
Findings of the Association for Computational Linguistics: ACL 2023, pages 1602–1618
July 9-14, 2023 ©2023 Association for Computational Linguistics

General-to-Specific Transfer Labeling for
Domain Adaptable Keyphrase Generation

Rui Meng1, Tong Wang2, Xingdi Yuan2, Yingbo Zhou1, Daqing He3

1Salesforce Research, 2Microsoft Research, Montréal, 3University of Pittsburgh
ruimeng@salesforce.com

Abstract

Training keyphrase generation (KPG) models
require a large amount of annotated data, which
can be prohibitively expensive and often lim-
ited to specific domains. In this study, we first
demonstrate that large distribution shifts among
different domains severely hinder the transfer-
ability of KPG models. We then propose a
three-stage pipeline, which gradually guides
KPG models’ learning focus from general syn-
tactical features to domain-related semantics, in
a data-efficient manner. With domain-general
phrase pre-training, we pre-train Sequence-to-
Sequence models with generic phrase anno-
tations that are widely available on the web,
which enables the models to generate phrases
in a wide range of domains. The resulting
model is then applied in the Transfer Label-
ing stage to produce domain-specific pseudo
keyphrases, which help adapt models to a new
domain. Finally, we fine-tune the model with
limited data with true labels to fully adapt it to
the target domain. Our experiment results show
that the proposed process can produce good
quality keyphrases in new domains and achieve
consistent improvements after adaptation with
limited in-domain annotated data12.

1 Introduction

The last decade has seen major advances in deep
neural networks and their applications in natu-
ral language processing. Particularly, the sub-
area of neural keyphrase generation (KPG) has
made great progress with the aid of large lan-
guage models (Lewis et al., 2020) and large-scale
datasets (Meng et al., 2017a; Yuan et al., 2020a).
Due to the high cost of data annotation, most, if
not all, of the large-scale KPG datasets are con-
structed by scraping domain-specific data from the
internet. For example, Meng et al. collected more

1All code and datasets are available at https://github.
com/memray/OpenNMT-kpg-release.

2The research was mostly accomplished when the first
author was at the University of Pittsburgh.

than 500k scientific papers of which keyphrases are
provided by paper authors. Gallina et al. crawled
about 280k news articles from New York Times
with editor-assigned keyphrases. Following Guru-
rangan et al. (2020), we use “domain” to denote a
distribution over language characterizing a given
topic or genre. Specifically in KPG tasks, domains
can be “computer science papers”, “online forum
articles”, “news” etc.

Despite recent neural models can to some extent
learn KPG skills from existing datasets (Meng et al.,
2021a; Gallina et al., 2019; Yuan et al., 2020a),
because most of these datasets are limited to a
single domain, it remains unclear how the trained
models can be transferred to new domains, espe-
cially in a real-world setting. Some existing studies
claim their models demonstrate a certain degree of
transferability across domains. For instance, Meng
et al. show that models trained with scientific pa-
per datasets can generate decent quality keyphrases
from news articles, in a zero-shot manner. Xiong
et al. present that training with open-domain web
documents can improve the model’s generalizabil-
ity. However, there is a lack of systematic studies
on domain transferring KPG, and thus the obser-
vations reported in prior works do not support a
comprehensive understanding of this topic.

To investigate this question, we conduct an em-
pirical study on how well KPG models can transfer
across domains. We utilize commonly used KPG
datasets covering four different domains (Science,
News, Web, Q&A). We first show experiment re-
sults (§2.2) that suggest models trained with data in
a specific domain do not generalize well to other do-
mains, even in cases where they are initialized with
pre-trained language models such as BART (Lewis
et al., 2020). We also visualize the domain gaps
among datasets by inspecting their phrase overlaps.
Keyphrases often represent the specific knowledge
of a domain and this may result in the failure of
transferring models across domains.
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The empirical study motivates us to explore
novel methods that can help models possess the
ability of generating high quality keyphrases and
more importantly, can quickly adapt to a new do-
main with limited amount of annotation. We pro-
pose a three-stage training pipeline, in which we
gradually guide a KPG model’s learning focus from
general syntactical features to domain-specific in-
formation. First, we pre-train the model using com-
munity labeled phrases in Wikipedia (§3.1). Then,
we use a novel self-training-based domain adapta-
tion method, namely Transfer Labeling, to adapt
the model to the new domain. Note this domain
adaptation method does not require ground-truth
labels, we leverage the model pre-trained in the pre-
vious stage to generate pseudo-labels for training it-
self. Finally, we use a limited amount of in-domain
data with true annotations to fully adapt the model
to the new domain. We report extensive experiment
results and thorough analyses to demonstrate the
effectiveness of the proposed methods.

2 Background and Motivation

2.1 Background

Keyphrase Generation (KPG) Typically, the
task is to generate a set of keyphrases P =
{p1, . . . , pn} given a source text t. Semantically,
these phrases summarize and highlight important
information contained in t, while syntactically,
each keyphrase may consist of multiple words
and serve a component of a sentence. Depend-
ing on a particular domain the source text belongs
to (e.g., scientific paper, news) and downstream
applications (e.g., article classification, informa-
tion retrieval), the extent to which a phrase is im-
portant can vary, i.e. the criteria of keyphrase
can be different in various datasets. Following
Meng et al., we denote a keyphrase as present
if it is a sub-string of the source text, or as ab-
sent otherwise. We adopt the One2Seq training
paradigm (Yuan et al., 2020a). Given a source
text t and a set of ground-truth keyphrases P ,
we concatenate all ground-truth keyphrases into
a single string: <bos>p1<sep> · · · <sep>pn<eos>,
where <bos>, <sep>, and <eos> are special tokens.
This string is paired with t to train a sequence-to-
sequence model. We refer readers to (Meng et al.,
2021a) for more details in common KPG practice.

