, we drop all the extra

symbols and perform the retokenization. Luckily, it
does not result in severe performance degradation.
In the case when, due to the resegmentation, the
length of a trigger changes, we report the result
as for the length for which the attack training was
performed. As an alternative to direct resegmenta-
tion, we tried to transform triggers by passing them
through an MLM model, but this approach led to a
more significant drop in performance.

3.2 Main Results

Comparison with the baseline. We perform
a comparison of LUATs with untargeted UATs
of Wallace et al. (2019). In order to stay in the
unsupervised setting, we modify their approach
by replacing the ground truth labels in the cross-
entropy loss function with the class probabilities.
As a result, we search for a trigger that maximizes
the distance between model output distributions
before and after the perturbation. In addition, as
the criterion for choosing the best alternative in the
beam search, we use FR for both methods.

We perform the ablation study to estimate the
dependence of FR on top-k and the beam size. For
the beam size 1, we measure both attacks’ perfor-
mance for different values of top-k from 1 to 40.
Then for the best top-k, we build the dependence
on the beam size from 1 to 5. We perform this study
on the QNLI dataset. The results are presented in
the Fig. 5. We stick to the top-k 10 and the beam
size 1 as a trade-off between high performance and
low computational complexity.

The grid search results are presented in Tab. 2,
where for each model, dataset, and trigger length,
we show the best results of both approaches. We
performed the computation on four GPU’s NVIDIA
A100 of 80GB. To reduce the influence hyper-
parameters searching space cardinality (72 times
more runs due to different values of q and L), in
Fig. 2, we present a time, averaged over 10 batches,
per one iteration of both approaches. Indeed, for
LUATs, we observe linear dependence on a layer,
particularly 7.27 seconds on average versus 8.05
seconds for UATs of Wallace et al. (2019). The
triggers obtained with the method of Wallace et al.
(2019) took only 5 GPU hours; hence the execu-
tion time of the full grid search for LUATs could
be estimated by 325 GPU hours. While the pro-
posed method might be more efficient on average,
high variance is explained by significantly different
paddings in sampled batches.
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Dataset Validation Test # Classes BERT
Acc. Val. / Test

RoBERTa
Acc. Val. / Test

ALBERT
Acc. Val. / Test

MRPC 408 1725 2 87.7/84.4 90.4/87.2 89.7/86.0
QNLI 5463 5463 2 91.5/90.7 91.8/91.8 90.6/90.8
MNLI 9815 9796 3 84.2/83.7 86.5/86.3 83.8/83.5
SST-2 872 1821 2 92.4/93.3 94.0/94.9 92.7/91.7
RTE 277 3000 2 72.6/67.6 80.5/74.0 76.0/72.2

Table 1: Statistics of the considered classification datasets. We present datasets cardinality, the number of classes
and model accuracy on both validation and test sets.
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Figure 2: The iteration average time for UAT and
LUAT (ours) approaches. The results presented on the
QNLI dataset with fixed q = 10, L = 3 and a batch
size of 128. Since, for the case of LUATs, the standard
deviation does not change significantly, we report the
value averaged over layers as stdLUAT.

It is interesting to note that in some cases, shorter
triggers appear to be better than longer ones (see
Appendix A, Tab. 10). That is why we present the
best performance for each length L over all the
lengths less or equal to L. From Tab. 2, one can see
that our method demonstrates the results, which
are on par with Wallace et al. (2019). In Fig. 3,
we present the dependence of FR on the trigger
length L. The attack performance saturates when it
approaches 5 or 6, meaning that considering longer
triggers would hardly bring any performance gain.

Wallace et al. (2019) suggested that the effi-
ciency of universal adversarial triggers can be ex-
plained by the existence of dataset biases, such as
fallacious correlations between certain words and
classes and supported this conjecture by computing
pointwise mutual information (PMI) of vocabulary
tokens and dataset classes

PMI(token, class) = log
p(token, class)

p(token)p(class)
.

