
Findings of the Association for Computational Linguistics: ACL 2023, pages 1762–1773
July 9-14, 2023 ©2023 Association for Computational Linguistics

Logical Transformers: Infusing Logical Structures into
Pre-Trained Language Models

Borui Wang1∗ Qiuyuan Huang2 Budhaditya Deb2 Aaron Halfaker2
Liqun Shao2 Daniel McDuff3† Ahmed Hassan Awadallah2 Dragomir Radev1

Jianfeng Gao2

1Yale University 2Microsoft Research 3University of Washington
borui.wang@yale.edu

Abstract

Natural language contains rich logical struc-
tures and logical information, and correctly
detecting and accurately understanding these
logical structures and information underlying
natural language texts is very crucial for NLP
models’ performance on many important NLU
and NLG tasks. Existing pre-trained language
models based on the transformer architecture
mostly adopt a classical design for constructing
their input embeddings that ignores the logical
structures underlying natural language texts,
thus limiting their ability to better capture and
encode key logical information in the input se-
quences. To overcome such limitations, in this
paper we first propose a novel approach to con-
struct logic-aware input embeddings for trans-
former language models through a combination
of logic detection, logic mapping and hierar-
chical logical projections, and then develop a
corresponding new modeling paradigm that can
upgrade existing transformer language models
into logical transformers to boost their perfor-
mance on different NLU and NLG tasks. Our
empirical experiments on four important and
challenging NLU and NLG tasks demonstrate
that our proposed logical transformer language
models can achieve superior performance over
their baseline transformer models through a
deeper understanding of the logical structures
of texts.

1 Introduction

Natural language contains rich logical structures
and logical information (Lakoff, 1970; Van Ben-
them, 1986) that are crucial to a deep and accurate
understanding of its meaning. Therefore, the abil-
ity to correctly detect and accurately understand
the logical structures and information within natu-
ral language texts is very crucial for NLP models’

∗ This work was done when Borui Wang was a research
intern at Microsoft Research.

† This work was done when Daniel McDuff was at Mi-
crosoft Research.

performance on many important Natural Language
Understanding (NLU) and Natural Language Gen-
eration (NLG) tasks.

The types of logics contained in natural language
are very diverse, including not only mathemat-
ically well-defined propositional logic and first-
order logic (Lu et al., 2022; Han et al., 2022), but
also more general types of natural and structural
logical relationships that people frequently use in
natural language texts to convey and communi-
cate their ideas and meanings more effectively and
clearly.

In recent years we have witnessed huge progress
and success in many fields of natural language pro-
cessing brought about by the introduction of all dif-
ferent kinds of pre-trained language models (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2020; Yang
et al., 2019; Clark et al., 2020; Lewis et al., 2020;
Raffel et al., 2020; Zhang et al., 2020) based on
the transformer architecture (Vaswani et al., 2017).
Most existing pre-trained language models adopt
the classical approach for constructing the input
embeddings that are fed into the encoder parts of
the language models, which can be summarized as
the summation of the following three key compo-
nents (Devlin et al., 2019):

(1) Token Embeddings - that are used to encode
and represent the semantics and meaning of
each token in the vocabulary;

(2) Position Embeddings - that are used to encode
the positional information of each token in the
input sequence;

(3) Segment Embeddings - that are used to indi-
cate which segment of the input sequence each
token belongs to.

This classical design of the input embeddings
has been proven to be very effective at capturing
important semantic and positional features from

1762



natural language texts and helping pre-trained lan-
guage models to learn good contextualized repre-
sentations of the input textual sequences (Devlin
et al., 2019). However, it also has a very important
limitation - it doesn’t consider or try to explicitly
encode the logical structures underlying the text
inputs, which are also very crucial for the deep and
accurate understanding of the meaning of the text
inputs.

Therefore, in order to overcome this limitation
and to enable pre-trained language models to better
capture and understand the important logical struc-
tures underlying natural language texts, in this pa-
per we propose a novel approach to construct logic-
aware input embeddings for transformer-based
pre-trained language models and a corresponding
new modeling framework that can upgrade existing
transformer language models into logical trans-
formers to boost their performance on different
NLU and NLG tasks.

Our new approach consists of two major mod-
ules: (1) logic detection and mapping, and (2)
multi-layer hierarchical logical projections. It has
the following key advantages:

• Strong Generalizability: Our proposed new
approach for constructing logic-aware input
embeddings doesn’t alter the main architec-
ture of transformer language models and only
modifies the input embeddings at the front
end before they are fed into the encoder part
of the language models. Therefore, our new
approach enjoys strong generalizability and
can be smoothly added to many different pre-
trained language models based on the trans-
former architecture.

• Consistent Boost in Model Performance: Our
proposed new approach is empirically shown
to consistently boost the performance of differ-
ent transformer language models on different
NLU and NLG tasks.

• Negligible Increase in Model Size: Our pro-
posed new approach will only increase the
number of parameters of transformer language
models by a negligible amount.

• Low Overhead on Training Time: Our pro-
posed new approach will not significantly in-
crease the training time of transformer lan-
guage models by a large amount. The major-
ity of the overhead in training time will come

from the initial text processing steps of logic
detection and logic mapping, which only need
to be executed once before the actual training
epochs start.

2 Logical Relationships and Keywords

In this work, we consider logical relationships in
natural language texts as the underlying relation-
ships among different language constituents that
carry meaningful information regarding logical un-
derstanding and reasoning of the texts. In natu-
ral language, such logical relationships are usually
indicated by logically-connective keywords and
phrases. In this paper, we define a taxonomy of 12
most commonly seen types of logical relationships
and their corresponding sets1 of logical keywords
(including phrases2) for natural language3:

1. Conjunction: a conjunction logical relation-
ship indicates that the two language con-
stituents involved are presented jointly in ad-
dition to each other. Its logical keywords are:

and, as well, as well as, also, at
the same time.

2. Disjunction: a disjunction logical relation-
ship indicates that the two language con-
stituents involved are presented alternatively
next to each other. Its logical keyword is:

or.

3. Negation: a negation logical relationship in-
dicates that the meaning of the language con-
stituent mapped by it is negated. Its logical
keywords are:

not, no, none, n’t, nothing.

4. Conditional: a conditional logical relation-
ship indicates that the content of one language
constituent is the premise of the content of
another language constituent. Its logical key-
words are:

1The sets of logical keywords listed here are not necessarily
the most exhaustive sets that contain all possible keywords in
each category, but rather serve as the preliminary and exemplar
sets that can already cover the majority of the most frequently
appearing logical keywords in real-world texts. These sets are
open to extension.

2For conciseness, in this paper we will use the term ‘logical
keywords’ to refer to both logical keywords and logical key
phrases.

3Here the logical keywords are all defined in English, but
similar categorization of logical relationships and sets of logi-
cal keywords can also be defined in other languages as well.