2.2 Domain Gap in KPG Tasks

Previous studies have touched on how much KPG
models can transfer their skills when applied across
domains (Meng et al., 2017a; Xiong et al., 2019a),
but not in a systematic way. In this subsection,
we revisit this topic and try to ground our dis-
cussion with thorough empirical results. Specif-
ically, we consider four broadly used datasets in
the KPG community: KP20k (Meng et al., 2017a)
contains scientific papers in computer science;
OpenKP (Xiong et al., 2019a) is a collection of web
documents; KPTimes (Gallina et al., 2019) contains
a set of news articles; StackEx (Yuan et al., 2020a)
are community-based Q&A posts collected from
StackExchange. All the four datasets are large
enough to train KPG models from scratch. At the
same time, the documents in these datasets cover a
wide spectrum of domains. We report statistics of
these four datasets in appendix Table 7.

Figure 1: Cross-domain transfer performance of
TF-Rand and TF-Bart (F@O, the higher the better).
Y-axis: training dataset; X-axis: test dataset.

On the model dimension, we consider two model
architectures: TF-Rand, a 6-layer encoder-decoder
Transformer with random initialization (Vaswani
et al., 2017); and TF-Bart, a 12-layer Transformer
initialized with BART-large (Lewis et al., 2020).
We train the two models on the four datasets in-
dividually and subsequently evaluate all the re-
sulting eight checkpoints on the test split of each
dataset. As shown in Figure 1, in-domain scores
(i.e., trained and tested on the same datasets) are
placed along the diagonal, the other elements repre-
sent cross-domain testing scores. We observe that
both models exhibit a large gap between in-domain
and out-of-domain performance. Even though the
initialization with BART can alleviate the gap to a
certain degree, the difference remains significant.

Keyphrases are typically concepts or entities that
represent important information of a document.
The collection of keyphrases in a domain can also
be deemed as a representation of domain knowl-
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Figure 2: The proposed three-stage pipeline. A model is first pre-trained with general domain data and learns to
generate syntactically correct phrases. In the domain adaptation stage, the model adapts to the target domain by
training on domain-specific data, where the pseudo labels are generated by the model itself. Finally, we fine-tune
the model with limited amount of target domain data with true label, to fully accomplish domain adaptation.

KP20k OpenKP KPTimes StackEx

KP20k 100 10.6 3.5 55.7
OpenKP 3.2 100 8.5 33.1
KPTimes 0.5 4.3 100 6.9
StackEx 0.7 1.3 0.5 100

Table 1: Overlap (%) of unique keyphrases between do-
mains (train split). Numbers are normalized by dividing
the diagonal element in its column. For example, the
overlap keyphrases between KP20k and StackEx make
a proportion of 0.7% in KP20k and a 55.7% in StackEx.

edge. Therefore, to better investigate the domain
gaps, we further look into the keyphrase overlap be-
tween datasets. As shown in Table 1, only a small
proportion of phrases are in common between the
four domains. We provide a T-SNE visualization
of a set of phrases sampled from these dataset in
appendix Figure 8, the phrase clusters present clear
domain gaps in their semantic space.

We hypothesize that the domain specific traits
in annotated data make models difficult to learn
keyphrase patterns in a domain-general sense. Fur-
thermore, humans may label keyphrases under an
application-oriented consideration and thus a one-
size-fits-all standard for keyphrase annotation may
not exist. For example, on StackExchange, users
tend to assign common tags to better expose their
questions to community experts, resulting in a
small keyphrase vocabulary size. On the contrary,
the topics are more specialized in scientific papers
and authors would emphasize novel concepts in
their studies. This may explain the large number of
unique keyphrases found in KP20k.

2.3 Disentanglement of “Key” and “Phrase”
In §2.2, we empirically show that KPG models
do not adequately transfer to out-of-domain data,
even initialized with pre-trained language models.
However, data annotation for every single domain
or application does not seem practical either, due
to the high cost and the potential need of domain-

specific annotators. Inspired by some prior works,
we attempt to disentangle the important properties
of a keyphrase as keyness (Bondi and Scott, 2010;
Gabrielatos, 2018) and phraseness (Tomokiyo and
Hurst, 2003). We believe a proficient KPG model
should generate outputs that satisfy both properties.

Keyness refers to the attribute that how well a
phrase represents important information of a piece
of text. The degree of keyness can be document
dependent and domain dependent. For example,
“cloud” is a common keyphrase in Computer Sci-
ence papers, it is, in most cases, less likely to be
important in Meteorology studies. Due to its high
dependence on domain-specific information, we be-
lieve that the knowledge/notion of keyness is more
likely to be acquired from in-domain data.

Phraseness, on the other hand, focuses more
on the syntactical aspect. It denotes that given a
short piece of text, without even taking into account
its context, to what extent it can be grammatically
functional as a meaningful unit. Although the ma-
jority of keyphrases in existing datasets are noun
phrases (Chuang et al., 2012), they can present in
variant grammatical forms in the real world (Sun
et al., 2021). We believe that phraseness can be in-
dependent from domains and thus can be obtained
from domain-general data.