As a result, they reported a high PMI rank for their
tiggers tokens. In order to verify whether LUATs

satisfy the same pattern, we perform this compu-
tation for our best triggers. We sample 5 best can-
didates obtained during the grid search for each
trigger length and compute PMI rank with add-100
smoothing for their tokens. The results on QNLI2

(see the Tab. 3) demonstrate that similarly to UATs
our trigger tokens have high PMI ranks.

Dependence on q and a layer. For the investi-
gation of dependence on q and a layer, we restrict
ourselves to the datasets which appear to be the
most vulnerable in our experiments: MRPC, QNLI
and SST. The results are presented in Fig. 4, where
we performed averaging over the lengths. One
can conclude that, in general, it is more efficient
to attack the higher layers. This observation can
be interpreted with the idea which has been men-
tioned above; namely, that the efficiency of the
triggers is caused by the existence of dataset biases.
Indeed, as Merchant et al. (2020) demonstrated,
fine-tuning for a downstream task primarily affects
the higher layers of a model. Therefore, the bias
which could be acquired due to fine-tuning should
be accumulated in its higher layers. Since we try
to fool a model with respect to a downstream task,
the appearance of the higher layers among the most
successful ones is more probable. Finally, it is inter-
esting to note that the dependence on q also demon-
strates better results for the larger values, which is
in accordance with the findings of Khrulkov and
Oseledets (2018).

Transferability: model-to-model. It was
demonstrated that the universal triggers could be
transferable between different models trained on
the same task (Wallace et al., 2019). Here, we
perform a comparison of their approach and ours
with respect to this property. Similarly to the above
consideration, the computations are carried out on
MRPC, QNLI and SST-2 datasets, with an addi-
tional restriction on the trigger lengthL = 3, which

2The results on SST-2 and MRPC are presented in the
Appendix B on the Tab. 6 and 7
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Model Dataset FR@1 FR@2 FR@3 FR@4 FR@5 FR@6
W S W S W S W S W S W S

ALBERT

MNLI 18.5 14.8 25.8 17.0 25.8 18.5 34.8 21.1 34.8 24.8 34.8 24.8
MRPC 11.4 4.5 27.6 28.9 47.9 54.8 66.6 64.1 66.6 67.0 67.6 67.6
QNLI 26.4 37.5 47.5 48.1 50.5 50.8 50.5 51.5 52.2 52.4 52.5 52.4
RTE 4.8 4.9 6.3 11.9 7.9 11.9 9.1 17.7 9.1 17.7 9.1 17.7
SST-2 21.0 29.7 34.8 38.8 45.5 46.4 47.9 48.5 50.6 48.7 50.6 48.7

BERT

MNLI 32.0 10.2 38.4 33.6 38.4 34.5 38.4 34.7 38.4 35.6 38.4 35.6
MRPC 15.4 9.3 64.6 56.6 70.6 69.0 70.7 70.4 70.8 70.6 70.8 70.7
QNLI 26.2 23.2 42.6 37.9 47.2 42.3 50.6 49.1 50.6 50.8 50.8 50.8
RTE 4.7 4.2 6.6 6.7 7.1 8.5 7.6 10.2 7.6 10.2 11.2 10.2
SST-2 29.7 27.0 42.1 38.0 42.1 44.6 42.1 48.2 50.6 49.0 50.8 49

RoBERTa

MNLI 4.8 8.2 4.9 22.3 33.0 28.8 33.0 30.0 33.0 33.1 33.0 33.1
MRPC 4.2 4.9 35.5 26.3 67.8 68.5 69.4 69.3 69.4 69.3 69.5 69.3
QNLI 14.7 13.3 32.6 39.0 41.5 44.9 44.5 47.3 48.1 47.7 48.1 48.3
RTE 3.1 6.3 6.1 13.6 6.1 13.6 8.0 13.6 8.0 16.3 9.2 16.3
SST-2 28.4 26.9 34.7 38.7 43.9 45.9 49.9 47.1 49.9 50.7 49.9 53.1

Average - 16.3 15.0 30.0 30.5 38.4 38.9 41.5 41.5 42.7 42.9 43.1 43.2

Table 2: Comparison between LUAT (S) and UATs of Wallace et al. (2019) (W). We report the best FR on the test
sets for triggers whose length does not exceed L (FR@L).