1763



themforeasytoo

them

for themtoo easy

be too easy for them

be

would be too easy for them

wouldit

it

it would be too easy for thembecause

because it would be too easy for them

that waygo

way

go that way

to go that way

to

not to go that way

not

that

very hard

hardvery

try

try very hard not to go that way because it would be too easy for them

I

IBut

But I try very hard not to go that way because it would be too easy for them.

Contrastive

Negation Causal

.

Figure 1: The constituency parse tree for the example sentence ‘But I try very hard not to go that way because it
would be too easy for them.’ generated by the Berkeley Neural Parser (Kitaev and Klein, 2018).

if, as long as.

5. Negative Conditional: a negative conditional
logical relationship indicates that the negation
of the content of one language constituent is
the premise of the content of another language
constituent. Its logical keywords are:

unless, otherwise.

6. Analogy: an analogy logical relationship in-
dicates that the content of one language con-
stituent is analogous to the content of another
language constituent. Its logical keywords
are:

as if, as though, just as, just
like, likewise, similarly.

7. Comparative: a comparative logical relation-
ship indicates that the two language compo-
nents involved are presented in comparison to
each other. Its logical keywords are:

but, however, in comparison, while,
yet, rather than, unlike, on the
other hand, in contrast, contrary to,
on the contrary.

8. Adversative: an adversative logical relation-
ship indicates that the content of one language
constituent is adversative to the content of
another language constituent. Its logical key-
words are:

nevertheless, nonetheless,
notwithstanding, although, though,
despite, despite of, in spite of,
regardless of, albeit.

9. Temporal: a temporal logical relationship in-
dicates that the content of one language con-
stituent signifies the time when the content of
another language constituent takes place. Its
logical keywords are:

during, after, in, when, since,
before, as, as soon as, while, then,
until, meanwhile.

10. Causal: a causal logical relationship indicates
that the content of one language constituent is
the cause or reason for the content of another
language constituent. Its logical keywords
are:

because, thanks to, since, as a
result, in order to, as, therefore,
hence, so that, due to, thus,
consequently, thereby, now that.

11. Progression: a progression logical relation-
ship indicates that the content of one language
constituent goes one step further on top of the
content of another language constituent. Its
logical keywords are:

moreover, furthermore, in addition,
besides.

12. Example: an example logical relationship in-
dicates that the content of one language con-
stituent exemplifies the content of another lan-
guage constituent. Its logical keywords are:

for example, as an example, like,
such as, for instance, including.

1764



Figure 2: 2-dimensional PCA (Hotelling, 1933) projec-
tion of the contextualized last-layer hidden state vectors
for 20 randomly sampled different occurrences of the
logical keyword ‘since’ encoded by the ALBERT model
(Lan et al., 2020). Occurrences with the causal logical
meaning ‘because’ is colored in pink, and occurrences
with the temporal logical meaning ‘from a time in the
past’ is colored in yellow.

As an example, we sample a news article from
the training set of the CNN/Dailymail dataset (Nal-
lapati et al., 2016) and manually annotate the ap-
pearances of the above defined types of logical
relationship in the article. See Figure 6 for the an-
notation of the logical relationships in this example
article, where the logical keywords associated with
different logical relationships are highlighted with
different colors.

2.1 Categorization of Logical Relationships

According to how many logical components (in the
form of text spans) are associated with each logical
keywords and how different logical components
are mapped by the logical keywords, we categorize
the set of all logical keywords into three different
categories:

2.1.1 Unary Logical Relationships
The logical keywords indicating unary logical re-
lationships are those that each only maps to one
single logical component (text span). For exam-
ple, most keywords of negation relationship and
example relationship are indicating unary logical
relationships, such as not, for example, such as, etc.

2.1.2 Intrinsically-Mapped Binary Logical
Relationships

The logical keywords indicating intrinsically-
mapped binary logical relationships are those that
each maps to two separate logical components (text
spans) that are both contained within the parent
sentence constituent of the logical keyword itself.
For example, most keywords of conjunction rela-

Algorithm 1 Logic Detection and Mapping
Input: Sentence s

Constituency parser C : S → T
Set of logical keywords K

Output: List of logic mapping dictionariesM
1: Run C over s to obtain its constituency parse tree T (s)
2: Nkey(s)← [ ]
3: M← [ ]
4: for each constituent node n in T (S) do
5: if str(n) ∈ K then
6: Nkey(s)← Nkey(s) + n
7: for nk inNkey(s) do
8: Dk ← {}
9: Dk[‘keyword’] = str(nk)

10: if str(nk) ∈ KU then
11: Dk[‘α’] = str( pa(nk) \ nk )
12: else if str(nk) ∈ KBin then
13: Use str(nk) to segment str( pa(nk) ) into 3 seg-

ments: str( pa(nk) ) = A + str(nk) + B
14: Dk[‘α’] = A, Dk[‘β’] = B
15: else if str(nk) ∈ KBex then
16: if ∃ pa(pa(nk)) then
17: Dk[‘α’] = str( pa(pa(nk)) \ pa(nk) )
18: Dk[‘β’] = str( pa(nk) \ nk )
19: else if ∃ another sentence s′ right before s then
20: Dk[‘α’] = s′, Dk[‘β’] = str( pa(nk) \ nk )
21: else
22: Dk[‘α’] = ∅, Dk[‘β’] = str( pa(nk) \ nk )
23: M←M+Dk

24: return M

tionship and disjunction relationship are indicating
intrinsically-mapped binary logical relationships,
such as and, as well as, or, etc.

2.1.3 Extrinsically-Mapped Binary Logical
Relationships

The logical keywords indicating extrinsically-
mapped binary logical relationships are those that
each maps to two separate logical components (text
spans) where one is contained within the parent
sentence constituent of the logical keyword itself
while the other is outside (usually appears before)
the span of this parent sentence constituent. For ex-
ample, most keywords of conditional, comparative,
temporal and causal relationships are indicating
extrinsically-mapped binary logical relationships,
such as if, but, during, because, etc.

3 Logic Detection and Mapping

In this section, we describe our logic detection
and mapping module based on keyword detection
and constituency parsing. For each sentence s in
the source text, we first perform constituency pars-
ing (Kitaev and Klein, 2018) over s to obtain its
constituency parsing tree T (s). In this paper, we
use the Berkeley Neural Parser (Kitaev and Klein,
2018) to perform constituency parsing.

