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Abstract

Natural language video localization(NLVL)
task involves the semantic matching of a text
query with a moment from an untrimmed video.
Previous methods primarily focus on improv-
ing performance with the assumption of in-
dependently identical data distribution while
ignoring the out-of-distribution data. There-
fore, these approaches often fail when han-
dling the videos and queries in novel scenes,
which is inevitable in real-world scenarios. In
this paper, we, for the first time, formulate
the scene-robust NLVL problem and propose
a novel generalizable NLVL framework utiliz-
ing data in multiple available scenes to learn
a robust model. Specifically, our model learns
a group of generalizable domain-invariant rep-
resentations by alignment and decomposition.
First, we propose a comprehensive intra- and
inter-sample distance metric for complex multi-
modal feature space, and an asymmetric multi-
modal alignment loss for different information
densities of text and vision. Further, to alleviate
the conflict between domain-invariant features
for generalization and domain-specific infor-
mation for reasoning, we introduce domain-
specific and domain-agnostic predictors to de-
compose and refine the learned features by dy-
namically adjusting the weights of samples.
Based on the original video tags, we conduct
extensive experiments on three NLVL datasets
with different-grained scene shifts to show the
effectiveness of our proposed methods.

1 Introduction

Natural language video localization(NLVL) (Wang
et al., 2020; Zhao et al., 2021; Zhang et al.,
2021) aims to retrieve a temporal moment from
an untrimmed video to match a language query
semantically. As a fundamental vision-language
problem, NLVL attracts increasing attention, and
recent works (Chen et al., 2018; Gao et al., 2017;
Xu et al., 2019a, 2018; Zhang et al., 2020a,b; Chen
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Query: Person proceeds to wash their hands.

Query: The person puts the towel on top of the wardrobe.

Query: Person proceeds to cook on a stove.

Figure 1: An illustration of different scenes in an NLVL
dataset. These examples are selected from Charades-
STA, and the videos are in Bathroom, Living room and
Kitchen, respectively.

et al., 2019; Ghosh et al., 2019; Yuan et al., 2019b)
has achieved impressive results. However, their
performances are tested with the assumption of in-
dependently identical data distribution. Given the
variety of video content, it is impossible to cover all
scenes when building training datasets. Therefore,
these methods are impractical in real-world scenar-
ios since they ignore the generalization ability to
novel scenes. In this paper, we, for the first time,
propose the scene-robust NLVL problem.

Scene-robust NLVL aims to take advantage of
data in available scenes to learn a robust model
which can generalize well on novel scenes. As
shown in the Figure 1, there are obvious semantic
differences between video and text input scenes,
such as video background, specific actions and ob-
jects in a scene. In more detail, we analyze the
semantic distribution gaps across scenes in three
NLVL datasets. The detailed statistics and discus-
sions in the appendix show that the domain gaps
between scenes are prevalent and diverse. Tradi-
tional NLVL models would experience dramatic
performance degradation when dealing with such
semantic distribution shifts.

The proposed scene-robust NLVL problem is
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more challenging than the relevant traditional do-
main generalization(DG) problem. On the one
hand, inputs of NLVL are multi-modal, which
means the features used for predicting are a fu-
sion of visual and textual features, and the final
feature space is much more complex. Besides,
the different information attribute of video and
text brings more difficulty. Recent DG methods
mainly focus on learning domain-invariant repre-
sentations on single-modal tasks, which are not
comprehensive and appropriate for multi-modal
features. On the other hand, NLVL requires more
reasoning steps with diverse modules, and some
samples may mainly rely on domain-specific infor-
mation for reasoning. The knowledge in these data
is hard-to-transfer and may affect the learning of
domain-invariant representations and the predictor.

To alleviate these challenges, we proposed a
novel generalizable NLVL framework to learn sta-
ble and high-quality multi-modal domain-invariant
representations from alignment and decomposition
perspectives. Specifically, we design a multi-modal
domain alignment module that contains: an intra-
and inter-sample distance metric for aligning the
complex multi-modal feature spaces comprehen-
sively, an asymmetric multi-modal aligning strat-
egy for different information densities of textual
and visual features, and Dirichlet-Mixup augmen-
tation to compensate for the missing information
and increases the domain diversity. Besides, we
introduce domain-specific predictors for each do-
main to refine the learned domain-invariant rep-
resentations by decomposition, and dynamically
suppress the weights of hard-to-transfer samples
by simply summing the outputs of domain-specific
and domain-agnostic predictors.