3 Methodology

In the spirit of the motivation discussed above, we
propose a three-stage training procedure in which
a model gradually moves its focus from learn-
ing domain-general phraseness towards domain-
specific keyness, and eventually adapts to a new
domain with only limited amount of annotated data.
An overview of the proposed pipeline is illustrated
in Figure 2. First, with a Pre-Training stage (PT),
the model is trained with domain-general data to
learn phraseness (§3.1). Subsequently, in the Do-
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main Adaption stage (DA), the model is exposed
with unlabeled in-domain data. Within a few it-
erations, the model labels the data itself and use
them to gradually adapt to the new domain (§3.2).
Lastly, in the Fine-Tuning stage (FT), the model
fully adapts itself to the new domain by leveraging
a limited amount of in-domain data with true anno-
tations (§3.3). In this section, we describe each of
the three stages in detail.

3.1 Domain-General Phrase Pre-training
The first training stage aims to capture the phrase-
ness in general, we leverage the Wikipedia data
and community labeled phrases from the text.
Wikipedia is an open-domain knowledge base that
contains rich entity-centric annotations, its articles
cover a wide spectrum of topics and domains and
thus it has been extensively used as a resource of
distant supervision for NLP tasks related to enti-
ties and knowledge (Ghaddar and Langlais, 2017;
Yamada et al., 2020; Xiong et al., 2019b). In this
work, we consider four types of markup patterns in
Wikipedia text to form distant keyphrase labels:

• in-text phrases with special formatting (italic,
boldface, and quotation marks);

• in-text phrases with wikilinks (denoting an
entity in Wikipedia);

• “see also” phrases (denoting related entities);
• “categories” phrases (denoting superordinate

entities).

Although the constructed targets using the above
heuristics can be noisy if considering the keyness
aspect, we show that they work sufficiently for
training general phrase generation models.

Given a piece of Wikipedia text t and a set of
community labeled phrases, we convert this data
point to the format of One2Seq as described in §2.1.
In practice, the number of phrases within t can be
large and thus we sample a subset from them to
form the target. We group all the phrases appear
in t as present candidates, the rest (e.g., “see-also”
and categories) are grouped as absent candidates.
Additionally, we take several random spans from
t as infilling candidates (similar as (Raffel et al.,
2020)) for robustness. Finally, we sample a few
candidates from each group and concatenate them
as the final target sequence.

On the source side, we prepend a string suggest-
ing the cardinality of phrases in each target group
to the beginning of t. We also corrupt the source

Wikipedia

Artificial neural networks (ANNs), usually simply
called neural networks (NNs) or, more simply yet, neural
nets, are computing systems inspired by the biological neural
networks that constitute animal brains…

Text:

Categories:

See Also:

Source
<PRESENT>3<CATEGORY>2<ABSENT>1<INFILL>1<SEP>  
<MASK> (ANNs), usually simply called neural networks (<MASK>) or,
more simply yet, neural nets, are <INFILL> by the <MASK> that
constitute animal brains… 

Target
Artificial neural networks <SEP> NNs <SEP> biological neural
networks <SEP> Computational neuroscience <SEP> ADALINE
<SEP> computing systems inspired 

Figure 3: Illustration of processing Wikipedia to source-
target pairs in domain general phrase pre-training.

sequence by replacing a small proportion of present
and infilling phrases with a special token [MASK],
expecting to improve models’ robustness (Raffel
et al., 2020). We show an example of a processed
Wikipedia data instance in Figure 3.

Trained with this data, we expect a model to be-
come a general phrase generator — given a source
text, the model can generate a sequence of phrases,
regardless the specific domain a text belongs to.

3.2 Domain Adaption with Transfer Labeling
In the second stage, we aim to expose the model
with data from a domain of interest, so it can learn
the notion of domain-specific keyness. We propose
a method, namely General-to-Specific Transfer La-
beling , which does not require any in-domain anno-
tated data. Transfer labeling can be considered as a
special self-training method (Yarowsky, 1995; Culp
and Michailidis, 2008; Mukherjee and Awadallah,
2020), where the key notion is to train a model with
its own predictions iteratively.

Distinct from common practice of self-training
where initial models are bootstrapped with anno-
tated data, transfer labeling regards the domain-
general model from the pre-training stage 3.1 as
a qualified phrase predictor. We directly transfer
the model to documents in a new domain to predict
pseudo labels. The resulting phrases, paired with
these documents, are used to tune the model so as
to adapt it to the target domain distribution. Note
that this process can be run iteratively, to gradually
adapt models to target domains.

3.3 Low-resource Fine-Tuning
In the third stage, we expose the model to a
small amount of in-domain data with annotated
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keyphrases. This aims to help the model fully adapt
to the new domain and reduce the bias caused by
noisy labels from previous stages.

4 Experiments

We reuse the model architecture described in §2.2
throughout this paper. And most models apply a
single iteration of transfer labeling. We discuss the
effect of multi-iteration transfer labeling in §4.2.5.
See Appendix A.1 for implementation details.

4.1 Datasets and Evaluation Metric

We consider the same four large-scale KPG
datasets as described in §2.2, but instead of training
models with all annotated document-keyphrases
pairs, we take a large set of unannotated docu-
ments from each dataset for domain adaptation,
and a small set of annotated examples for few-shot
fine-tuning. Specifically, in the pre-training stage
(PT), we use the 2021-05-21 release of English
Wikipedia dump and process it with wikiextrac-
tor package, which results in 3,247,850 passages.
In the domain adaptation stage (DA), for each do-
main, we take the first 100k examples from the
training split (without keyphrases), and apply dif-
ferent strategies to produce pseudo labels and sub-
sequently train the models. In the fine-tuning stage
(FT), we take the first 100/1k/10k annotated exam-
ples (document-keyphrases pairs) from the training
split to train the models. We report the statistics of
used datasets in appendix Table 7.