BERT ALBERT RoBERTa
E Rank N Rank E Rank N Rank E Rank N Rank

emperor 94.69 either 99.60 70% 98.95 those 99.02 billion 99.95 why 99.65
berlin 93.72 legislation 97.60 10% 96.10 amount 98.59 kilometres 99.91 how 98.93
whose 92.14 can 97.08 3,500 93.82 unless 93.46 females 94.98 mountains 98.83
russian 90.91 ter 95.37 18% 93.72 71 92.72 Cass 93.62 where 98.68
cardinal 90.25 latitude 93.81 20% 93.45 nor 92.46 Kazakhstan 85.19 hundred 97.44
orient 89.83 dalai 92.04 whose 91.79 where 91.30 trillion 85.14 ship 96.52
german 89.03 samurai 90.52 11% 88.79 besides 90.62 Dull 83.16 least 95.29
korean 87.77 granting 90.24 54% 88.34 correlation 88.56 Estonia 80.62 USA 92.90
fide 84.10 reich 90.10 supplemented 86.34 holds 87.90 wherein 79.12 who 92.67
atop 82.91 banning 88.47 50% 85.46 waived 87.12 sued 78.91 haven 91.65

Table 3: PMI for the joint training and validation set of QNLI, E – Entailment, N – Not entailment

From/To MRPC, W/S QNLI, W/S SST-2, W/S
ALBERT BERT RoBERTa ALBERT BERT RoBERTa ALBERT BERT RoBERTa

ALBERT - 22.8/53.5 33.9/69.1 - 45.6/36.1 39.0/38.1 - 30.6/37.5 24.2/34.7
BERT 6.7/17.2 - 60.5/67.8 34.6/36.3 - 22.0/36.0 31.0/29.3 - 17.7/24.1
RoBERTa 15.3/32.1 55.5/64.6 - 20.4/40.4 18.0/35.9 - 34.1/26.2 36.9/37.7 -

Table 4: Transferability comparison between LUATs (S) and UATs of Wallace et al. (2019) (W). We report FR after
performing the attack transfer between different models trained on a fixed dataset for the trigger length L = 3.

From/To ALBERT, W/S BERT, W/S RoBERTa, W/S
MRPC QNLI SST-2 MRPC QNLI SST-2 MRPC QNLI SST-2

MRPC - 9.5/21.9 5.4/32.5 - 18.3/17.6 11.8/9.4 - 31.4/25.6 5.3/6.0
QNLI 13.6/14.0 - 9.0/31.7 32.9/35.5 - 2.8/4.7 22.7/40.9 - 2.9/8.9
SST-2 8.6/22.8 31.3/36.0 - 29.7/64.8 27.5/21.2 - 18.1/13.9 14.0/15.9 -

Table 5: Transferability comparison between LUATs (S) and UATs of Wallace et al. (2019) (W). We report FR after
performing the attack transfer between different datasets for a fixed model and the trigger length L = 3.
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Figure 3: FR for optimal q depending on the trigger length for the most vulnerable sets. The plots show FR
saturation which is achieved for short enough triggers.
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Figure 4: FR dependence on LUATs hyperperameters. The efficiency of our attack increases with q and the layer
number.

is done for simplicity. In this setting, we suppose
that an attacker has access to the data and also to
the input and output of an attacked model. When
transferring the UATs, the best trigger obtained
with a source model is taken and then applied di-
rectly to a target model on a test set. For LUATs,
however, one can come up with a better way. Since
a target model is different from a source one, it is
not necessary that the same values of q and l would
provide the best pick for the transfer. Therefore,
since an attacker has access to the forward pass of
a target model, we evaluate with it the fooling rate
of the best triggers found for each value of q and l
on a validation set and then apply the best option
to a test set to get the final score. For simplicity,
we fix q = 10, which according to the Fig. 4, is the
best alternative on average. The final results are
presented in the Tab. 4. One can see that in most
cases, we outperform the UATs with an average
gain of 9.3%.