Our main contributions can be summarized as
follows:

• To the best of our knowledge, we are the first
to formulate the scene-robust NLVL problem,
which is quite essential for real-world scenar-
ios and fundamentally more challenging.

• We propose a novel generalizable NLVL
framework to address the unique challenges
of the scene-robust NLVL problem. It learns
and refines domain-invariant representations
from both alignment and decomposition per-
spectives.

• The extensive experiments conducted on three
NLVL datasets: Charades-STA, ActivityNet-

Caption, and YouCook2, demonstrate the ef-
fectiveness of our proposed methods.

2 Related work

Natural Language Video Localization. The
task of retrieving video segments using language
queries is first introduced by (Gao et al., 2017).
The previous methods in the field can be cate-
gorized into proposal-based (Gao et al., 2017;
Xu et al., 2018, 2019a; Chen et al., 2018; Zhang
et al., 2020b; Wang et al., 2020; Zhang et al., 2019;
Yuan et al., 2019a) and proposal-free (Yuan et al.,
2019b; Chen et al., 2019; Ghosh et al., 2019; Zhang
et al., 2020a; Mun et al., 2020; Rodriguez et al.,
2020; Wang et al., 2019) methods. Specifically,
proposal-based methods mainly rely on sliding
windows or segment proposal networks to gener-
ate proposal candidates from video and retrieve
the best matching one for the given semantic in-
formation. (Xu et al., 2018) apply the pre-trained
segment proposal network (Xu et al., 2017) for
proposal candidates generation, (Xu et al., 2019a)
further introduce query information to adjust pro-
posals generation process. (Zhang et al., 2020b)
first utilizes a 2D temporal map to generate pro-
posals. Considering the redundant computation
and low efficiency of the two-stage propose-and-
rank, (Yuan et al., 2019b) build a proposal-free
method using attention-based structures to directly
regresses temporal locations of the target moment.
Inspired by the concept of question answering(Seo
et al., 2016; Yu et al., 2018), (Chen et al., 2019;
Ghosh et al., 2019) try to formulate NLVL as a span
prediction task. (Zhang et al., 2020a) further ex-
plains the similarity and differences between NLVL
and question answering, and the proposed VSLNet
achieves superior performance with simple network
architecture.

Domain Generalization. Domain generalization
aims to learn a generalizable model from seen
source domains to achieve good performance on
unseen target domains. Most existing domain gen-
eralization methods can be roughly divided into
three categories: representation learning-based
(Li et al., 2018b, 2017; Ghifary et al., 2016; Rah-
man et al., 2020), data augmentation-based (So-
mavarapu et al., 2020; Zhou et al., 2021; Shu et al.,
2021; Mancini et al., 2020; Cheng et al., 2023),
and learning strategy-based (Mancini et al., 2018;
Cha et al., 2021; Finn et al., 2017; Li et al., 2018a).
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Figure 2: An overview of our generalizable NLVL framework for scene-robust NLVL problem.

One common approach for domain generalization
is learning domain-invariant feature representation,
which can be realized by aligning source domains
or disentangling features into domain-specific and
domain-invariant components. (Li et al., 2018b)
employ Adversarial Auto-encoder (Makhzani et al.,
2015) and Maximum Mean Discrepancy(Gretton
et al., 2012) metric to align distribution between ev-
ery pair of source domains. (Li et al., 2017) decom-
poses the model into domain-specific and domain-
agnostic parts and only utilizes domain-agnostic
parts to make predictions at inference time. Data
augmentation-based methods focus on manipulat-
ing new data to increase the diversity of training
data. (Somavarapu et al., 2020) use the style trans-
fer model (Huang and Belongie, 2017) to explore
cross-source variability for better generalization.
(Zhou et al., 2021; Shu et al., 2021; Mancini et al.,
2020) mix the features between instances from
different domains to further explore inter-domain
feature spaces and compensates for the missing
information. Learning strategy-based methods em-
ploy the general learning strategy to enhance the
generalization ability. (Mancini et al., 2018; Cha
et al., 2021) exploit ensemble learning to flatten
the loss surface and learn a unified and general-
ized model. Meanwhile, (Li et al., 2018a) proposes
meta-learning for domain generalization(MLDG),
which uses a meta-learning strategy to achieve do-
main generalization.

However, most well-studied domain generaliza-
tion strategies are proposed for single-modal or
easy multi-modal tasks requiring less reasoning,
such as image classification and image-text re-
trieval. These tasks’ input modality and model
structure are much simpler than that of NLVL, and
the extra complexity makes the scene-robust NLVL
problem more challenging.