1765



But

But I try …….  them.“People …… months.

keyword

parent

<latexit sha1_base64="c16HAYs8sCFzjk6BmE3oMl7QOLk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvHiMaB6QrGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/k46pUrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3oX1fO780rtOo+jCEdwDKfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz9TEI3P</latexit>

nk

<latexit sha1_base64="yRo1ANztdtvHJ8g6hRyreBPT7qI=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS/LgVvHisYD+gTctmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+bHgGh3n21pZXVvf2Mxt5bd3dvf2CweHDR0lirI6jUSkWj7RTHDJ6shRsFasGAl9wZr+6GbqNx+Y0jyS9ziOmReSgeQBpwSN1O0ge8I0JpOS7I7OeoWiU3ZmsJeJm5EiZKj1Cl+dfkSTkEmkgmjddp0YvZQo5FSwSb6TaBYTOiID1jZUkpBpL51dPbFPjdK3g0iZkmjP1N8TKQm1Hoe+6QwJDvWiNxX/89oJBldeymWcIJN0vihIhI2RPY3A7nPFKIqxIYQqbm616ZAoQtEElTchuIsvL5PGedm9KFfuKsXqdRZHDo7hBErgwiVU4RZqUAcKCp7hFd6sR+vFerc+5q0rVjZzBH9gff4AeAeSeA==</latexit>

pa(nk)

the previous sentence
<latexit sha1_base64="3VILl0VJCn+UrVoMU98Lpger7F4=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA9hV0JPm4BLx6jmAckS5id9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzThBP6IDyUPOqLHSgz7rlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HCKNgRv8eVl0ryoeJeV6n21XLvJ4yjAMZzAOXhwBTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifPz9gjSg=</latexit>

s0
<latexit sha1_base64="6MmxRebE4Cm2FawSQk71fs/islo=">AAACBXicdVDLSgNBEJz1bXxFPephMAh6CZsHbnITvHiMYFTIxjA76dUhs7PLTK8Ylly8+CtePCji1X/w5t84eQgqWtBQU9XNdFeQSGHQdT+cqemZ2bn5hcXc0vLK6lp+fePMxKnm0OSxjPVFwAxIoaCJAiVcJBpYFEg4D3pHQ//8BrQRsTrFfgLtiF0pEQrO0Eqd/LaPcItZwgZ76rK3T30DGAmVGmqfnXzBLXpevVz1qFt0R7CkUqtX6jVamigFMkGjk3/3uzFPI1DIJTOmVXITbGdMo+ASBjk/NZAw3mNX0LJUsQhMOxtdMaC7VunSMNa2FNKR+n0iY5Ex/SiwnRHDa/PbG4p/ea0Uw1o7EypJERQffxSmkmJMh5HQrtDAUfYtYVwLuyvl10wzjja4nA3h61L6PzkrF0sHxepJtXBYn8SxQLbIDtkjJeKRQ3JMGqRJOLkjD+SJPDv3zqPz4ryOW6ecycwm+QHn7RPZvpjM</latexit>

pa(nk) \ nk

<latexit sha1_base64="/FWAmq+z3GXrvBxyQ76jnWxzyzU=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU0jaYtpbwYvHCqYttKFsttt26WYTdidCCf0NXjwo4tUf5M1/47aNoKIPBh7vzTAzL0wE1+A4H1ZhY3Nre6e4W9rbPzg8Kh+fdHScKsp8GotY9UKimeCS+cBBsF6iGIlCwbrh7Hrpd++Z0jyWdzBPWBCRieRjTgkYyR+EDMiwXHFsz2tW6x52bGcFQ2qNZq3ZwG6uVFCO9rD8PhjFNI2YBCqI1n3XSSDIiAJOBVuUBqlmCaEzMmF9QyWJmA6y1bELfGGUER7HypQEvFK/T2Qk0noehaYzIjDVv72l+JfXT2HcCDIukxSYpOtF41RgiPHyczziilEQc0MIVdzciumUKELB5FMyIXx9iv8nnartXtn123ql1czjKKIzdI4ukYs81EI3qI18RBFHD+gJPVvSerRerNd1a8HKZ07RD1hvnzH1jvA=</latexit>

� component
<latexit sha1_base64="09EUrHkbMFZHIm6QLxcEqraGpd8=">AAAB7XicdVBNS8NAEN3Ur1q/qh69LBbBU0jaYppbwYvHCrYW2lAm2027drMJuxuhlP4HLx4U8er/8ea/cdtGUNEHA4/3ZpiZF6acKe04H1ZhbX1jc6u4XdrZ3ds/KB8edVSSSULbJOGJ7IagKGeCtjXTnHZTSSEOOb0NJ5cL//aeSsUScaOnKQ1iGAkWMQLaSJ0+8HQMg3LFsT3Pr9Y97NjOEobUGn7Nb2A3VyooR2tQfu8PE5LFVGjCQame66Q6mIHUjHA6L/UzRVMgExjRnqECYqqC2fLaOT4zyhBHiTQlNF6q3ydmECs1jUPTGYMeq9/eQvzL62U6agQzJtJMU0FWi6KMY53gxet4yCQlmk8NASKZuRWTMUgg2gRUMiF8fYr/J52q7V7Y9et6penncRTRCTpF58hFHmqiK9RCbUTQHXpAT+jZSqxH68V6XbUWrHzmGP2A9fYJ+ZGPZA==</latexit>↵ component

(a) Execution of Algorithm 1 over the logical keyword ‘But’.

because

because it would be too easy for them

try very hard not to go that way because it would be too easy for them

parent

parent

keyword

<latexit sha1_base64="c16HAYs8sCFzjk6BmE3oMl7QOLk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvHiMaB6QrGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/k46pUrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3oX1fO780rtOo+jCEdwDKfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz9TEI3P</latexit>

nk

<latexit sha1_base64="yRo1ANztdtvHJ8g6hRyreBPT7qI=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS/LgVvHisYD+gTctmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+bHgGh3n21pZXVvf2Mxt5bd3dvf2CweHDR0lirI6jUSkWj7RTHDJ6shRsFasGAl9wZr+6GbqNx+Y0jyS9ziOmReSgeQBpwSN1O0ge8I0JpOS7I7OeoWiU3ZmsJeJm5EiZKj1Cl+dfkSTkEmkgmjddp0YvZQo5FSwSb6TaBYTOiID1jZUkpBpL51dPbFPjdK3g0iZkmjP1N8TKQm1Hoe+6QwJDvWiNxX/89oJBldeymWcIJN0vihIhI2RPY3A7nPFKIqxIYQqbm616ZAoQtEElTchuIsvL5PGedm9KFfuKsXqdRZHDo7hBErgwiVU4RZqUAcKCp7hFd6sR+vFerc+5q0rVjZzBH9gff4AeAeSeA==</latexit>

pa(nk)