Transferability: task-to-task. The fact that the
universal triggers can generalize to other models
trained on the same task seems natural since, in
this case, it is highly probable that a source and
a target model would acquire the same biases. A

more complicated situation is when one tries to
transfer triggers between different tasks. In this
setting, an attacker looks for more fundamental
task-independent flaws of a model, which can be
explained, e.g., by a bias appearing during the pre-
training phase. In order to examine this capacity of
the triggers, we perform their transferring between
different datasets for each of the considered models.
For measuring the performance of the UATs, as in
the previous case, the best trigger obtained on a
source task is transferred. On the other hand, for
the layerwise approach, one, under a reasonable as-
sumption, can still suggest a natural way to choose
the most appropriate for transfer trigger among the
best triggers corresponding to different values of
q and l. Namely, we suppose that although attack-
ers do not have access to data on which a target
model was trained, they know a task for which it
was trained. It means that they know whether it is
sentiment classification, paraphrase identification,
etc. (Savchenko et al., 2020). If this is the case,
they can generate data corresponding to the task
of interest. In order to mimic such a situation, for
each of the datasets (SST-2, MRPC, QNLI), we se-
lect an auxiliary dataset collected for the same task.
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The map is the following: SST-2 - IMDb (Maas
et al., 2011), MRPC - PAWS (Zhang et al., 2019),
QNLI - WikiQA (Yang et al., 2015). We sample
subsets of sizes 64, 128, and 256 from the auxiliary
datasets and consider them as the data generated
by an attacker. Again, fixing q = 10 for simplicity,
we evaluate the best trigger obtained for each layer
on a corresponding auxiliary subset, performing in-
ference on a target model. Herewith, each subset is
sampled five times, and we report the average score
for the size of 256, which appears to be the best
option. The final results for both approaches are
shown in the Tab. 5. Our approach demonstrates
the average improvement of 7.1% in fooling rate
over the vanilla UATs. The reason for that might
be related to the fact that if this kind of triggers
(task-independent) is indeed related to the pretrain-
ing phase, in order to find them, one instead should
perturb the lower or middle layers since the higher
layers’ weights can change a lot after fine-tuning.
The LUATs which appear to be most successful at
transferring are presented in the Tab. 8 and 9 of the
Appendix B for model-to-model and task-to-task
transfers correspondingly.

4 Related Work

There are already quite a few works devoted to
the universal attack on NLP models in the literature.
We briefly discuss them here.

Ribeiro et al. (2018) proposed a sample-agnostic
approach to generate adversarial examples in the
case of NLP models by applying a semantics-
preserving set of rules consisting of specific word
substitutions. However, found rules were not com-
pletely universal, resulting in model prediction
change only for 1% − 4% out of targeted samples.

Similarly to Wallace et al. (2019), the realiza-
tion of text adversarial attacks as short insertions
to the input were proposed by Behjati et al. (2019).
Though, they did not perform the search over the
whole vocabulary for each word position in the
trigger but instead exploited cosine-similarity pro-
jected gradient descent, which does not appear that
efficient in the sense of attack performance.

Adversarial triggers generated by the method
proposed by Wallace et al. (2019) in general turned
out to be semantically meaningless, which makes
them easier to detect by defence systems. An at-
tempt to make triggers more natural was under-
taken by Song et al. (2021). Leveraging an adver-
sarially regularized autoencoder (Zhao et al., 2018)

to generate the triggers, they managed to improve
their semantic meaning without significantly de-
creasing the attack efficiency.