We follow previous studies to split train-
ing/validation/test sets, and report model perfor-
mance on test splits of each dataset. A common
practice in KPG studies is to evaluate the model per-
formance on present/absent keyphrases separately.
However, the ratios of present/absent keyphrases
differ drastically among the four datasets (e.g.
OpenKP is strongly extraction-oriented). Since we
aim to improve the model’s out-of-domain perfor-
mance in general regardless of the keyphrases be-
ing present or absent, we follow Bahuleyan and
El Asri (2020) and simply evaluate present and ab-
sent keyphrases altogether. We report the F@O
scores (Yuan et al., 2020a) between the generated
keyphrases and the ground-truth. This metric re-
quires systems to model the cardinality of predicted
keyphrases themselves.

Figure 4: Comparison of different strategies for domain
adaptation with TF-Rand. TL: Transfer Labeling. NP:
Noun Phrases. RS: Random Span.

4.2 Results and Analyses

4.2.1 Zero-shot Performance
We first investigate how well models can perform
after the pre-training stage, without utilizing any
in-domain annotated data. Since Wikipedia articles
contain a rather wide range of phrase types, we
expect models trained on this data are capable of
predicting relevant and well-formed phrases from
documents in general. We show our models’ testing
scores in the first row of Table 2 and 3, where only
PT is checked. We observe that pre-training with
Wikipedia data can provide decent zero-shot per-
formance in both settings, i.e., model is initialized
randomly (Table 2) and with pre-trained language
models (3). Both settings achieve the same average
F@O score of 12.2, which evinces the feasibility
of using PT model to generate pseudo labels for
further domain adaptation. The scores also sug-
gest that at the pre-training stage, the BART model
(with pre-trained initialization and more parame-
ters) does not present an advantage in comparison
to a smaller model trained from scratch.

4.2.2 Domain Adaptation Strategies
We compare transfer labeling (TL, proposed in
§3.2) with two unsupervised strategies: (1) Noun
Phrase (NP) and (2) Random Span (RS). For NP,
we employ SpaCy (Honnibal et al., 2020) to POS-
tag source texts and extract noun phrases based
on regular expressions. For RS, we follow Raffel
et al. (2020), extracting random spans as targets
and masking them in the source text. For TL, all
pseudo phrases are generated by a PT model in a
zero-shot manner (with greedy decoding).

As shown in Figure 4, in the single strategy set-
ting, RS performs the best among the three strate-
gies and TL follows. We speculate that RS models
are trained to predict randomly masked spans based
on their context, and this results in the best gener-
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alization among the three. As for the NP strategy,
since targets are only noun phrases appear in the
source text, the models may have the risk of overfit-
ting to recognize a subset of possible phrases. TL
lies in between the two discussed strategies, the
generated pseudo labels contain both present and
absent phrases, and thanks to the PT model trained
with Wikipedia data, the generated targets can con-
tain many phrase types beyond noun phrases.

We further investigate the performance gap be-
tween RS and TL. On KP20k, the PT model can
generate 5.1 present and 2.6 absent keyphrases on
average. The generated pseudo labels, albeit of
good quality, are always fixed during the training.
This is due to the deterministic nature of the PT
model, which may cause overfitting and limit the
model’s generalizability. In contrast, random spans
in RS are dynamically generated, therefore a model
can learn to generate different target phrases even
the same documents appear multiple times during
training. This motivates us to investigate if these
strategies can be synergistic by combining them.
As shown in Figure 4, we observe that combining
TL and RS can lead to a significant improvement
over all other strategies, indicating that these two
strategies are somewhat complementary and thus
can be used together in domain adaption. In the
rest of the paper, we by default combine TL and
RS in the domain adaptation stage, by taking equal
amount of data from both sides, we discuss other
mixing strategies in Appendix A.3.

It is worth noting that, if we apply domain adap-
tation with the TL+RS mixing strategy and eval-
uate models without any fine-tuning (2nd row in
Table 2/3), we can observe a clear drop in the per-
formance of randomly initialized model (Table 2).
We believe it is because using random spans for
targets worsens the phraseness of the predictions.
BART initialized models, on the other hand, show
robust performance against these noisy targets.

4.2.3 Performance in Low-Data Setting
As described in §4.1, we use 100/1k/10k in-domain
examples with gold standard keyphrases to fine-
tune the model. To investigate the necessity of the
PT and DA stages given the FT stage, we conduct
a set of ablation experiments, skipping some of the
training stages in the full pipeline.

We start with discussing the results of randomly
initialized models (Table 2). FT-only: in the case
where models are only fine-tuned with a small sub-
set of annotated examples, models perform rather

poorly on all datasets, especially on KP20k and
OpenKP, where more unique target phrases are in-
volved. DA+FT: different from the previous set-
ting, here all models are first trained with 100k
pseudo labeled in-domain data points. We expect
these pseudo labeled data to improve models on
both phraseness and keyness dimensions. Indeed,
we observe DA+FT leads to a large performance
boost in almost all settings. This suggests the feasi-
bility of leveraging unlabeled in-domain data using
the proposed adaptation method (TL+RS). PT+FT:
the pre-training stage provides a rather significant
improvement in all settings, averaging over datasets
and k-shot settings, PT+FT (23.8) nearly doubles
the performance of DA+FT (12.6). This observa-
tion indicates that the large-scale pre-training with
domain-general phrase data can be beneficial in
various down-stream domains, which is consistent
with prior studies for text generation pre-training.
PT+DA+FT: we observe a further performance
boost when both PT and DA stages are applied
before FT. This to some extent verifies our design
that PT and DA can guide the models to focus on
different perspectives of KPG and thus work in an
complementary manner.