<latexit sha1_base64="nwBqW746ehyTlRPecCnOdhJUuVk=">AAACAnicbZDLSgMxFIYz9VbrbdSVuAkWod2UGSledgU3LivYC7RjyaRpG5rJDMkZsQzFja/ixoUibn0Kd76NaTugtv4Q+PjPOZyc348E1+A4X1ZmaXlldS27ntvY3NresXf36jqMFWU1GopQNX2imeCS1YCDYM1IMRL4gjX84eWk3rhjSvNQ3sAoYl5A+pL3OCVgrI590AZ2D0lExoUfkrfDYrFj552SMxVeBDeFPEpV7dif7W5I44BJoIJo3XKdCLyEKOBUsHGuHWsWETokfdYyKEnAtJdMTxjjY+N0cS9U5knAU/f3REICrUeBbzoDAgM9X5uY/9VaMfTOvYTLKAYm6WxRLxYYQjzJA3e5YhTEyAChipu/YjogilAwqeVMCO78yYtQPym5p6XydTlfuUjjyKJDdIQKyEVnqIKuUBXVEEUP6Am9oFfr0Xq23qz3WWvGSmf20R9ZH99H65dS</latexit>

pa(pa(nk))
<latexit sha1_base64="P+68BN5f6KEe2nuR729SPQreEq8=">AAACG3icdVDLSgNBEJz1bXxFPXoZDIJell1NYvYmePEYwaiQxDA76eiQ2dllplcMS/7Di7/ixYMingQP/o2Th/hACxqKqm66u8JECoOe9+5MTE5Nz8zOzecWFpeWV/Kra6cmTjWHGo9lrM9DZkAKBTUUKOE80cCiUMJZ2D0c+GfXoI2I1Qn2EmhG7FKJjuAMrdTK7zYQbjBLWH/7i6mL7s4ObRjASKjU0J9OK1/wXK9cDkpF6rml0p5fDCwJgkrJ96jvekMUyBjVVv610Y55GoFCLpkxdd9LsJkxjYJL6OcaqYGE8S67hLqlikVgmtnwtz7dskqbdmJtSyEdqt8nMhYZ04tC2xkxvDK/vYH4l1dPsVNpZkIlKYLio0WdVFKM6SAo2hYaOMqeJYxrYW+l/IppxtHGmbMhfH5K/yenu65fdovHxcJBMI5jjmyQTbJNfLJPDsgRqZIa4eSW3JNH8uTcOQ/Os/Myap1wxjPr5Aectw9CMKIr</latexit>

pa(pa(nk)) \ pa(nk)

<latexit sha1_base64="BuT9ZmLmagCyRtDmRN68DIgOo3w=">AAACBXicdVA9SwNBEN3z2/gVtdRiMQjaHHeaxFwn2FhGMCokMextJrpkb+/YnRPDkcbGv2JjoYit/8HOf+PmQ1DRBwNv35thZ16YSGHQ8z6cicmp6ZnZufncwuLS8kp+de3MxKnmUOOxjPVFyAxIoaCGAiVcJBpYFEo4D7tHA//8BrQRsTrFXgLNiF0p0RGcoZVa+c0Gwi1mCevvqMvuLm0YwEio1FD7bOULnuuVy0GpSD23VNr3i4ElQVAp+R71XW+IAhmj2sq/N9oxTyNQyCUzpu57CTYzplFwCf1cIzWQMN5lV1C3VLEITDMbXtGn21Zp006sbSmkQ/X7RMYiY3pRaDsjhtfmtzcQ//LqKXYqzUyoJEVQfPRRJ5UUYzqIhLaFBo6yZwnjWthdKb9mmnG0weVsCF+X0v/J2Z7rl93iSbFwGIzjmCMbZIvsEJ8ckENyTKqkRji5Iw/kiTw7986j8+K8jlonnPHMOvkB5+0T7LaY2Q==</latexit>

pa(nk) \ nk

component<latexit sha1_base64="fGl0e7nb19o0zIPEejxqfbip4uQ=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ0ZnamdXcOOygn1AO5RMmraxmWRIMkIZ+g9uXCji1v9x59+YPgQVPXDhcM693HtPnHKmDUIfzsrq2vrGZmGruL2zu7dfOjhsapkpQhtEcqnaMdaUM0EbhhlO26miOIk5bcXjq5nfuqdKMyluzSSlUYKHgg0YwcZKzS7m6Qj3SmXkokolDHyI3CC48PzQkjCsBh6CnovmKIMl6r3Se7cvSZZQYQjHWnc8lJoox8owwum02M00TTEZ4yHtWCpwQnWUz6+dwlOr9OFAKlvCwLn6fSLHidaTJLadCTYj/dubiX95ncwMqlHORJoZKshi0SDj0Eg4ex32maLE8IklmChmb4VkhBUmxgZUtCF8fQr/J81z16u4/o1froXLOArgGJyAM+CBS1AD16AOGoCAO/AAnsCzI51H58V5XbSuOMuZI/ADztsnDJiPcQ==</latexit>↵
<latexit sha1_base64="1t+eZUYFJcW/98Ub0gkUDmryg+o=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFSaa1GZXcOOygmkLbSiT6aQdOpmEmYlQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE2WcKY3Qh1VaW9/Y3CpvV3Z29/YPqodHbZXmktCApDyV3QgrypmggWaa024mKU4iTjvR5Hrud+6pVCwVd3qa0TDBI8FiRrA2UtCPqMaDag3ZqF73PRci2/MuHdc3xPcbnoOgY6MFamCF1qD63h+mJE+o0IRjpXoOynRYYKkZ4XRW6eeKZphM8Ij2DBU4oSosFsfO4JlRhjBOpSmh4UL9PlHgRKlpEpnOBOux+u3Nxb+8Xq7jRlgwkeWaCrJcFOcc6hTOP4dDJinRfGoIJpKZWyEZY4mJNvlUTAhfn8L/SfvCduq2e+vWmv4qjjI4AafgHDjgCjTBDWiBABDAwAN4As+WsB6tF+t12VqyVjPH4Aest09E7Y79</latexit>

� component

(b) Execution of Algorithm 1 over the logical keyword ‘be-
cause’.

not to go that way

not

keyword

<latexit sha1_base64="UFwEZuk2FaxYq1aloAXzOin9fss=">AAAB83icbVDLSgNBEOz1GeMr6tHLYhCSS9iVoJ4k4MVjBPOAZA2zk9lkyOzsMNMrhJDf8OJBEa/+jDf/xkmyB00saCiquunuCpXgBj3v21lb39jc2s7t5Hf39g8OC0fHTZOkmrIGTUSi2yExTHDJGshRsLbSjMShYK1wdDvzW09MG57IBxwrFsRkIHnEKUErdQ3qkiIl+Tgql3uFolfx5nBXiZ+RImSo9wpf3X5C05hJpIIY0/E9hcGEaORUsGm+mxqmCB2RAetYKknMTDCZ3zx1z63Sd6NE25LoztXfExMSGzOOQ9sZExyaZW8m/ud1UoyugwmXKkUm6WJRlAoXE3cWgNvnmlEUY0sI1dze6tIh0YSijSlvQ/CXX14lzYuKf1mp3leLtZssjhycwhmUwIcrqMEd1KEBFBQ8wyu8Oanz4rw7H4vWNSebOYE/cD5/APXskPo=</latexit>

str(pa(nk))

<latexit sha1_base64="6UTCCfj3P0ZZiqAfdHVTj0kw6TQ=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS1JMUvHisYD+gTctmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+bHgGh3n21pZXVvf2Mxt5bd3dvf2CweHDR0lirI6jUSkWj7RTHDJ6shRsFasGAl9wZr+6GbqNx+Y0jyS9ziOmReSgeQBpwSN1O0ge8I0JpOS7I7OeoWiU3ZmsJeJm5EiZKj1Cl+dfkSTkEmkgmjddp0YvZQo5FSwSb6TaBYTOiID1jZUkpBpL51dPbFPjdK3g0iZkmjP1N8TKQm1Hoe+6QwJDvWiNxX/89oJBldeymWcIJN0vihIhI2RPY3A7nPFKIqxIYQqbm616ZAoQtEElTchuIsvL5PGedm9KFfuKsXqdRZHDo7hBErgwiVU4RZqUAcKCp7hFd6sR+vFerc+5q0rVjZzBH9gff4AeYiSfQ==</latexit>

pa(nk)