Another interesting direction is to minimize the
amount of data needed for finding UAPs. Singla
et al. (2022) created representatives of each class
by minimizing the loss function linear approxima-
tion over the text sequences of a certain size. Af-
terwards, adversarial triggers were appended to
these class representatives and the rest of the pro-
cedure followed Wallace et al. (2019). Although
no data was used explicitly for training the attack,
this approach demonstrated solid performance on
considered datasets.

5 Conclusion

We present a new layerwise framework for the
construction of universal adversarial attacks on
NLP models. Following Wallace et al. (2019), we
look for them in the form of triggers; however, in or-
der to find the best attack, we do not perturb the loss
function but neural network intermediate layers.
We show that our approach demonstrates better per-
formance when the triggers are transferred to differ-
ent models and tasks. The latter might be related to
the fact that in order to be transferred successfully
between different datasets, a trigger should reflect
network flaws that are task-independent. In this
case, reducing the attack search to perturbation of
the lower or middle layers might be more benefi-
cial since the higher layers are highly influenced
by fine-tuning. We hope this method will serve as
a good tool for investigating the shortcomings of
language models and improving our understanding
of neural networks’ intrinsic mechanisms.

We would like to conclude by discussing the po-
tential risks. As any type of technology, machine
learning methods can be used for good and evil. In
particular, adversarial attacks can be used for mis-
leading released machine learning models. Nev-
ertheless, we think that revealing the weaknesses
of modern neural networks is very important for
making them more secure in the future and also
for being able to make conscious decisions when
deploying them.

6 Limitations and future work

Our approach to universal text perturbations suf-
fers from linguistic inconsistency, which makes
them easier to detect. Therefore, as the next step of
our research, it would be interesting to investigate
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the possibility of improving the naturalness of ad-
versarial triggers without degradation of the attack
performance in terms of the fooling rate.

While the proposed approach outperforms the
UATs of Wallace et al. (2019) in the transferability
task, we should highlight that the additional hy-
perparameters adjustment plays a crucial role, and
one could suggest validation procedure refinement
for a more fair comparison. Also, for both direct
and transferability settings, a more comprehensive
range of models should be examined, including
recurrent (Yuan et al., 2021) and transformer archi-
tectures, e.g., T5 (Raffel et al., 2020), XLNet (Yang
et al., 2019), GPT family models (Radford et al.,
2019; Brown et al., 2020).

Another direction of improvement is related to
the fact that sometimes the found triggers can
change the ground truth label of samples they are
concatenated to if, e.g., they contain words contra-
dicting the true sense of a sentence. It would be
interesting to analyze how often this happens and
develop an approach to tackle this issue.

Finally, it would be interesting to investigate
the dependence of attack efficiency on the size of
a training set and compare it with the so-called
data-free approaches, such as the one proposed
by Singla et al. (2022).
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A Linear problem solution on S
Let us consider the following linear problem

with a cost matrix C:

max
W∈S

⟨C,W ⟩.

We need to construct the Lagrangian L and the
consequent dual problem to obtain its solution.

L = −Tr((C +M)⊤W ) + λ⊤(W1− 1)

= −Tr((C +M − λ1⊤)⊤W )− λ⊤1

where λ andM are the Lagrange multipliers. From
KKT conditions, we have:

C +M − λ1⊤ = O,

M ≥ 0, M ·W = 0, W1 = 1,

where M ·W means elementwise multiplication.
As a result, we obtain the following dual problem:

max− λ⊤1,

s.t. − λ1⊤ ≤ −C.

Under the assumption that each row of the cost
matrix C has a unique maximum, the closed-form
solution will take the form:

λi = max
j
Cij ,∀i,

and the corresponding primal solution

W =

{
Wij = 1, j = argmaxj Cij∀i,
Wij = 0, otherwise.

Otherwise, if any row i of C violates the above
assumption by having k > 1 maximal elements
with indices {j1, . . . , jk}, then

Wij =
1

k
, ∀k ∈ {j1, . . . , jk}.