3 Approach

We first formulate the scene-robust NLVL prob-
lem and our basic model architecture. Then we
illustrate our method for learning domain-invariant
representation for NLVL from two aspects: multi-
modal domain alignment and feature refinement by
decomposition.

3.1 Overview
Problem Formulation. Given an untrimmed
video v and a related natural language query q,
NLVL is to retrieve the specific moment {τ̂s, τ̂e}
that is most semantically relevant to the given query.
Assuming there are K domains in total, for domain
l, the input video and query can be denoted as
vl and ql. In scene-robust NLVL, the model can
only access several source domains during training,
while the target domain’s data is unavailable. The
generalization ability can be tested on the unseen
target domain.

Model Architecture. The overall architecture of
our model is illustrated in Figure 2. Concretely,
our basic NLVL model consists of a video encoder
ev : vl → ṽl ∈ RNv×D, a query encoder eq : ql →
q̃l ∈ RNq×D, a cross-modal representation fusion
module m : ṽl × q̃l → fl ∈ RNv×D, a domain-
agnostic boundary predictor pb : fl → {Ts,Te},
and some domain-specific boundary predictors
{plb}Kl=1 : fl → {T l

s,T
l
e}, where Ts,Te ∈ RNv

denote the scores of start and end boundaries at
each frame. Meanwhile, we use a confidence co-
efficient predictor pc : fl → C ∈ RNv to assist
training, where C represents the confidence coeffi-
cient of the frame in the matching span.

3.2 Multi-modal Domain Alignment
In this section, we describe our proposed multi-
modal domain alignment method. As discussed
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in (Arora et al., 2017; Long et al., 2018), when
the feature distribution is multi-modal, adversarial
learning is insufficient to guarantee that the con-
founded feature distributions are identical, and a
simple distance metric would align different do-
mains partially. Therefore, we devise an intra- and
inter-sample distance metric to measure the do-
main differences comprehensively. Considering
the multi-modal input in NLVL and the different
information densities of each modality, we asym-
metrically applied the metric to visual and fusion
feature representations to facilitate the learning of
multi-modal domain-invariant representations.

Intra- and Inter-sample Distance Metric. For
brevity, the latent representations from different
domains are denoted as {Hl}Kl=1, where Hl ∈
Rb×n×d and b, n, d represent the number of sam-
ples in this batch, feature size and feature dimen-
sion of each sample, respectively. First, we calcu-
late the intra- and inter-sample feature distribution:

H l
intra =

1

N

N∑

n=1

Hl (1)

H l
inter =

√√√√ 1

B

B∑

b=1

(H l
intra −

1

B

B∑

b=1

H l
intra)

2

(2)
The H l

intra is the mean value computed across
the temporal dimension of each sample, which rep-
resents intra-sample feature distribution for source
domain l; H l

inter is the standard deviation across
all samples in a batch, which indicates the inter-
sample feature distribution for source domain l.

Based on the complementary two-feature dis-
tributions of latent representations, we can com-
prehensively measure the distance between data
distributions of different domains. The proposed
intra- and inter-sample distance metric function
IIDM(·) is defined as follows:

IIDM({Hl}Kl=1)=
∑

1≤ i, j≤K

MMD2(H i
intra,H

j
intra)+MMD2(H i

inter,H
j
inter)

K(K − 1)

(3)
Maximum Mean Discrepancy(MMD) (Gretton

et al., 2006) is an effective metric for comparing
two distributions. Given feature distributions from
domain i and j, the function can be written as:

MMD2(H i,Hj) = ∥ 1

B

B∑

b=1

ϕ(hi
b)−

1

B

B∑

b=1

ϕ(hj
b)∥2

(4)

where ϕ is a simple gaussian or linear kernel
function that maps representations to a high-
dimensional feature space.

Multi-modal Asymmetric Alignment. In the
NLVL task, the query sentences are semantically
related to the video. For different scenes, there
are significant gaps in both visual and textual fea-
tures. A straightforward approach is to align textual
and visual features separately by the proposed dis-
tance metric. However, as discussed in (He et al.,
2022), the information density is different between
language and vision. Textual features are highly
semantic and information-dense, while visual fea-
tures are heavily redundant. Using the same do-
main alignment method for different modalities
would result in either inadequate alignment of vi-
sual features or loss of textual semantic informa-
tion.