We also investigate when the model is initial-
ized with a pre-trained large language model, i.e.,
BART (Lewis et al., 2020). Due to space limit, we
only report models’ average scores (over the four
datasets, and over the k-shot settings) in Table 3,
we refer readers to appendix Table 9 for the full
results. We observe that in the pipeline, the fine-
tuning stage provides TF-Bart the most significant
performance boost — the average score is tripled,
compared to the 0-shot settings, even performing
solely the fine-tuning stage. This may be because
the BART model was trained on a much wider
range of domains of data (compared to Wikipedia,
which is already domain-general), so it may have
already contained knowledge in our four testing do-
mains. However, the auto-regressive pre-training of
BART does not train particularly on the KPG task.
This explains why it requires the BART model to
fine-tune on KPG data to achieve higher perfor-
mance. The above assumption can also be support
by further observations in Table 3. Results sug-
gest that the DA stage is not notably helpful to
TF-Bart’s scores, and the PT stage, on the other
hand, seems to contribute to a better score. We
believe this is because the quality difference be-
tween labels used in these two stages: PT uses
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PT DA FT KP20k OpenKP KPTimes StackEx Avg

0-shot x 15.0 10.0 9.1 14.8 12.2
x x 11.2 4.6 7.7 4.3 6.9

100-shot
x 0.5 0.2 2.4 5.1 2.1

x x 14.1 5.6 5.3 11.7 9.2
x x 14.5 20.1 22.6 13.0 17.6
x x x 16.7 24.4 22.0 18.4 20.4

1k-shot
x 0.5 0.6 5.4 7.0 3.4

x x 15.0 8.6 8.9 15.4 12.0
x x 17.6 25.5 30.5 21.1 23.7
x x x 19.7 28.0 30.7 26.3 26.2

10k-shot
x 3.4 1.5 19.2 20.8 11.3

x x 16.5 13.1 13.4 23.4 16.6
x x 20.6 30.6 38.6 31.4 30.3
x x x 22.1 31.6 36.7 34.7 31.3

Avg
x 1.5 0.8 9.0 11.0 5.6

x x 15.2 9.1 9.2 16.8 12.6
x x 17.6 25.4 30.6 21.8 23.8
x x x 19.5 28.0 29.8 26.5 25.9

Table 2: Zero-shot and low-data results obtained by TF-Rand. The best average score in each column is boldfaced.

PT DA FT Avg

0-shot x 12.2
x x 12.0

Average of
few-shot

(100/1k/10k)

x 36.2
x x 36.3

x x 36.6
x x x 36.1

Table 3: Zero-shot and low-data results of TF-Bart
model. Full results are reported in appendix Table 9.

Model DA Data 100-shot 1k-shot 10k-shot

TF-Rand
KP20k 100k 16.7 19.7 22.1
MAG-CS 1m 16.8 19.4 21.8
MAG-CS 12m 17.6 20.4 22.8

TF-Bart
KP20k 100k 22.2 25.3 28.4
MAG-CS 1m 22.3 25.4 28.4
MAG-CS 12m 22.5 25.4 28.6

Table 4: Average scores (over 4 datasets) with different
amount of transfer labeled data for domain adaptation.
All models are trained through three stages. The best
score in each block is boldfaced.

community-labeled phrases (high phrase quality
but domain-general) and DA uses labels generated
by the model itself (no guarantee on phrase quality
but closer to target domains). Since TF-Bart only
needs specific knowledge about the KPG task, the
PT stage can therefore be more helpful.

We run Wilcoxon signed-rank tests on the re-
sults of Table 2, and we find all differences be-
tween neighboring experiments (e.g. PT+FT vs.
PT+DA+FT, both trained with KP20k and 10k-
shot) are significant (p < 0.05). For Table 3, the
improvement of PT+FT over the other three set-
tings is also significant.

4.2.4 Scaling the Domain Adaptation
One advantage of self-labeling is the potential to
leverage large scale unlabeled data in target do-

mains. We also investigate this idea and build a
large domain adaptation dataset by pairing an un-
labeled dataset with pseudo labels produced by a
PT model. To this end, we resort to the MAG
(Microsoft Academic Graph) dataset (Sinha et al.,
2015) and collect paper titles and abstracts from 12
million scientific papers in the domain of Computer
Science, filtered by ‘field of study’. The resulting
subset MAG-CS is supposed to be in a domain close
to KP20k, yet it may contain noisy data points due
to errors in the MAG’s data construction process.
We follow the same experiment setting as reported
in the above subsections, except that in the DA
stage we either use 1 million or 12 million pseudo-
labeled MAG data points for domain adaptation.
We train the models with the PT+DA+FT pipeline
and report models’ scores on KP20k test split.

