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Abstract

Large language models (LLMs) have led to
a series of breakthroughs in natural language
processing (NLP), partly owing to the mas-
sive amounts of world knowledge they mem-
orize during pretraining. While many down-
stream applications provide the model with
an informational context to aid its underlying
task, how the model’s world knowledge inter-
acts with the factual information presented in
the context remains under explored. As a de-
sirable behavior, an LLM should give prece-
dence to the context whenever it contains task-
relevant information that conflicts with the
model’s memorized knowledge. This enables
model predictions to be grounded in the con-
text, which then facilitates updating specific
model predictions without frequently retrain-
ing the model. By contrast, when the context
is irrelevant to the task, the model should ig-
nore it and fall back on its internal knowledge.
In this paper, we undertake a first joint study
of the aforementioned two properties, namely
controllability and robustness, in the context
of LLMs. We demonstrate that state-of-the-
art T5 and PaLM models (both pretrained
and finetuned) could exhibit low controlla-
bility and robustness that does not improve
with increasing the model size. As a solu-
tion, we propose a simple yet effective method
– knowledge aware finetuning (KAFT) – to
strengthen both controllability and robustness
by injecting counterfactual and irrelevant con-
texts to standard supervised datasets. Our com-
prehensive evaluation showcases the utility of
KAFT across model architectures and sizes.

1 Introduction

Large language models (LLMs) pretrained on large
scale datasets have shown promising results across
natural language tasks (Vaswani et al., 2017; Devlin
et al., 2019; Raffel et al., 2020a; Brown et al., 2020;
Rae et al., 2021; Chowdhery et al., 2022; Smith
et al., 2022). However, as models scale ever larger,

they become more expensive to train, making it
unrealistic to frequently update model parameters.
On the other hand, many real world applications
often necessitate adjusting model behavior. This
dilemma is especially sharp in the case of factual
(world) knowledge that plays important role in re-
alizing impressive performance of LLMs. It is
well known that LLMs memorize large amounts
of factual knowledge in their parameters (Petroni
et al., 2019; Roberts et al., 2020; Geva et al., 2021),
which could potentially be out-dated or incorrect.
Even for moderate-size models, it is prohibitively
expensive to retrain every time an update happens
or a mistake is uncovered. Even if resources are
ample, it is difficult to ensure that the modification
of model parameters do not affect unrelated skills
or knowledge.

In human cognition, working memory (George
A. Miller, 1960) provides the biological brain with
the ability to hold information temporarily to per-
form tasks such as conversation, reasoning, and
mathematics in a way that is adaptive to the ever
changing environment. As shown both experimen-
tally and theoretically (Fuster, 1973; Ashby et al.,
2005), working memory is stored in sustained ac-
tivations of neurons, as opposed to the long term
memory which is stored in weights. Working mem-
ory is also the immediate information buffer that is
accessed while performing conscious tasks. In par-
ticular, it is where the fusion of perceptual inputs
and long term memory happens (Fukuda and Wood-
man, 2017). This suggests that a potential method
to solve LLMs’ pointwise knowledge update and
correction problem is to control the working mem-
ory stored in activations, rather than editing the
long term memory stored in the model weights.

As demonstrated by their powerful in-context
few shot learning abilities (Brown et al., 2020),
LLM could utilize different activation patterns re-
sulting from different contexts during inference to
solve a diverse set of tasks without any changes in
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Controllability Robustness

Question Dave Gilmour and Roger Waters were in
which rock group?

How has British art survived in Normandy?

Context George Roger Waters (born 6 September 1943)
is an English singer, . . . Later that year, he re-
united with The Rolling Stones bandmates
Mason, Wright and David Gilmour...

In Britain, Norman art primarily survives as
stonework or metalwork, such as capitals and
baptismal fonts...

KAFT (ours) The Rolling Stones (from context). In museums (irrelevant context).