B Tables and plots

In this appendix, we present the results of

• the ablation study on the top-k and beam
search parameters (see Fig. 5),

• the results of trigger analysis with PMI (see
Tab. 6 and 7) for SST-2 and MRPC datasets,

• the LUATs which appear to be the best
for model-to-model and task-to-task transfers
(see Tab. 4 and 5),

• the cases when shorter triggers appear to be
better than longer ones (see Tab. 10),

• the examples of the top-20 obtained triggers.

Concerning the transfer triggers, one can see
that sometimes the same triggers efficiently break
different models trained on different datasets, e.g.,
’WHY voted beyond’ (FR = 40.4 for ALBERT
trained on QNLI, FR = 45.9 for BERT trained on
QNLI, FR = 40.9 for RoBERTa trained on MRPC),
’unsuitable improper whether’ (FR = 37.5 for
BERT trained on SST-2, FR = 34.7 on RoBERTa
trained on SST-2, FR = 22.8 for ALBERT trained
on MRPC). This can serve as evidence of the high
generalizability of universal adversarial triggers.
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Figure 5: The results of the ablation study with respect to the top-k and the beam size parameters on QNLI dataset.

BERT ALBERT RoBERTa
N Rank P Rank N Rank P Rank N Rank P Rank

worst 99.96 also 99.13 fails 99.70 coming 94.40 neither 99.44 powerful 99.95
stupid 99.87 drama 98.51 devoid 99.39 foremost 82.79 failure 99.23 enjoyable 99.94
fails 99.66 definitely 96.00 failure 98.90 behalf 81.14 whether 97.22 beautiful 99.91
poor 99.48 shows 95.81 whether 97.22 warmed 28.42 despite 95.17 remarkable 99.78
neither 99.35 walk 94.89 unless 94.21 placement 10.03 considering 89.70 refreshing 99.76
badly 99.32 ranks 93.12 irrelevant 93.76 irrelevant 6.30 because 87.80 thriller 99.62
crap 98.91 but 86.00 placement 90.06 unless 5.91 never 80.57 warmth 99.55
pacing 97.94 these 84.96 warmed 71.65 whether 2.78 despite 80.48 impressive 99.46
whether 97.03 wherein 78.49 behalf 19.60 failure 1.11 ball 74.50 creative 99.34
every 96.81 weeks 59.58 foremost 17.79 devoid 0.61 notice 70.93 delightful 99.26

Table 6: PMI for the joint training and validation set of SST-2, N – Negative, P – Positive

BERT ALBERT RoBERTa
N Rank E Rank N Rank E Rank N Rank E Rank

succeeded 97.09 never 97.74 ashamed 95.06 after 99.48 waves 95.42 fire 98.91
seeing 95.94 least 96.50 stumbling 87.91 under 99.45 aside 95.42 against 98.65
merits 88.23 killing 96.19 tire 87.91 because 98.89 harming 88.06 water 95.89
longest 88.23 prison 95.58 cutting 77.42 since 98.27 skepticism 88.06 health 95.86
feeling 78.82 much 94.49 declined 76.26 how 97.70 burns 88.06 pleaded 95.19
raped 77.95 welcome 94.04 boise 70.31 whether 97.51 survives 88.06 nothing 93.25
batting 77.95 behind 93.65 fury 66.42 should 97.12 votes 76.46 won 92.13
jail 74.66 born 92.60 slay 55.80 cost 96.57 justice 70.62 NATO 91.82
banning 70.64 needed 92.26 reactions 52.67 serious 96.38 ressing 65.60 suffering 88.81
backing 70.64 nothing 91.30 disapprove 52.67 guilty 96.31 deceived 48.45 happens 87.63

Table 7: PMI for the joint training and validation set of MRPC, N – not equivalent, E – equivalent