<latexit sha1_base64="yRo1ANztdtvHJ8g6hRyreBPT7qI=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS/LgVvHisYD+gTctmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+bHgGh3n21pZXVvf2Mxt5bd3dvf2CweHDR0lirI6jUSkWj7RTHDJ6shRsFasGAl9wZr+6GbqNx+Y0jyS9ziOmReSgeQBpwSN1O0ge8I0JpOS7I7OeoWiU3ZmsJeJm5EiZKj1Cl+dfkSTkEmkgmjddp0YvZQo5FSwSb6TaBYTOiID1jZUkpBpL51dPbFPjdK3g0iZkmjP1N8TKQm1Hoe+6QwJDvWiNxX/89oJBldeymWcIJN0vihIhI2RPY3A7nPFKIqxIYQqbm616ZAoQtEElTchuIsvL5PGedm9KFfuKsXqdRZHDo7hBErgwiVU4RZqUAcKCp7hFd6sR+vFerc+5q0rVjZzBH9gff4AeAeSeA==</latexit>

pa(nk)

<latexit sha1_base64="c16HAYs8sCFzjk6BmE3oMl7QOLk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvHiMaB6QrGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/k46pUrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3oX1fO780rtOo+jCEdwDKfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz9TEI3P</latexit>

nk

parent

<latexit sha1_base64="NtTTl0iLeaz13zfZPKc9PgrG9jQ=">AAACAnicbVDLTgIxFO3gC/GFujJuGsHEFZkhILAjceMSE3kkQEinFGjotJP2jpFMiBt/xY0LjXHrV7jzbyyPhaInaXJyzj25vccPBTfgul9OYm19Y3MruZ3a2d3bP0gfHjWMijRldaqE0i2fGCa4ZHXgIFgr1IwEvmBNf3w185t3TBuu5C1MQtYNyFDyAacErNRLn2Q7RIQjksUdYPcQUxWESjIJ01464+bKxVKxUMBuruDlK+WKJe4c2FuSDFqi1kt/dvqKRoENU0GMaXtuCN2YaOBUsGmqExkWEjomQ9a2VJKAmW48P2GKz63SxwOl7ZOA5+rPREwCYyaBbycDAiOz6s3E/7x2BINyN+YyjIBJulg0iAQGhWd94D7XjIKYWEKo5vavmI6IJhRsaylbgrd68l/SyOe8y1zhJp+pVpZ1JNEpOkMXyEMlVEXXqIbqiKIH9IRe0Kvz6Dw7b877YjThLDPH6Becj2+ltZeb</latexit>

↵ component

<latexit sha1_base64="eVkztoFe5zAyggC3GUB8oOuMoq4=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4CklJbXsrePFYwX5AG8pku2nXbjZhdyOU0P/gxYMiXv0/3vw3btsctPpg4PHeDDPzgoQzpR3ny9rY3Nre2S3sFfcPDo+OSyenHRWnktA2iXksewEoypmgbc00p71EUogCTrvB9Gbhdx+pVCwW93qWUD+CsWAhI6CN1BkATyYwLJUdu16tVT0PO7bnVhr1hiHOEtjNSRnlaA1Ln4NRTNKICk04KNV3nUT7GUjNCKfz4iBVNAEyhTHtGyogosrPltfO8aVRRjiMpSmh8VL9OZFBpNQsCkxnBHqi1r2F+J/XT3VY9zMmklRTQVaLwpRjHePF63jEJCWazwwBIpm5FZMJSCDaBFQ0IbjrL/8lnYrtXtvenVduNvI4CugcXaAr5KIaaqJb1EJtRNADekIv6NWKrWfrzXpftW5Y+cwZ+gXr4xvsWo9a</latexit>↵ component

<latexit sha1_base64="Dsco2EY4KjZJ3ZkeSDD+Q8MR0XE=">AAACBXicbVA9SwNBEN3z2/h1aqnFYhBiE+7k1KQL2FhGMFFIYtjbTHTJ3t6xOyeGI42Nf8XGQhFb/4Od/8bNR6HRBwNv35thZ16YSGHQ876cmdm5+YXFpeXcyura+oa7uVU3cao51HgsY30VMgNSKKihQAlXiQYWhRIuw97p0L+8A21ErC6wn0ArYjdKdAVnaKW2u9tEuMcsYYOCuu4d0KYBjIRKDbXPtpv3iqWjk6MgoF4x8A/LpbIl3gjUn5A8maDadj+bnZinESjkkhnT8L0EWxnTKLiEQa6ZGkgY77EbaFiqWASmlY2uGNB9q3RoN9a2FNKR+nMiY5Ex/Si0nRHDWzPtDcX/vEaK3VIrEypJERQff9RNJcWYDiOhHaGBo+xbwrgWdlfKb5lmHG1wORuCP33yX1I/LPrHxeA8yFfKkziWyA7ZIwXikxNSIWekSmqEkwfyRF7Iq/PoPDtvzvu4dcaZzGyTX3A+vgHMh5jC</latexit>

pa(nk) \ nk

(c) Execution of Algorithm 1 over the logical keyword ‘not’.

Figure 3: An example execution of Algorithm 1 on the
example sentence ‘But I try very hard not to go that way
because it would be too easy for them.’ over the three
detected logical keywords ‘But’, ‘because’, ‘not’.

Then we search through all the constituent nodes
in T (s) to detect the ones that exactly matches
the keyword strings of the logical keywords as de-
fined in Section 2. Let Nkey(s) denote the set
of constituent node in T (s) that matches logical
keywords. Then for each logical keyword node
nk ∈ Nkey(s), we fetch its parent constituent node
pa(nk). Now we have three different cases:

1. If nk corresponds to a unary logical relation-
ship (i.e. negation and example), then the α
component of nk is detected as: pa(nk) \ nk.