Noisy FT Pink Floyd stonework or metalwork

UQA V2 11B Pink Floyd stonework or metalwork, such as capitals and
baptismal fonts

Pretrained Pink Floyd As stonework and metalwork, such ascapi-tals
and baptismal fonts

Table 1: Examples of model outputs demonstrating that, in contrast with baselines, a model obtained by KAFT
is characterized by both improved controllability by a context that contradicts its parametric knowledge, and im-
proved robustness against an irrelevant context, compared to baseline methods. Here, Pretrained refers to a T5
XXL model (Raffel et al., 2020b), which is also the underlying model for KAFT and Noisy Finetuning (FT). UQA
V2 11B (Khashabi et al., 2022) is based on the T5 11B model.

the weights. It is natural to expect that the same
would be true with factual knowledge. In particular,
one could prepare a large list of natural language
statements covering desired knowledge updates and
corrections. At inference time, one can provide the
relevant statements as context along with the in-
put and hope that the model would perform the
task based on the new knowledge presented in this
context. Thus, if the model’s working memory is
indeed controllable by context, then a single model
with static long term memory can produce different
results based on a varying set of facts available in
different contexts. However, we demonstrate that
this approach may fall short for existing LLMs as
they have great tendencies to ignore the context
and stick to their own parametric knowledge – the
world knowledge stored in its model parameters.
This raises a natural question:

Is it possible to design a mechanism to ensure that
the context can reliably influence the model’s

working memory?

Note that any such mechanism has to take into
account the possibility of encountering noisy con-
texts. For example, any retrieval system that selects
the task-relevant context from a large collection of
contexts will be imperfect and occasionally provide
irrelevant context. In such cases, it’s desirable that
the model prediction does not get swayed by an
irrelevant context. Interestingly, we show that the
standard pretraining and finetuning methods do not
ensure this behavior either. In fact, we demonstrate

that it’s the noise encountered during the training
that often leads to the model ignoring the context.

In this work, we provide an affirmative answer to
the aforementioned question and propose a novel
approach – knowledge-aware finetuning (KAFT) –
to make an LLM’s working memory controllable
via relevant context while being robust against irrel-
evant context. Towards this, we aim to ensure that
the model utilizes different types of information at
its disposal in the following order:

relevant context

> model’s parametric knowledge (1)

> irrelevant context, (2)

where a > b indicates that a is prioritized over
b. Thus, if the model decides that the context
is relevant, it should ground its output in the
context, ensuring the controllability of its working
memory by the context. This is crucial when the
context is in conflict with the model’s parametric
knowledge. On the other hand, when the context
is irrelevant, the model should instead stick to its
parametric knowledge; thus ensuring robustness of
its working memory against noise.

Our contributions. We develop first LLMs that
utilize different knowledge sources with a prede-
fined order of priorities. Along the way, we develop
a systematic understanding of the working memo-
ries of LLMs and identify their shortcomings. Our
key contributions are summarized below.
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Robustness Controllability

Standard (noisy) finetuning 7 7

Counterfactual finetuning
(Longpre et al., 2021) 7 3

KAFT (our work) 3 3

Table 2: Summary of our contributions.

1. We undertake a systematic joint study of both
controllability and robustness of the working mem-
ory of LLMs. Focusing on question answering
(QA) tasks, we define the context-question rele-
vance based on whether the context entails an an-
swer to the question. We create a novel benchmark
to measure the controllability by including contexts
that imply an answer which contradicts the model’s
pretrained knowledge.1 Similarly, we benchmark
robustness against irrelevant contexts. We con-
duct an extensive evaluation of LLMs with differ-
ent sizes across multiple architectures (encoder-
decoder and decoder-only) from T5 (Raffel et al.,
2020b) and PaLM (Chowdhery et al., 2022) family.
We make the following key observations:

(a) LLMs could exhibit low controllability. Our
experiments consistently show that both pre-
trained and QA finetuned LLMs tend to ignore a
context when it contradicts with model’s world
knowledge. We show that this problem persists
and may intensify as the model becomes larger.
We further show that the noise in the (QA) fine-
tuning set plays an important role in emergence
of this behavior (cf. Sec. 4.2).
(b) LLMs may not be robust against context
noise. We demonstrate that both pretrained and
QA finetuned models are strongly interfered
by irrelevant contexts, especially the ones that
are on the same general topic as the underlying
question (cf. Sec. 4.3).

2. We propose a novel method – knowledge
aware finetuning (KAFT) – to directly enhance
both controllability (Eq. 1) and robustness (Eq. 2)
of an LLM. KAFT enhances the controllability by
creating counterfactual data augmentations where
the answer entity in the context is swapped to a
different but plausible entity, in conflict with the
ground truth (and potentially the model’s world
knowledge). As for enhancing robustness, KAFT
requires that the model should predict its pretrained
closed-book answer rather than the ground truth
answer whenever the context is irrelevant.