To address this dilemma, we devise an asymmet-
ric method to align different modalities. Specifi-
cally, the intra- and inter-sample distance metric
is applied on the visual features {ṽl}Kl=1 and fused
features {fl}Kl=1, and the total multi-modal asym-
metric alignment loss Lmaa can be formulated as:

Lmaa=(1−λf ) IIDM({ṽl}Kl=1)+λf IIDM({fl}Kl=1)

(5)
where λf is hyper-parameter to balance these two
parts. By aligning the fused features, we can in-
directly match the textual feature distributions to
minimize the loss of semantic information, while
the redundant visual feature can be aligned twice
before and after considering the textual information
to achieve sufficient alignment.

Domain Augmentation by Dirichlet-Mixup. To
compensates for the missing information and in-
creases the data diversity, we adopt Dirichlet-
Mixup (Shu et al., 2021) to mix multiple source
domains for generating inter-domain data. This
method sample the weights from the Dirichlet dis-
tribution rather than the beta distribution used in
the original mixup (Zhang et al., 2017). Given
latent representations of samples from different do-
main {hi}Ki=1 where hi ∈ Rn×d, where n denotes
the number of sample and d is the feature dimen-
sion. The mixed feature representation hm can be
calculated as:

δ = Dirichlet(β1, . . . , βK) (6)

hm =
K∑

i=1

δ(i)hi (7)
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Figure 3: Illustration of our decomposition strategy.

where δ ∈ RK×n. Considering the similarity be-
tween the target domain and each source domain is
unpredictable, we set the weight βi of each domain
to be equal, which indicates the sampled values δ(i)

of each source domain are statistically equal.

3.3 Features Refinement by Decomposition
Our multi-modal domain alignment method is
designed to facilitate the acquisition of domain-
invariant representations by the model. However,
the NLVL task is characterized by complex struc-
tures and multi-step reasoning, with some samples
relying heavily on domain-specific information for
reasoning. In such cases, learning domain-invariant
representations is at odds with learning NLVL rea-
soning, leading to unstable domain-invariant repre-
sentations and an unreliable boundary predictor.

To mitigate this conflict between task loss and
alignment loss, we introduce the domain-specific
boundary predictors pblK l = 1 for each source do-
main, as well as a domain-agnostic boundary pre-
dictor pb for all domains. This allows for the dy-
namic adjustment of weights for these samples and
the refinement of features utilized by the domain-
agnostic prediction through decomposition.

During training, the boundary predictions for
calculating NLVL task loss is the combination of
the two kinds of predictors:

{Ts,Te} = (1− γ)pb(fl) + γplb(fl) (8)

Intuitively, the domain-agnostic predictor that
fits all domains tends to use invariant features,
while domain-specific predictors prefer to use both
invariant and specific information for more accu-
rate predictions. Therefore, as shown in Figure 3,
the former’s loss with the ground truth L1 is higher
than the latter’s L2, and loss Lbd of the combination
is naturally between L1 and L2.

The key to Eq.8 is to dynamically alter the
weight of each sample according to the similarity
of these two kinds of prediction. For the hard-to-
transfer samples, which mainly rely on domain-
specific information for reasoning, their L1 would
be much higher than L2, and the Lbd would also
be typically lower than L1. Accordingly, since
gradients are generally proportional to losses, the
importance of hard-to-transfer samples and the in-
stability brought by them will be suppressed. On
the contrary, for samples, the more their reason-
ing depends on invariant features, the closer L1,
Lbd and L2 are, and the less their weights are sup-
pressed.

By reducing the importance of the hard-to-
transfer samples, the domain-agnostic predictor
can learn more stable predictions from invariant
features, while no need to fit on specific features.
Thus, for the features used for domain-agnostic pre-
diction, the remaining domain-specific components
in the learned representations are further decom-
posed by the domain-specific predictors.

3.4 Training and Inference

For obtaining the scene-robust NLVL model, the
final loss function should contain two components:
NLVL task loss Ltask and multi-modal alignment
loss Lmaa. For the NLVL task loss, we apply
a similar loss function as used in (Zhang et al.,
2020a), which consists of the boundary loss Lbd

for training a reliable boundary predictor, and con-
fidence coefficient loss Lcc to assist in learning
discriminative features. The NLVL task loss is a
linear combination of the above two sub-losses, i.e.,
Ltask = Lcc + 0.2Lbd. The weight is empirically
set for balancing the two terms.

Finally, the overall loss function in the training
process can be summarized as

L = Ltask + λmaaLmaa (9)

where the λmaa is the hyper-parameter that de-
pends on the distribution gap in different domains
to balance alignment and task loss.

During inference, we only use the domain-
agnostic boundary predictor, and the predicted
timestamp {τs, τe} is determined by the boundary
prediction {Ts,Te}, which can be written as

{τs, τe} = argmax
(τs,τe)

(Ts(τs),Te(τe)) (10)
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Table 1: Performance on the Charades-STA for the
scene-robust NLVL task.