As shown in Table 4, compared to our default set-
ting which uses 100k unlabeled KP20k data points
for domain adaptation, larger scale domain adapta-
tion data can indeed benefit model performance —
models adapted with MAG-CS 12m documents show
consistent improvements. However, the MAG-CS
1m data (still 10 times the size of KP20k) does not
show clear evidence being helpful. We suspect
the distribution gap between the domain adapta-
tion data (i.e., MAG-CS) and the testing data (i.e.,
KP20k) may have caused the extra need of gener-
alization. Therefore, the MAG-CS 12m data may
represent a data distribution that has more over-
lap with KP20k and thus being more helpful. We
also observe that models initialized with BART are
more robust against such a distribution gap, on ac-
count of BART’s pre-training with large scale of
text in general domain.
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4.2.5 Multi-iteration Domain Adaptation

Prior self-training studies have demonstrated
the benefit of multi-iterations of label propaga-
tion (Triguero et al., 2015; Li et al., 2019). We con-
duct experiments to investigate its effects on KPG.
Specifically, we first pre-train a TF-Rand model
using Wikipedia data as in previous subsections.
Then, we repeatedly perform the domain adapta-
tion stage multiple times. In each iteration, the
model produces pseudo labels from the in-domain
documents and then train itself with this data. Fi-
nally, we fine-tune the model with 10k annotated
data points, and report its test scores on KP20k. We
consider two datasets, KP20k and MAG-CS 1m, as
the in-domain data for domain adaptation. As illus-
trated in Figure 5, the TF-Rand model can gradually
gain better test performance by iteratively perform-
ing domain adaptation using both datasets. Due to
limited computing resources, we set the maximum
number of iterations to 10. But the trend suggests
that models may benefit from more DA iterations.

Figure 5: Trend of 10k-shot performance on KP20k with
iterative self-labeling for 10 iterations.

5 Related Work

Keyphrase Generation. Meng et al. (2017b) first
propose KPG, which enables models to generate
keyphrases according to importance and semantics,
rather than extracting sub-strings from the text (Wit-
ten et al., 1999; Liu et al., 2011; Wang et al., 2016).
Following this idea, Chen et al. (2019); Wang et al.
(2019); Liang et al. (2021) propose to leverage ex-
tra structure information (e.g., title, topic) to guide
the generation. Chan et al. (2019); Luo et al. (2021)
propose a model using reinforcement learning, and
Swaminathan et al. (2020) propose using GAN for
KPG. Ye et al. (2021) propose to dynamically align
target phrases to eliminate the influence of target
phrase order, a problem highlighted by Meng et al.
(2021a). Mu et al. (2020); Liu et al. (2020); Park

and Caragea (2020) use pre-trained language mod-
els for better representations of documents. In a
similar vein, Ye and Wang utilize self-learning to
generate synthetic phrases for data augmentation,
whereas we use self-labeling for domain adapa-
tion. Gao et al. use a dense retriever to augment
keyphrase generation in the cross-lingual scenario.

Pre-training for Phrase/Entity Understanding.
Meng et al. (2021a) show that pre-train models
with noisy annotation can deliver great improve-
ments on KPG. Kulkarni et al. (2021) pre-train an
understanding and a generation model with a large-
scale annotated dataset OAGKX (Çano and Bojar,
2020) and the resulting models achieve decent per-
formance on various NLP tasks. Both studies use
a large amount of annotated data for pre-training,
which is only available for certain domains. Wang
et al. (2021); Li et al. (2022) use contrastive learn-
ing to train phrase encoders. Wang et al. (2021); Li
et al. (2022) use contrastive learning to train phrase
encoders. Lee et al. (2021) find open-domain QA
datasets can be used to learn strong dense phrase
representations. Wikipedia is also frequently used
in training models for entity-centric and knowledge-
rich tasks. (Yamada et al., 2020; Liu et al., 2021;
Xiong et al., 2019b; Meng et al., 2021b; Huang
et al., 2021) use Wikipedia and its related resources
as distant supervision to enhance BERT’s abilities
on modeling entities.

Self-labeling. Self-labeling or self-training is a
typical means for utilizing unannotated data and
it has been applied in various machine learning
tasks (He et al., 2019; Mukherjee and Awadallah,
2020). Yu et al. (2021) define rules as weak super-
vision for text classification and use self training to
propagate labels to new documents. In our case, the
pseudo labels are induced by models pre-trained
with weak phrase annotation in Wikipedia. Liang
et al. (2020) use self-training to supplement dis-
tantly supervised NER and Huang et al. (2021) use
self-training to leverage unlabeled in-domain data.

6 Conclusion

In this study, we investigate domain gaps in the
KPG task that hinder models from generalization.
We attempt to alleviate this issue by proposing a
three-stage pipeline to strategically enhance mod-
els’ abilities on keyness and phraseness. Essen-
tially, we consider phraseness as a domain-general
property and can be acquired from Wikipedia data
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as distant supervision. Then we use self-labeling
to distill the phraseness into data in a new domain,
and the resulting pseudo labels are used for domain
adaptation, as the labels can reflect the keyness and
phraseness of the new domain. Finally, we fine-
tune the model with limited amount of target do-
main data with true labels. By taking the advantage
of open-domain knowledge on the web, we believe
this general-to-specific paradigm is generic and
can be applied to a wide variety of machine learn-
ing tasks. As a next step, we plan to employ the
proposed method for text classification and infor-
mation retrieval, to see whether the domain-general
phrase model can produce reliable class labels and
queries for domain adaptation.