1We rely on in-context prompts in a closed book QA setup
to measure the model’s parametric knowledge.

3. Through extensive empirical evaluation, we
show that KAFT-based models successfully demon-
strate the coexistence of controllability and robust-
ness of model’s working memory (see Table 1 for
an illustration).

2 Related Works

World knowledge in language models. Recent
works established that LLMs memorize factual
information present in the pretraining corpus.
E.g., Petroni et al. (2019) utilize language model
analysis (LAMA) probing to show that BERT
models (Devlin et al., 2018) could act as knowl-
edge bases. Roberts et al. (2020) reported similar
findings for T5 models. It is therefore common
practice to employ LLMs in tasks like closed book
QA (Chowdhery et al., 2022).

Knowledge update in language models. Given
that factual knowledge is ever-evolving, outdated
memory of LLMs may lead to incorrect predic-
tions (Lazaridou et al., 2021; Onoe et al., 2022).
Furthermore, during deployment, one may unearth
mistakes that need correction. Frequent retrain-
ing from scratch with an updated and corrected
corpus would be prohibitively expensive. Ideas
around finetuning (Zhu et al., 2020) and continued
learning (Jang et al., 2022) train the model with
less but still significant resources. Multiple recent
efforts have studied how these models store the
factual knowledge (Geva et al., 2021) and meth-
ods to update model parameters given new knowl-
edge (De Cao et al., 2021; Dhingra et al., 2022;
Mitchell et al., 2022; Meng et al., 2022a,b). These
strategies change weights in response to single
updates, risking inadvertently affecting unrelated
skills or knowledge and creating burden to poten-
tially store multiple versions of LLMs. We focus
on updating the model behavior by providing a suit-
able context and ensuring that the model’s working
memory is controllable by such contexts.
Contextual and parametric knowledge. Guu
et al. (2020); Joshi et al. (2020); Petroni et al.
(2020) utilized retrieved context to assist language
models in tasks such as QA. At the same time,
LLMs memorize large amounts of knowledge in
their parameters. Despite this dichotomy, only
a few studies have previously addressed the rela-
tion between these two very different knowledge
sources. Longpre et al. (2021) find that larger mod-
els have a greater tendency to ignore context in
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favor of their own parametric knowledge, and that
the noise in the context in the finetuning set plays
a big role in causing this behavior. We incorporate
the algorithms proposed by Longpre et al. (2021)
for mitigating this problem as baselines in Sec. 4.4
(the Relevant Only Finetuning approaches), where
we find such baselines lack robustness against ir-
relevant contexts (Fig. 1, 2). Kassner and Schütze
(2020) showed that language models tend to be eas-
ily misled by certain types of irrelevant contexts.
We observe similar phenomena in QA and show
that our proposed KAFT leads to more robust mod-
els against irrelevant contexts. Finally, Pan et al.
(2021) considers a scenario where some context
sources may be less trustworthy than the model’s
parametric knowledge. This scenario can be cap-
tured by an extension of our framework Eq.(1-2).
For example, given three sources, one could en-
force the following precedence order: source1 >
source2 > model’s own knowledge > source3 >
irrelevant contexts.

Notions of controllability and robustness. In
control theory, controllability (Ogata, 1996) refers
to the ability of using external inputs to manipulate
system to reach all possible states. In the spirit
of this definition, this paper measure the control-
lability of an LM’s working memory by external
contexts. In the framework of controlled text gen-
eration (Zhang et al., 2022; Hu and Li, 2022), the
notion of controllability explored here is a special
type of fine-grained semantic control of the model’s
behavior with the content of the context.

Notions of robustness. (Liang et al., 2022; Omar
et al., 2022) survey many notions of robustness of
language models around the notion of the invari-
ance of model’s behaviors when the input is per-
turbed (for example, expressing similar semantic
meanings in different ways). Our robustness bench-
mark is an extreme and input-dependent version
under this framework. In our evaluations, the input
contains two parts: the context and the question. In
this work, a robust model’s response is invariant to
large perturbations in the semantic content of the
context, as long as these changes are not relevant
to the question.

During the preparation of this manuscript, we were
made aware of a parallel and independent investi-
gation by Neeman et al. (2022) that shares some
important aspects of our work.