Method Liv. Bath. Kit. Bed. Avg

Base 33.92 29.31 30.86 30.71 31.20
MMD 32.03 35.19 40.11 33.20 35.13
DANN 35.16 36.89 37.56 34.67 36.07

JSD 33.20 37.63 39.53 32.64 35.75
MMD-AAE 33.01 39.15 38.19 32.00 35.59
Supervised 36.39 44.52 39.14 37.95 39.50

Ours 35.29 39.64 40.19 35.21 37.58

Table 2: Performance on the ActivityNet-Caption for
the scene-robust NLVL problem.

Method E/D Pc Ho So Sp Avg

Base 32.29 35.24 34.51 37.97 33.00 34.60
MMD 32.99 35.25 35.08 39.63 33.06 35.20
DANN 32.44 35.71 34.62 38.67 32.88 34.86

JSD 33.39 37.03 34.25 39.50 32.23 35.28
MMD-AAE 33.31 35.91 35.54 39.37 33.56 35.54
Supervised 36.24 36.74 39.09 42.55 39.12 38.75

Ours 34.46 38.46 38.62 44.29 38.13 38.79

4 Experiment

4.1 Dataset
We reconstruct three NLVL public datasets for the
scene-robust NLVL task based on their original
video tags and perform experiments to evaluate the
effectiveness of our framework.

Charades-STA. This dataset is generated by
(Gao et al., 2017) from the original Charades
dataset (Sigurdsson et al., 2016), which is mainly
about indoor activities.

ActivityNet-Caption. It is constructed by (Kr-
ishna et al., 2017) and contains about 20,000
untrimmed videos of open activities from Activ-
ityNet (Caba Heilbron et al., 2015).

YouCook2. This dataset (Zhou et al., 2018) in-
cludes 2000 long untrimmed videos about cooking.
It shows about 89 recipes in 14K video clips. Each
video clip is annotated with one sentence.

Based on the video tags provided by the origi-
nal dataset annotators, each NLVL datasets have
different-grained scene splits. For Charades-
STA, it can be split by activity location, i.e.,
Living room(Liv), Bathroom(Bath), Kitchen(Kit)
and Bedroom(Bed). ActivityNet-Caption is di-
vided by activity event, i.e., Eat/Drink(E/D), Per-
sonal care(Pc), Household(Ho), Social(So) and
Sport(Sp). As for YouCook2, it is split according

Table 3: Performance on the YouCook2 for the scene-
robust NLVL problem.

Method Am EA SA Eu Avg

Base 14.13 13.26 9.88 11.85 12.28
MMD 14.82 13.52 10.38 11.71 12.61
DANN 14.55 13.21 10.50 11.67 12.48

JSD 13.88 13.98 9.60 12.21 12.42
MMD-AAE 14.28 13.31 10.37 12.08 12.51
Supervised 15.85 16.42 11.81 14.11 14.55

Ours 15.48 13.72 11.41 11.92 13.13

to the origin of the used recipes, i.e., America(Am),
East Asia(EA), South Asia(SA) and European(Eu).

With these three restructured NLVL datasets, we
iteratively use each domain as the target domain
and the remaining domains as the source domains
to construct the scene-robust NLVL task. The
train/val/test split follows previous works (Zhang
et al., 2020a; Zhou et al., 2018) and the scene-
robust performance is evaluated on the test set of
the target domain.

4.2 Experimental Settings
Implementation Details. We utilize the AdamW
(Loshchilov and Hutter, 2017) optimizer and
CosineAnnealing scheduler (Loshchilov and Hut-
ter, 2016) with weight decay 1e− 6, and learning
rate 5e − 4 for ActivityNet-Caption and 2e − 4
for Charades-STA and YouCook2. During train-
ing, the λf in Eq.5 is set to 0.2, the γ in Eq.8
is set to 0.1, and the λmaa in Eq.9 is set to 4, 1,
0.1 for ActivityNet-Caption, Charades-STA and
YouCook2 respectively. Due to the simple architec-
ture of VSLBase (Zhang et al., 2020a), it can be
viewed as a standard proposal-free model. There-
fore, our basic network structure is the same as
VSLBase to minimize the impact of architecture
bias. Please refer to the appendix for more details.

Evaluation Metrics. We adopt “R@n, IoU =
m” as the evaluation metrics, following (Zhang
et al., 2020a). This metric denotes the percentage
of language queries having at least one result whose
Intersection over Union(IoU) with ground truth is
larger than m in the top-n grounding results. In our
experiments, we use n = 1 and m = 0.5.