MRPC QNLI SST-2
Trigger l Trigger l Trigger l

A → B they ended and 10 preis much $100, 000 3 unsuitable improper whether 10
A → R rostov she blushed 1 $100, 000 what simulate 2 unsuitable improper whether 10
B → A nothing pains kilograms 1 whichever thirds lithuanian 9 folding worse as 5
B → R suffered sins declined 11 ibly semester longest 8 folding worse as 5
R → A Avoid water taps 10 WHY voted beyond 2 decayingjuryNeither 1
R → B Avoid water taps 10 WHY voted beyond 2 surprisingly refreshing lest 11

Table 8: The best-performed trigger-layer pairs for model-to-model transferability results presented in Tab. 4 for
ALBERT (A), BERT (B), RoBERTa (R), where l – the perturbed layer.
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ALBERT BERT RoBERTa
Trigger l Trigger l Trigger l

M → Q nobody reminds austro 8 is blood corrupt 9 history doubtless beyond 8
M → S failing forcing the 4 ching stiff punishments 8 history doubtless beyond 8
Q → M or widen further 10 whichever thirds lithuanian 9 WHY voted beyond 2
Q → S trillion unless marylebone 5 ant trees romanized 5 wherein perished supra 7
S → M unsuitable improper whether 10 seemed wiped whoever 9 Eating welcome respecting 7
S → Q renumbered littered neither 8 ogarily diminished 4 Crystal tasty ain 9

Table 9: The best-performed trigger-layer pairs for task-to-task transferability results presented in Tab. 5 for MRPC
(M), QNLI (Q), SST-2 (S), where l – the perturbed layer.

Model L FR Val. FR Test Trigger

UAT, BERT 2 38.6 38.4 neither nor
UAT, BERT 4 35.4 35.0 situation nonetheless resulted nor

Ours, ALBERT, q = 7, i = 4 5 24.8 24.8 regretted joyahbwv although doubted
Ours, ALBERT, q = 4, i = 8 6 21.4 21.4 tremendous despair towedtrue 1985, doubted

Table 10: The examples of cases when a shorter-length trigger is more successful than a longer one. In both cases,
triggers were fitted on MNLI.

Dataset Model Triggers

MNLI
ALBERT hamas doubted; neither motioned; i doubted pronoun; cursing neutron unless;

transportation workers unless preferring;
BERT but neither; remarkably neither; of neither nor; get neither outta even; backdrop

but and neither; ft still maintained not whether
RoBERTa slideshow Neither; HELL Neither; THERE HAS NEVER; ohan Never nor; Fifa

VERY NEVER Whether

MRPC
ALBERT unless if; whereas and; they ended and; unless stumbling out and; commerce

corroborat declined and; and siblings live because
BERT against attempt; prepares worse conflicts; was priesthood killing contrary; each

mortally duel harta; ring opposed her homosexuality
RoBERTa Drop until; actresses won awards; Enhanced Population Died Low; Harlem

Recommended Submit BLM Question; hum DOWN burns firing Bloody Hyp

QNLI
ALBERT and 40%; averaged percentage; 88% finance 11%; vittorio whom relinquished;

cristo, sharing whom reissued; downloadable bilingual why cancellation
BERT nine charities; carlos orient whom; whose reich declaring; gor german which

emperor; maya commuted whose ballet
RoBERTa nineteen countries; Nearly trillions trillion; Thousand hundred trillion; how

MUCH mountains Cass; gui why sued awaits Reviews;

SST-2
ALBERT flight unless; suck unnecessary; skidded irrelevant whether; failure placement

unless; just whine worthless; fails subdistrict picture
BERT degraded whether; dissatisfied neither; television failed whether; definitely

worst wherein whoever; crap stupid feed whereby whether
RoBERTa powerfully refreshing; Beautiful enjoyable; surprisingly refreshing lest; Crystal

importantly beautiful considering; thriller cool because whereas

Table 11: WARNING: THE CONTENT OF THIS TABLE MIGHT BE OFFENSIVE, AND IT DOES NOT
REFLECT THE AUTHORS’ OPINION. The examples of LUATs depending on a dataset and a model. Triggers
were selected manually from top-20 per length.
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