Context type Target sequence

relevant context ${ground truth answer}
(from context)

irrelevant context ${pretrained model’s answer}
(irrelevant context)

empty context
${pretrained model’s answer}

(empty context)

counterfactual context ${counterfactual answer}
(from context)

Table 3: The output formats of the KAFT model.

3 Methods

For concreteness, consider a reading comprehen-
sion QA task where the model takes question q
together with a context c as its input. The question
has an answer label a. We also need a relevance
label r denoting whether c entails a.

Starting with a pretrained LM M , we would like
to build a model M ′ such that when the context c is
relevant, its answer is always grounded in c, when
c is irrelevant, it sticks to the pretrained model’s
answer. In equations:

r = 1 : M ′(c+ q) = a (3)

r = 0 : M ′(c+ q) = M(q) (4)

where + denotes string concatenation. This estab-
lishes the priority order of knowledge sources as in
Eq. (1 & 2): if there is a conflict between a relevant
context c and M ’s parametric knowledge, then the
output should be consistent with c. In addition,
irrelevant context should have no influence on the
model’s output. Note that even though we are sepa-
rating relevant vs irrelevant context here, the model
does not know r a priori. It has to determine r
based on the semantics of c and q.

In the KAFT data, r = 1 cases include relevant
or counterfactual context, where a is the ground
truth or counterfactual answer, respectively; r = 0
cases include empty or irrelevant contexts. Here the
label is given by the pretrained model’s answer to
the same question in a few-shot closed book setting,
reflecting the model’s parametric knowledge. To
provide more interpretability, we make the model
output its classification of the context’s relevance
along side the answer itself. See Table 3 for details.

3.1 Datasets
We construct KAFT based on several public
datasets, including SQuAD 2.0 (Rajpurkar et al.,
2018), T-REx (Elsahar et al., 2018), QASC (Khot
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et al., 2020), and TriviaQA (Joshi et al., 2017).
They cover several different QA formats, including
multiple choice (QASC), Cloze (TReX), extractive
(SQuAD), and open domain (TriviaQA). For each
dataset, we may construct different types of context
and corresponding labels as summarized in Table 4.

3.2 Models

We select two families of pretrained LLMs: T5
(Raffel et al., 2020b) representing the encoder-
decoder architecture and PaLM (Chowdhery et al.,
2022) representing the decoder only architecture.
We include all three PaLM models (8B, 62B and
540B), while with T5 we restrict to the largest sizes
(XL and XXL, with 3B and 11B parameters, re-
spectively) because the smaller ones do not respond
well to in-context few shot prompts, making it dif-
ficult to measure their parametric knowledge.

3.3 Relevant context

We define the relevance of a context by whether it
logically entails an answer to the question, which
is a strong requirement - even if a piece of context
is on the same topic of the question or contain the
answer label, it might still be irrelevant. In prac-
tice, this happens often among retrieved results. In
Sec 4.4, we show that if the model is still required
to fit on to the ground truth label when given an
irrelevant context, then the model becomes more
likely to ignore relevant contexts. It is therefore
crucial to strive towards precise logical entailment
when building relevant context. We apply several
techniques to improve the semantic connection be-
tween the context and the QA pair as shown in Ta-
ble. 4. More details can be found in Appendix A.1.

3.4 Irrelevant Context

An irrelevant context is any context that does not
entail the answer. An easy irrelevant context is
completely off topic. We obtain them with random
sampling for all datasets. A hard irrelevant con-
text is on the same topic, sometimes discussing the
same entities involved in the QA pair but does not
logically entail the answer. SQuAD 2.0 already
contains human labels on whether the answer can
be derived from the context, thus providing hard
irrelevant contexts. TriviaQA provides somewhat
extensive paraphrases for each answer. We filter
the retrieved contexts to find ones that do not con-
tain any answer paraphrase, and use them as hard
irrelevant context.

3.5 Probing pretrained knowledge

We first use the pretrained model to generate M(q)
in Eq. 4, which are then used to assemble the KAFT
finetuning dataset according to Eq. 4. We use hand-
engineered few-shot knowledge probing prompts
that condition the model to answer a question ac-
cording to its world knowledge acquired during
pretraining. In Appendix A.3, we provide more
details on the construction of these prompts.