Baseline. For a comprehensive comparison, we
consider the following methods as baselines: 1)
Variants of our model, including Base, which do
not use any alignment and decomposition meth-
ods during training, and Supervised, which is
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Table 4: Framework components ablation on
ActivityNet-Caption.

IIDMF IIDMV D-Mixup FRD Avg

34.60
✓ 36.22
✓ ✓ 38.26
✓ ✓ ✓ 38.61
✓ ✓ ✓ ✓ 38.79

Table 5: Intra- and Inter-sample distance metric ablation
on ActivityNet-Caption.

Method
Target domain

Avg
E/D Pc Ho So Sp

w/o Intra 34.36 37.76 36.24 43.64 37.44 37.89
w/o Inter 34.11 36.71 35.99 41.17 33.97 36.39
Ours 34.46 38.46 38.62 44.29 38.13 38.79

trained on all domains without alignment and de-
composition. 2) domain alignment methods for
single-modal tasks, including DANN (Matsuura
and Harada, 2020) and MMD (Li et al., 2018b). 3)
domain alignment methods for other multi-modal
tasks, including JSD (Chao et al., 2018) and MMA
(Xu et al., 2019b).

4.3 Performance Comparison

The quantitative evaluation results of our proposed
method on Charades-STA, ActivityNet-Caption
and YouCook2 are reported in Table 1, 2 and 3,
respectively. The best results are in bold and sec-
ond best underlined. According to the results, we
have the following observations:

• On all the benchmark datasets, our method
gains noticeable performance improvements
compared to the base model, which demon-
strates that the proposed methods can effec-
tively help the NLVL model learn the gen-
eralizable domain-invariant representations.
Besides, stable improvement under different-
grained scene shifts is a significant and prac-
tical merit since the scene shift with source
domains in real-world applications is diverse
and unpredictable.

• Remarkably, our method boosts the per-
formance (Avg) of the Base model from
31.20/34.60 to 38.62/38.79 on Charades-STA
and ActivityNet-Caption datasets, which far
exceeds all the compared methods and even

Table 6: Multi-modal alignment losses ablation on
ActivityNet-Caption.

Method
Target domain

Avg
E/D Pc Ho So Sp

None 32.29 35.24 34.51 37.97 33.01 34.60
IIDMT 30.91 35.24 33.43 37.12 31.60 33.66
IIDMF 33.77 36.71 35.91 40.98 33.75 36.22
IIDMV 35.05 37.59 37.03 43.53 37.66 38.17

achieves comparable performance to the su-
pervised setting. It further reveals the superior-
ity of our methods on the scene-robust NLVL
problem.

• Looking at the evaluation results on
YouCook2, the improvement brought by
our methods is relatively less than the other
two datasets, which may stem from the
intrinsic characteristics of this dataset. NLVL
on YouCook2 is more challenging than
Charades-STA and ActivityNet-Caption.
The annotations of YouCook2 are more
detailed, and the differences between adjacent
frames are slight. The more complex NLVL
reasoning on YouCook2 makes it harder to
capture discriminative and domain-invariant
representations.

4.4 Ablation Study
Component Ablation. We ablate the major com-
ponents of our framework on Activity-Net Caption:
fused features alignment(IIDMF ), visual features
alignment(IIDMV ), Dirichlet-Mixup(D-Mixup)
and feature refining by decomposition(FRD). Re-
sults are reported in Table 4. By adding each of
our proposed components in turns, the average ac-
curacy gradually increases from 34.60 to 38.79,
and each component brings noticeable improve-
ment. The increasing accuracy indicates the effec-
tiveness of each proposed component. In addition,
as shown in Figure 4, FRD is even more effective
on Charades-STA, with performance improving
from 36.31 to 37.58 by default γ, and accuracy can
further improve to nearly 38 by adjusting γ.

Design of Distance Metric. The distance met-
ric is critical for learning high-quality domain-
invariant representations. To verify the comple-
mentarity of the intra-sample and inter-sample dis-
tribution in our proposed distance metric, we indi-
vidually remove the two related term in Eq. 3. As
shown in Table 5, the joint use of intra-sample and
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(a) Analysis of λmaa on Charades-STA and ActivityNet-Caption.

(b) Analysis of γ on Charades-STA and ActivityNet-Caption.

Figure 4: Effect of important hyper-parameters λmaa

and γ on Charades-STA and ActivityNet-Caption.

inter-sample distributions leads to the best perfor-
mance. In addition, the inter-sample part is more
critical than the intra-sample part since multiple
samples can better reflect the overall distribution
of the domain.