Limitations

In this study, we provide empirical evidence of the
impact of domain gap in keyphrase tasks, and we
propose effective methods to alleviate it. However,
we acknowledge that this study is limited in the
following aspects: (1) As the first study discussing
domain adapation and few-shot results, there is few
studies to refer to as fair baselines. Nevertheless,
we attempt to show the improvements of the pro-
posed methods over base models by extensive ex-
periments. (2) The pretrained keyphrase generation
model can be used off-the-shelf, but the multi-stage
adaptation pipeline might increase the engineering
complexity in practice. (3) We have only explored
three strategies for domain adaptation, and they
all require generating hard pseudo labels in differ-
ent ways. Soft-labeling (Liang et al., 2020) and
knowledge distillation (Zhou et al., 2021) methods
are worth investigating. (4) We train a model with
Wikipedia annotation to predict pseudo keyphrases,
and it would be interesting to see if we can use
large language models (e.g. GPT-3 (Brown et al.,
2020)) to zero-shot predict phrases.

Ethics Statement

Dataset Biases The domain-general pseudo
phrases were produced based on public web-scale
data (Wikipedia), and it mainly represents the cul-
ture of the Englishspeaking populace. Political or
gender biases may also exist in the dataset, and
models trained on these datasets may propagate
these biases. Additionally, the pretrained BART
models can carry biases from the data it was pre-
trained on.
Environmental Cost The experiments described

in the paper primarily make use of V100 GPUs.
We typically used four GPUs per experiment, and
the first-stage pretraining may take up to four days.
The backbone model BART-LARGE 400 million
parameters. While our work required extensive ex-
periments, future work and applications can draw
upon ourinsights and need not repeat these compar-
isons.
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A Appendix

A.1 Implementation Details

Most experiments make use of four V100 GPUs.
We elaborate the training hyper-parameters for re-
producing our results in Table 5 and 6. For in-
ference, we follow previous studies (Yuan et al.,
2020b; Meng et al., 2021a) that uses beam search
to produce multiple keyphrase predictions (beam
width of 50, max length of 40 tokens). We report
testing scores with best checkpoints, which achieve
best performance on valid set (2,000 data instances
for all domains).

Phrase masking ratio denotes for p% of target
phrases, replacing their appearances in the source
text with a special token [PRESENT].

Random span ratio denotes replacing p% of
words in the source text with a special token
[MASK].

Figure 6: Comparison of domain adaptation with Trans-
fer Labeling using different beam width to produce
pseudo labels (TF-Rand).

Figure 7: More results on mixing techniques for domain
adaptation (TF-Rand, with different mixing ratios). TL:
Transfer Labeling. NP: Noun Phrases. RS: Random
Span.

A.2 Data Statistics

See Table 7.

A.3 Additional Results and Analyses
Figure 6 and 7 show additional results of domain
adaptation. In Figure 6, we find that larger beam
widths do not lead to significantly better scores
after fine-tuning and thus we use simple greedy
decoding for most of this study. In Figure 7, we
compare various domain adapation strategies of
mixing different pseudo labels. Overall, we find
that mixing labels of transfer labeling (TL) and
random spans (RS) by 50%:50% leads to best per-
formance.

In Figure 8, we use T-SNE to visualize 1,000
most frequent keyphrases from each of four
datasets (100k data examples from the training
split) in the semantic space. We use BERT-
base (Devlin et al., 2019) to generate phrase embed-
dings (we feed forward each phrase independently
as a sequence and take the [CLS] embedding as
output). We use the T-SNE of Scikit-Learn (Pe-
dregosa et al., 2011) with default hyperparameters.
The result shows that phrases from each domain
tend to gather into clusters. Particularly, we can
see that a big overlap between KP20k and StackEx
since both domains are related to Computer Sci-
ence. The distribution of OpenKP is more spread
out, as its documents are collected from the web
and cover a broader range of topics.

We present the full results of TF-Rand and
TF-Bart in Table 8 and 9. Besides, we supplement
the evaluation with another two popular datasets:
JPTimes (for models trained in the JPTimes do-
main) and DUC-2001 (for models trained in the
OpenKP domain).
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Hparam PT DA PT+DA/PT+DAMAG-CS FT 100/1k/10k *FT 100/1k/10k

Max source length 512
Max target length 128
Max phrase number 16 8
Max phrase length 16 8
Phrase masking rate 0.1
Random span ratio 0.05
Batch size ≈80 100 100 100 100
Learning rate 3e-4 3e-4 1e-5 3e-4 1e-5
Number of steps 200k 40k 20k/200k 2k/4k/8k 1k/2k/4k
Warmup steps 10%
Learning rate decay linear
Optimizer Adam
Adam β1 0.9
Adam β2 0.998
Adam epsilon 1e-6
Max gradient norm 2.0 2.0 1.0 1.0 1.0
Dropout 0.1
BPE Dropout 0.1 0.0 0.0 0.0 0.0
Label smoothing 0.1
Save checkpoint freq ending step ending step ending step 100/200/400 50/100/200

Table 5: Training hyperparameters for TF-Rand. *FT denotes the fine-tuning stage in cases of PT+FT or PT+DA+FT. Empty
cell means it is the same as the leftmost value.