But becausenotI try very hard to go that way it would be too easy for them  .

negation

<latexit sha1_base64="/FWAmq+z3GXrvBxyQ76jnWxzyzU=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU0jaYtpbwYvHCqYttKFsttt26WYTdidCCf0NXjwo4tUf5M1/47aNoKIPBh7vzTAzL0wE1+A4H1ZhY3Nre6e4W9rbPzg8Kh+fdHScKsp8GotY9UKimeCS+cBBsF6iGIlCwbrh7Hrpd++Z0jyWdzBPWBCRieRjTgkYyR+EDMiwXHFsz2tW6x52bGcFQ2qNZq3ZwG6uVFCO9rD8PhjFNI2YBCqI1n3XSSDIiAJOBVuUBqlmCaEzMmF9QyWJmA6y1bELfGGUER7HypQEvFK/T2Qk0noehaYzIjDVv72l+JfXT2HcCDIukxSYpOtF41RgiPHyczziilEQc0MIVdzciumUKELB5FMyIXx9iv8nnartXtn123ql1czjKKIzdI4ukYs81EI3qI18RBFHD+gJPVvSerRerNd1a8HKZ07RD1hvnzH1jvA=</latexit>

�comparative

causal <latexit sha1_base64="fGl0e7nb19o0zIPEejxqfbip4uQ=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ0ZnamdXcOOygn1AO5RMmraxmWRIMkIZ+g9uXCji1v9x59+YPgQVPXDhcM693HtPnHKmDUIfzsrq2vrGZmGruL2zu7dfOjhsapkpQhtEcqnaMdaUM0EbhhlO26miOIk5bcXjq5nfuqdKMyluzSSlUYKHgg0YwcZKzS7m6Qj3SmXkokolDHyI3CC48PzQkjCsBh6CnovmKIMl6r3Se7cvSZZQYQjHWnc8lJoox8owwum02M00TTEZ4yHtWCpwQnWUz6+dwlOr9OFAKlvCwLn6fSLHidaTJLadCTYj/dubiX95ncwMqlHORJoZKshi0SDj0Eg4ex32maLE8IklmChmb4VkhBUmxgZUtCF8fQr/J81z16u4/o1froXLOArgGJyAM+CBS1AD16AOGoCAO/AAnsCzI51H58V5XbSuOMuZI/ADztsnDJiPcQ==</latexit>↵
<latexit sha1_base64="1t+eZUYFJcW/98Ub0gkUDmryg+o=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFSaa1GZXcOOygmkLbSiT6aQdOpmEmYlQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE2WcKY3Qh1VaW9/Y3CpvV3Z29/YPqodHbZXmktCApDyV3QgrypmggWaa024mKU4iTjvR5Hrud+6pVCwVd3qa0TDBI8FiRrA2UtCPqMaDag3ZqF73PRci2/MuHdc3xPcbnoOgY6MFamCF1qD63h+mJE+o0IRjpXoOynRYYKkZ4XRW6eeKZphM8Ij2DBU4oSosFsfO4JlRhjBOpSmh4UL9PlHgRKlpEpnOBOux+u3Nxb+8Xq7jRlgwkeWaCrJcFOcc6hTOP4dDJinRfGoIJpKZWyEZY4mJNvlUTAhfn8L/SfvCduq2e+vWmv4qjjI4AafgHDjgCjTBDWiBABDAwAN4As+WsB6tF+t12VqyVjPH4Aest09E7Y79</latexit>

�causal

Figure 4: Detected logical structure for an example
sentence ‘But I try very hard not to go that way because
it would be too easy for them.’ taken from the example
article in Figure 6.

2. If nk corresponds to a binary logical re-
lationship and the relationship is intrinsi-
cally mapped, then str(pa(nk)) will be di-
vided by str(nk) into three different segments:
str(pa(nk)) = A + str(nk) + B. Now the α
component of nk is detected as A and the β
component of nk is detected as B.

3. If nk corresponds to a binary logical rela-
tionship and the relationship is extrinsically
mapped, then the α component of nk is de-
tected as: pa(pa(nk))\pa(nk), and the β com-
ponent of nk is detected as: pa(nk) \ nk.

Our proposed methods for logic detection and
mapping described above are summarized in Algo-
rithm 1. See Figure 3 for an example of executing
Algorithm 1 on an example sentence taken from
the example article in Figure 6, based on the con-
stituency parsing tree depicted in Figure 1.

3.1 Sense Disambiguation of Logical
Keywords

In English, certain logical keywords have multiple
meanings and can indicate different logical rela-
tionships under different contexts. For example,
the logical keyword ‘since’ has two different mean-
ings: (1) ‘from a time in the past’, which indi-
cates a temporal logical relationship; (2) ‘because’,
which indicates a causal logical relationship. In
our categorization of logical relationships and key-
words (described in Section 2), there are a total of
3 keywords that can have multiple logical mean-
ings: since, as, and while. Therefore, in order to
increase accuracy of our proposed logic detection
module, we need to first perform accurate logical
sense disambiguation when we detect these logi-
cally ambiguous keywords.

In our empirical experiments over a set of ran-
domly sampled sentences that contain ambiguous
logical keywords, each manually-labelled with its
ground-truth logical relationship under the context,

1766



we found that different uses of ambiguous logical
keywords have very strong clustering tendency and
are largely linearly-separable under the contextu-
alized encoding of transformer language models.
For example, we use the ALBERT model (Lan
et al., 2020) to encode 20 different occurrences
of the logical keyword ‘since’ randomly sampled
from the CNN/Dailymail dataset (Nallapati et al.,
2016), and project the last-layer hidden state vec-
tors for these 20 ‘since’ onto their first two principal
components using Principal Component Analysis
(PCA) (Hotelling, 1933), which is depicted in Fig-
ure 2. As we can see from Figure 2 the contextual-
ized embeddings of the logical keyword ‘since’ are
largely linearly separable between the two different
logical meanings.

Therefore, in order to improve the accuracy of
our logic detection module, we first manually col-
lected logical relationship annotations for the set
of ambiguous logical keywords in English. Then
we encode them using the ALBERT model (Lan
et al., 2020) and train individual support vector
machine (SVM) (Cortes and Vapnik, 1995) classi-
fiers for each of the ambiguous logical keywords
to accurately disambiguate their different logical
meanings.

4 Logical Transformers

4.1 Logical Embedding Vectors

The major new parameters that we introduce in
our proposed modeling framework of logical trans-
formers are a set of parametrized and trainable log-
ical embedding vectors. These logical embedding
vectors share the same dimensionality, but their
dimensionality doesn’t necessarily equal to the di-
mensionality of the transformer language model’s
token embedding vectors. Below we describe how
to construct these logical embedding vectors in de-
tail.

First of all, the 12 types of logical relationships
we defined in Section 6 can be classified into two
different categories: (1) ‘unary logical relationship’
that maps to only one logical component; (2) ‘bi-
nary logical relationship’ that maps to two logical
components. More specifically, negation and ex-
ample are unary logical relationships and all the
other 10 types are binary logical relationships.

For each unary logical relationship U , we con-
struct two parametrized logical embedding vectors:
vUkey and vU . In the logical embedding layer of U ,
we assign vUkey to each token detected to be part of

concatenate

linear projection

linear projection

Tokeni’s 
Token Embedding

linear projection

Tokeni’s Logical 
Embedding @ Level 3

+
Tokeni’s Segment Embedding

+
Tokeni’s Position Embedding

Tokeni+1TokeniTokeni-1 TokenNToken1 … …

Tokeni’s Logical 
Embedding @ Level 2

Tokeni’s Logical 
Embedding @ Level 1

Pre-Trained Language Model

activation

activation

activation

+
Tokeni’s Token Embedding

Figure 5: Illustration of our proposed multi-layer hier-
archical logical projections for an example token with
logic depth K = 3.

an appearance of some logical keyword in U , and
assign vU to all the tokens that are within some text
span mapped by some logical keyword in U .