Design of Multi-modal Alignment. As dis-
cussed in Sec 3.2, the different information den-
sity of each modality requires a modality-specific
alignment strategy. We separately align features
of each modality to prove the necessity and effec-
tiveness of our asymmetric multi-modal alignment
strategy. From Table 6, we conclude: 1) Directly
aligning information-dense textual features results
in performance degradation and loss of semantics.
2) Only aligning the heavily redundant visual fea-
ture achieves the best results. 3) Aligning fused
features, which can be viewed as symmetrical indi-
rect multi-modal alignment, leads to sub-optimal
performance due to insufficient visual information
alignment.

Hyper-Parameter Analysis. In our framework,
the hyper-parameter γ in Eq. 8 and λmaa in Eq.
9 are important for generalization. Therefore, we
further explore their impacts on Charades-STA and
ActivityNet-Caption. As shown in Figure 4, for γ,
a value of around 0.1 can obtain considerable gain,
and too large γ would affect the training of the
domain-agnostic predictor. As for λmaa, which de-
pends on the ratio of the alignment loss, the optimal
value relies on the distribution gaps between source
domains. The bigger domain gaps, the larger λmaa

should be set to reinforce alignments adaptively,
and vice versa.

Query: The man continues scuffing the shoes and shining the
shoe and ends with tying them and presenting them.

Query: The child continues using the toy on the clothes
while looking up and smiling to the camera.

Figure 5: Qualitative results sampled from the
household scene in ActivityNet-Caption.

4.5 Qualitative Analysis

In order to qualitatively evaluate the performance
of our alignment and decomposition strategy,
we show two representative examples from the
household scene in ActivityNet-Caption, which
can be found in Figure 5. (The analysis of fail-
ure cases can be found in the appendix.) In both
cases, the base model only learns to localize some
simple and general actions in the novel scene,
such as "smiling at the camera" and "presenting
them." By introducing our multi-modal domain
alignment method, the representations are forced
to be domain-invariant, and the model learns to cap-
ture the high-level semantic similarities in different
scenes instead of the common overlapping actions.
Further, the decomposition approach refines the
domain-invariant representations and stabilizes the
learning process. Our scene-robust NLVL method
can effectively improve localization accuracy on
unseen scenes.

5 Conclusion

In this paper, we first proposed a scene-robust prob-
lem in NLVL. Our main idea is to learn a group of
high-quality domain-invariant feature representa-
tions from multiple source domains. By analyzing
the extra generalization challenges posed by the
NLVL task, we propose a novel NLVL framework
that tackles the scene-robust problem from align-
ing and decoupling perspectives. With the help
of these two branches, we significantly enhance
the generalization ability to new scenes. Extensive
experiments and detailed ablation studies on three
widely-used benchmark datasets demonstrate the
effectiveness and robustness of our methods.
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6 Limitations

In this work, we first formulate the scene-robust
NLVL problem and propose our solution. How-
ever, our generalizable NLVL model is still tested
on existing close-world datasets, and the actual
performance in real-world scenarios needs to be
further explored. A real-world, large-scale dataset
is required to develop a practical, generalized, open-
world query-based video retrieval model.
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A Analysis on Failure Cases

To better understand the limitation of our frame-
work, we elaborate on the failure case and discuss
them in detail. The reasons for our prediction errors
can be roughly summarized into three categories:

• Ambiguity of ground truth. Due to the
complexity of video content, some queries in
NLVL datasets correspond to multiple video
clips, but the ground truth only label one of

Dataset Scene #Videos #Annotations

Charades-STA

Living room 974 2,355
Bathroom 466 1,157
Kitchen 1,091 2,663

Bedroom 1,050 2,581

ActivityNet-caption

Eat/Drink 967 3,962
Personal care 1,212 4,665

Household 2,939 10,992
Social 2,918 10,155
Sport 6,890 25,152

YouCook2

America 3,800 27,373
East Asia 2,967 22,561

South Asia 2,235 19,667
European 4,274 34,199

Table 7: Statistics of the three NLVL datasets for scene-
robust problem.

them. As shown in Case(1,2) in Figure 6, our
predicted segment and the ground truth anno-
tation are both semantically matched to the
given query sentence. However, our predic-
tions are considered to be completely wrong.

• Inability to distinguish subtle actions in
video. In some scenarios, tiny impercepti-
ble action differences in the video is critical
to distinguish similar clips. As shown in Case
(3), in our predicted segment, the man is actu-
ally refining the draw by paper and a spatula,
rather than painting. It might be essential to
use a better vision encoder or hierarchical vi-
sual feature maps to distinguish the video’s
subtle actions.