Hparam PT DA PT+DA/PT+DAMAG-CS FT 100/1k/10k
Max source length 512
Max target length 256 256 256 128
Max phrase number 16
Max phrase length 6 8 8 8
Phrase masking rate 0.1
Random span ratio 0.05
Batch size 256 256 256 16
Learning rate 1e-5
Number of steps 40k 5k 5k/20k 2k/4k/8k
Warmup steps 2.4k 300 300/1.2k 200/400/800
Learning rate decay linear
Optimizer Adam
Adam β1 0.9
Adam β2 0.98 0.98 0.98 0.999
Adam epsilon 1e-8
Weight decay 0.01
Max gradient norm 1.0 - - 0.1
Dropout 0.1
Label smoothing 0.1
Save checkpoint freq ending step ending step 100/200/400 50/100/200

Table 6: Training hyperparameters for TF-Bart. Empty cell means it is the same as the leftmost value.

#doc #words
in doc #kp #unique

kp
#kp

per doc
#uni kp
per doc

#present kp
per doc

#absent kp
per doc

Training Sets

Wikipedia 3.2m - - - - - - -
KP20k 514.2k 161 2.7m 680.1k 5.3 1.3 3.3 1.9
OpenKP 134.9k 1104 294.2k 206.8k 2.2 1.5 2.1 0.0
KPTimes 259.9k 803 1.3m 104.8k 5.0 0.4 2.4 2.6
StackEx 299.0k 207 803.9k 8.1k 2.7 0.0 1.6 1.1
MAG-CS 1M 1.0m 151 9.6m 1.7m 9.6 1.7 3.4 6.2
MAG-CS 12M† 12.1m 151 115.9m 14.3m 9.6 1.2 3.4 6.2

Test Sets

KP20k 19,987 161 105.2k 55.9k 5.3 2.8 3.3 1.9
OpenKP 6,614 894 14.6k 13.6k 2.2 2.0 2.0 0.2
KPTimes 10,000 804 50.4k 13.9k 5.0 1.4 2.4 2.6
StackEx 16,000 205 43.1k 4.5k 2.7 0.3 1.6 1.1
JPTimes 10,000 517 50.3k 9.0k 5.0 0.9 4.0 1.0
DUC-2001 308 701 2.5k 1.8k 8.1 6.0 7.9 0.2

Table 7: Statistics of training/testing datasets used in this study. †Only 7.7m papers in MAG-CS 12M have keyphrases.
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PT DA FT KP20k OpenKP KPTimes StackEx Average over 4 JPTimes DUC-2001

0-shot x 15.0 10.0 9.1 14.8 12.2 15.8 9.4
x x 11.2 4.6 7.7 4.3 6.9 12.7 6.6

100-shot
x 0.5 0.2 2.4 5.1 2.1 2.4 0.2

x x 14.1 5.6 5.3 11.7 9.2 7.6 4.0
x x 14.5 20.1 22.6 13.0 17.6 24.1 20.5
x x x 16.7 24.4 22.0 18.4 20.4 24.2 20.3

1k-shot
x 0.5 0.6 5.4 7.0 3.4 2.0 0.6

x x 15.0 8.6 8.9 15.4 12.0 9.0 4.8
x x 17.6 25.5 30.5 21.1 23.7 25.8 20.6
x x x 19.7 28.0 30.7 26.3 26.2 26.1 22.5

10k-shot
x 3.4 1.5 19.2 20.8 11.3 8.5 0.7

x x 16.5 13.1 13.4 23.4 16.6 9.6 6.4
x x 20.6 30.6 38.6 31.4 30.3 25.7 24.3
x x x 22.1 31.6 36.7 34.7 31.3 27.1 23.6

Avg
x 1.5 0.8 9.0 11.0 5.6 4.3 0.5

x x 15.2 9.1 9.2 16.8 12.6 8.7 5.1
x x 17.6 25.4 30.6 21.8 23.8 25.2 21.8
x x x 19.5 28.0 29.8 26.5 25.9 25.8 22.1

Table 8: Zero-shot and low-data results. Models are randomly initialized. The best average score is boldfaced.

PT DA FT KP20k OpenKP KPTimes StackEx Average over 4 JPTimes DUC-2001

0-shot x 14.7 9.7 10.5 13.9 12.2 16.3 9.8
x x 13.8 10.7 12.0 11.5 12.0 17.5 11.6

100-shot
x 22.3 32.8 31.6 29.6 29.1 27.9 16.6

x x 22.5 33.3 32.0 29.2 29.3 28.7 20.7
x x 22.4 33.7 31.6 31.1 29.7 28.4 21.5
x x x 22.2 32.0 31.6 29.7 28.9 28.4 21.5

1k-shot
x 25.1 36.4 43.6 41.1 36.5 33.2 21.1

x x 25.3 36.2 43.2 40.9 36.4 31.8 21.0
x x 24.9 36.9 44.3 41.2 36.8 34.0 22.7
x x x 25.3 36.5 42.9 40.1 36.2 31.9 22.1

10k-shot
x 28.2 40.8 53.3 49.3 42.9 34.4 23.2

x x 28.0 41.5 53.4 49.6 43.1 34.5 25.0
x x 28.2 41.3 53.4 49.7 43.1 34.2 25.0
x x x 28.4 41.2 53.2 49.8 43.1 34.9 25.6

Avg
x 25.2 36.6 42.8 40.0 36.2 31.8 20.3

x x 25.3 37.0 42.9 39.9 36.3 31.7 22.2
x x 25.2 37.3 43.1 40.7 36.6 32.2 23.0
x x x 25.3 36.6 42.6 39.9 36.1 31.8 23.1

Table 9: Zero-shot and Few-shot results. Models are initialized with BART-large (Lewis et al., 2020). The best
average score is boldfaced.

Figure 8: T-SNE visualization of keyphrase representations from four datasets.
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