For each binary logical relationship B, we con-
struct three parametrized logical embedding vec-
tors: vBkey, vBα and vBβ . In the logical embedding
layer of B, we assign vBkey to each token detected to
be part of an appearance of some logical keyword
in B, assign vBα to all the tokens that are within
some left text span mapped by some logical key-
word in B, and assign vBβ to all the tokens that
are within some right text span mapped by some
logical keyword in B.

And finally we construct another special
parametrized logical embedding vector vE that cor-
responds to empty logical association. For each to-
ken that doesn’t belong to any logical relationships
in a logical embedding layer, it will be assigned vE

1767



Logical Sentence Tokens

Embeddings But I try very hard not to go that way bec. it wld be too easy for them .

Comparative key β β β β β β β β β β β β β β β β β β

Causal - - α α α α α α α α key β β β β β β β -

Negation - - - - - key α α α α - - - - - - - - -

Table 1: Illustration of our proposed multi-layer logical embeddings for an example sentence ‘But I try very hard not
to go that way because it would be too easy for them.’ taken from the example article in Figure 6. The assignment
of logical embedding vectors are based on the parsed logical structure depicted in Figure 4. In the second row the
token ‘because’ is abbreviated into ‘bec.’ and the token ‘would’ is abbreviated into ‘wld’ due to space limit.

for this layer. See Table 1 for a concrete example
of assigning multiple layers of logical embedding
vectors to tokens in an input sequence based on the
results of logic detection and mapping.

Therefore, based on the 12 different types of
logical relationships that we defined in Section 6,
we will construct a total of 2×2+10×3+1 = 35
different logical embedding vectors for our logical
transformers.

4.2 Multi-Layer Hierarchical Logical
Projections

Now we describe how to compute the logic-aware
input embeddings through multi-layer hierarchi-
cal logical projections using the set of logical em-
bedding vectors that we defined in Section 4.1.
Let Nlogic denote the dimensionality of the logi-
cal embedding vectors, and let N denote the di-
mensionality of the token embedding vectors of
the transformer language model. We first define
a parametrized and trainable linear transformation
layer L that projects a (N +Nlogic)-dimensional
vector into an N -dimensional vector.

Then for each token t in the input token se-
quence, we collect all the logical embedding vec-
tors assigned to it during the logic detection and
mapping process and sort them in order according
to their associated logical keywords’ depth in the
constituency parse tree of the input sentence. Let’s
denote this sorted set of all the logical embedding
vectors assigned to token t as: {v1t , ..., vKt }, where
K is the maximum number of logical layers to be
considered and should be treated as a hyperparam-
eter.

Now let’s denote the original token embedding
vector for token t as wt, then to compute a logic-
aware token embedding vector wlogic

t for t, we first
initialize u0t = wt, and then recursively apply the
following computation4:

4This series of (linear projection + nonlinear activation)
can also be replaced by a series of multilayer perceptrons.

uit = f(L(ui−1
t ⊕ vit)),

for i = 1, ...,K, where ⊕ denotes vector con-
catenation and f is some non-linear activation func-
tion, such as GELU (Hendrycks and Gimpel, 2016).
Then we have:

wlogic
t = wt + uKt .

Now let pt denote the position embedding vector
of token t and st denote the segment embedding
vector of token t, then the final logic-aware input
embedding vector for each token t in the input se-
quence would be computed as: wlogic

t + pt + st.
Then at the front end of our proposed logical trans-
formers, we use these logic-aware input embed-
dings to replace the traditional input embeddings
and feed them into transformer encoders to help
language models better encode and learn logical
information from the textual inputs. See Figure 5
for an illustration of multi-layer hierarchical logical
projections for an example token with logic depth
K = 3.

4.3 Model Training
During the training of our proposed logical trans-
formers, we set both the set of 35 logical embed-
ding vectors and the linear transformation layer L
to be fully parametrized and trainable, and then ini-
tialize them with random values. All these added
new parameters will be updated together with the
original trainable parameters in the transformer lan-
guage models during the model training process.

4.4 Negligible Increase in Model Size
The only new parameters introduced in our pro-
posed logical transformers, compared with their
corresponding baseline transformer language mod-
els, are the set of 35 logical embedding vectors and
the linear transformation linear L used in hierar-
chical logical projections. Let Nlogic denote the di-
mensionality of the logical embedding vectors, then

1768



ReClor LogiQA DREAM

Model Acc Acc Acc

RoBERTa-large 62.6 35.3 82.1
Logical-RoBERTa-large 67.4 37.8 84.9

Table 2: Our NLU experiment results on the ReClor
dataset (Yu et al., 2020), the LogiQA dataset (Liu et al.,
2020) and the DREAM dataset (Sun et al., 2019). Acc
denotes accuracy percentage. The higher value in each
pair of comparison is highlighted in bold.

DialogSum

Model R-1 R-2 R-L R-LSum

BART-large 46.10 20.32 38.04 40.98
Logical-BART-large 46.97 20.69 38.33 41.30

Table 3: Our NLG experiment results on the DialogSum
dataset (Chen et al., 2021). The higher value in each
pair of comparison is highlighted in bold.

the total increase in model size can be calculated
as: Nlogic×35+(N+Nlogic)×Nlogic+Nlogic =
N2

logic +N ·Nlogic + 36Nlogic.
For all the recently proposed transformer lan-

guage models, this increase in model size is rather
small and negligible compared with their very
large number of parameters. For example, for
the RoBERTa-large model (Liu et al., 2019), its
total number of parameters is 355M and the di-
mensionality of its embedding vectors is 1024. If
we set Nlogic = 1024 as well, then after we use
our proposed new modeling paradigm to upgrade
RoBERTa-large into Logical-RoBERTa-large, the
percentage of increase in model size is only:
(10242 + 1024 × 1024 + 36 × 1024) ÷ 355M ≈
0.601%, which is almost negligible. This efficiency
in model size guarantees that the logical transform-
ers take roughly the same amount of computation
time during both training and inference as their
baseline transformer language models.

5 Experiments

In order to evaluate our proposed logical trans-
former architecture’s performance boost on differ-
ent NLU and NLG tasks with different transformer
language models, in our experiments, we test it on
three NLU datasets and one NLG dataset.

5.1 Natural Language Understanding Tasks

In the NLU part of our experiments, we test the
RoBERTa model (Liu et al., 2019) and our Logical-

RoBERTa model on three logically-challenging nat-
ural language understanding tasks over three corre-
sponding datasets: (1) reading comprehension on
the ReClor dataset (Yu et al., 2020); (2) question
answering on the LogiQA dataset (Liu et al., 2020);
and (3) dialogue-based reading comprehension on
the DREAM dataset (Sun et al., 2019). All of these
three datasets require logical reasoning.