• Inability to understand detail word. In
the scene-robust NLVL problem, there are in-
evitable distribution gaps in the vocabulary
lists of descriptions in different scenes, which
results in misunderstanding some keywords.
In Case (4), our model fails to figure out the
detailed semantic differences between solu-
tion and water without any information or
knowledge about the target domain vocabu-
lary.

B Distribution Gaps between Scenes

In this section, we explore the differences in text
distribution scenes. Since the videos and sentences
in NLVL are semantically matched, the word dis-
tribution gaps can also be viewed as semantic gaps
between videos in different scenes.

We analyze the word distribution gaps from two
perspectives: Word ratio and Vocabulary IoU.
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Word ratio. For each scene, we counted the ra-
tio of occurrences of each word in all sentences.
In the upper part of Figure 9, 10, 11, we visual-
ize the word ratios for the same words in differ-
ent scenes of Charades-STA, ActivityNet-Caption,
and YouCook2. The further a word is from the
diagonal, the more scene-specific it is. Except for
several words with high ratios that are common to
all scenes, most words are various widely in word
ratio across scenes, as shown by the points off the
diagonal.

Vocabulary IoU. In the lower part of Figure 9,
10, 11, we show the Intersection over Union(IoU)
of the words with the topk% words ratio. For sen-
tences, common words(such as: "the," "and," and
"is," et al.) appear most frequently. Therefore
when k% is very small, the vocabulary overlap
between the two domains is relatively high. How-
ever, the IoU decreases sharply as the k% value
slightly increases, which indicates that each scene
may contain unique high-frequency words. Note
that for Charades-STA, ActivityNet-Caption, and
YouCook2, the average IoUs for the entire vocab-
ulary in different scenes are only 0.29, 0.45, and
0.40, respectively. The low IoU value across differ-
ent scenes on all three figures illustrates that the dis-
tribution gap brought by scene shift is prevalent and
significant. This observation further demonstrates
the necessity and practicality of our scene-robust
NLVL problem formulation.

C Implementation Details

Data Processing. For language query, we use
the pre-trained Glove (Pennington et al., 2014) em-
bedding to initialize each lowercase word, and the
visual embeddings are extracted via the 3D Con-
vNet pre-trained on Kinetics dataset (Carreira and
Zisserman, 2017) as previous method (Zhang et al.,
2020a). Note that all the pre-trained feature extrac-
tors are fixed during training. All experiments were
carried out on a single 2080ti.

Network Architecture. Due to the simplicity
and effectiveness of VSLBase (Zhang et al., 2020a),
it can be viewed as a standard proposal-free NLVL
model. Therefore, our network structure is similar
to VSLNet to minimize the impact of architectural
bias. The video and query feature encoder consist
of four convolution layers and a multi-head atten-
tion layer. After feature encoding, we use context-
query attention(CQA) as our cross-modal represen-
tation fusion module. The boundary and confidence
coefficient predictors are essentially multi-layer
perceptrons (MLP). We set the kernel size of the
convolution layer as 7 and the head size of multi-
head attention as 8. The frame number of video Nv

is set to 32 for all three datasets. And the hidden
dimensions are set to 128 for Charades-STA, and
256 for YouCook2 and ActivityNet-Caption.

D Ethical Discussion

Natural language video localization has many appli-
cations, including video corpus retrieval and video-

Case1 — Query: She then combs the tail.

Case2 — Query: The man sprays the car with water.

Figure 6: Failure Cases – Ambiguity of ground truth.
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Case3 — Query: The man paints the draw while talking.

Figure 7: Failure Cases – Inability to distinguish subtle actions in video.

Case4 — Query: The man sprays the car with a solution.

Figure 8: Failure Cases – Inability to understand detail word

based dialogue. Our scene-robust NLVL problem
makes it more practical and reliable in real-world
prediction scenarios. Due to the generalization of
our method, there may be concerns about the mis-
use of offensive data. However, in fact, our method
focuses on the scene shift while the general ac-
tivities are consistent, such as Charades-STA for
indoor activity, ActivityNet-Caption for outdoor
activity, and YouCook2 for cooking. Therefore, the
model may not get reliable generalization perfor-
mance on entirely new activities.
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Figure 9: Word distribution statistics on Charades-STA.

Figure 10: Word distribution statistics on ActivityNet-Caption.
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Figure 11: Word distribution statistics on YouCook2.
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