5.2 Natural Language Generation Task

In the NLG part of our experiments, we test the
BART model (Lewis et al., 2020) and our Logical-
BART model on the task of dialogue summariza-
tion over the DialogSum (Chen et al., 2021) dataset.

5.3 Results

The results of our three NLU experiments are
shown in Table 2, and the results of NLG experi-
ment are shown in Table 3. As we can see from
Table 2 and Table 3, the accuracy scores and the
ROUGE scores of our logical transformer language
models are consistently higher than their corre-
sponding baseline transformer language models
across all the different NLU and NLG tasks. This
consistent boost demonstrates that the important
logical structures and information extracted and
captured by our proposed logical transformers are
indeed very effective and useful in further improv-
ing transformer language models’ performance on
logically-challenging NLU and NLG tasks.

6 Related Work

Recently there has been increasing interest in im-
proving pre-trained language models’ logical rea-
soning ability (Xu et al., 2022; Pi et al., 2022).
For example, Lu et al. (2022) proposed a new
method for parsing natural language into the forms
of propositional logic and first-order logic using
dual reinforcement learning. Pi et al. (2022) pro-
posed a new unsupervised adversarial pre-training
method, called LogiGAN, in order to enhance lan-
guage models’ abilities of logical reasoning. Xu
et al. (2022) proposed a new Logiformer archi-
tecture based on a two-branch graph transformer
network to improve language models’ performance
on interpretable logical reasoning.

In contrast to these previous work that mostly
focus on introducing new training methods or con-
structing complex model architectures, our pro-
posed method in this paper only modifies the in-
put embeddings and is thus more straightforward

1769



LONDON, England (Reuters) -- Harry Potter star Daniel Radcliffe gains access to a reported £20 million ($41.1 million) 
fortune as he turns 18 on Monday, but he insists the money won't cast a spell on him. Daniel Radcliffe as Harry Potter in 
"Harry Potter and the Order of the Phoenix" To the disappointment of gossip columnists around the world, the young 
actor says he has no plans to fritter his cash away on fast cars, drink and celebrity parties. "I don't plan to be one of those 
people who, as soon as they turn 18, suddenly buy themselves a massive sports car collection or something similar," he 
told an Australian interviewer earlier this month. "I don't think I'll be particularly extravagant. "The things I like buying are 
things that cost about 10 pounds -- books and CDs and DVDs." At 18, Radcliffe will be able to gamble in a casino, buy a 
drink in a pub or see the horror film "Hostel: Part II," currently six places below his number one movie on the UK box 
office chart. Details of how he'll mark his landmark birthday are under wraps. His agent and publicist had no comment on 
his plans. "I'll definitely have some sort of party," he said in an interview. "Hopefully none of you will be reading about it." 
Radcliffe's earnings from the first five Potter films have been held in a trust fund which he has not been able to touch. 
Despite his growing fame and riches, the actor says he is keeping his feet firmly on the ground. "People are always 
looking to say 'kid star goes off the rails,'" he told reporters last month. "But I try very hard not to go that way because it 
would be too easy for them." His latest outing as the boy wizard in "Harry Potter and the Order of the Phoenix" is 
breaking records on both sides of the Atlantic and he will reprise the role in the last two films. Watch I-Reporter give her 
review of Potter's latest » . There is life beyond Potter, however. The Londoner has filmed a TV movie called "My Boy 
Jack," about author Rudyard Kipling and his son, due for release later this year. He will also appear in "December Boys," 
an Australian film about four boys who escape an orphanage. Earlier this year, he made his stage debut playing a tortured 
teenager in Peter Shaffer's "Equus." Meanwhile, he is braced for even closer media scrutiny now that he's legally an adult: 
"I just think I'm going to be more sort of fair game," he told Reuters. E-mail to a friend . Copyright 2007 Reuters. All 
rights reserved.This material may not be published, broadcast, rewritten, or redistributed.

Figure 6: Detected logical keywords in an example article from the CNN/Dailymail dataset (Nallapati et al., 2016).
It contains 7 different types of logical relationships: conjunction, disjunction, negation, comparative, adversative,
temporal, and causal.

and easily generalizable to different types of trans-
former language models.

7 Conclusion

In this paper we introduced a new modeling
paradigm for transformer language models that
detects and extracts important logical structures
and information from input texts and then inte-
grates them into the input embeddings through
carefully designed multi-layer hierarchical logical
projections to infuse logical structures into pre-
trained language models. Our empirical experi-
ments on four important and challenging NLU and
NLG tasks showed that our proposed logical trans-
former language models consistently perform bet-
ter than their corresponding baseline transformer
language models through a deeper understanding
of the key logical structures underlying natural lan-
guage texts.

8 Limitations

In theory, the method proposed in this paper can
be applied to different types of transformer lan-
guage models for both pre-training and fine-tuning.
Due to limit of computational resource, we cur-
rently haven’t had the chance to test our proposed
method in the very promising setting of large-scale
language model pre-training yet. In future work,

we plan to further test our proposed logical trans-
former architecture on large-scale language model
pre-training to see how much performance boost it
can achieve.

References

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions (ICLR).

Corinna Cortes and Vladimir Naumovich Vapnik. 1995.
Support-vector networks. Machine Learning, 20:273–
297.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

1770

https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq R. Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir R. Radev. 2022. Folio: Natu-
ral language reasoning with first-order logic. ArXiv,
abs/2209.00840.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Harold Hotelling. 1933. Analysis of a complex of sta-
tistical variables into principal components. Journal
of Educational Psychology, 24:498–520.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

George Lakoff. 1970. Linguistics and natural logic.
Synthese.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations (ICLR).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 3622–3628. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong,
Chenhao Xie, Junyang Huang, Yanghua Xiao, and
Wenguang Wang. 2022. Parsing natural language
into propositional and first-order logic with dual re-
inforcement learning. In Proceedings of the 29th

International Conference on Computational Linguis-
tics, pages 5419–5431, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Xinyu Pi, Wanjun Zhong, Yan Gao, Nan Duan, and
Jian-Guang Lou. 2022. Logigan: Learning logi-
cal reasoning via adversarial pre-training. ArXiv,
abs/2205.08794.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. DREAM: A challenge data
set and models for dialogue-based reading compre-
hension. Transactions of the Association for Compu-
tational Linguistics, 7:217–231.

Johan Van Benthem. 1986. Essays in logical semantics.
Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Fangzhi Xu, Jun Liu, Qika Lin, Yudai Pan, and Lin-
gling Zhang. 2022. Logiformer: A two-branch graph
transformer network for interpretable logical reason-
ing. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’22, page 1055–1065,
New York, NY, USA. Association for Computing
Machinery.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Neural Information Process-
ing Systems.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

1771

https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3477495.3532016
https://doi.org/10.1145/3477495.3532016
https://doi.org/10.1145/3477495.3532016
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 8

�7 A2. Did you discuss any potential risks of your work?
There are no potential risks of our work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1772

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3 and Section 5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1773