3.6 Counterfactuals

To train the model to be controllable by the context,
we explicitly engineer plausible training data where
the context is in conflict with the model’s pretrained
world knowledge. Given a triple of question, an-
swer, and relevant context, we use a pretrained T5
XXL model to generate a triple of question, coun-
terfactual answer, and counterfactual context with
prompt engineering. We apply several filtering
and postprocessing techniques to ensure the quality.
Details are given in Appendix A.4.

3.7 Metrics

In this section, we define metrics that measures
controllability and robustness. All results are from
single runs.

Controllability. To measure controllability, we
supply the model with a counterfactual context and
examine whether it can output the corresponding
counterfactual answer. For a fair comparison, we
select questions which all five pretrained models
can answer correctly in a closed book few-shot set-
ting, which are referred to as head questions. Since
they are likely well represented in the pretraining
set, such questions are challenging as we swap the
answer to counterfactuals. Since we don’t have
any paraphrases of the counterfactual answer, we
choose to use thresholded unigram recall to mea-
sure the performance. In particular, a model output
is rated positive if the output of the model contains
> 80% of the answer unigrams, with stop-words
removed.

Robustness. To measure robustness, we use the
human labeled "impossible" slice of SQuAD 2.0,
since SQuAD 2.0 contains many examples where
the context is on the same general topic of the
question but does not contain the answer. We mea-
sure the rate when the model successfully avoids
extracting answers from such irrelevant contexts.
The avoidance is considered successful if the con-
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Dataset Relevant Context Irrelevant context Counterfactual context

TReX Sampled irrelevant statements
and one relevant statement

Sampled Sampled irrelevant statements
and one relevant statement with
the answer entity replaced

SQuAD 2.0 From original dataset Original human
labeled and sampled

Relevant context with answer
span replaced by counterfactual
answer

QASC 2-stage retrieved statements
and one golden statement

Sampled None

TriviaQA
(wiki split)

Retrieved contexts containing
the answer and overlapping
with the question

Retrieved contexts that
do not contain the an-
swer

Relevant context with answer
span replaced by counterfactual
answer

Table 4: A summary of the KAFT data construction. For relevant context, counterfactual context, and irrele-
vant/empty context, the corresponding answer labels are ground truth answer, counterfactual answer, and pretrained
model’s few shot closed book answer, respectively. All four datasets also include examples where no context is
provided.

text contains less than 50% of the unigrams in the
model’s prediction, removing stop words.

3.8 Baselines

Pretrained. We evaluate the pretrained model’s
controllability and robustness in a zero shot reading
comprehension QA setup. The context is concate-
nated with the question in input sequence.

Noisy finetuning. In this approach, the label is
the ground truth answer whether the context is rel-
evant or not. This is a standard method implicitly
used in most QA datasets.2 In this work, we con-
struct this baseline for KAFT by first removing all
counterfactual augmentations and then replace all
labels with the ground truth label.

Relevant only finetuning. The approach where
only relevant context and the corresponding ground
truth label are used during finetuning, which is
shown to improve controllability in (Longpre et al.,
2021). As a baseline for KAFT we remove all
counterfactual and irrelevant augmentations and
only keep the relevant slice of our finetuning data.

UQA V2. The Unified QA 11B (Khashabi et al.,
2022) model, which is a general purpose QA model
finetuned on a collection of 20 QA datasets. We
take the largest model (11B) in the UQA V2 family
as a baseline and compare with KAFT T5 XXL
which is of similar size in Fig. 2. Since UQA V2
contains SQuAD 2.0 in its training set, where the
label for irrelevant context is an empty string, it

2As a notable exception, SQuAD 2.0 has empty strings as
labels for its irrelevant context.

does not completely follow the noisy finetuning
prescription introduced earlier.

KAFT noCF. The KAFT method with no coun-
terfactual augmentations.

KAFT noCF and noTQA. The KAFT method
with no counterfactual augmentations and no Trivi-
aQA slice.

We include more details on the hyper parame-
ters of model finetuning, prompts, post processing,
data filtering, and metric computations in the Ap-
pendix A.2.

4 Results

In this section we measure the controllability and
robustness of KAFT with the metrics defined in
Sec. 3.7 and compare with baselines in Sec. 3.8.

4.1 Larger models may ignore more contexts
Most benchmarks improve as a function of model
size, including TriviaQA exact match (EM) accu-
racy, as shown in the first row of Fig. 1. However,
we found that larger models may ignore the context
more. This may happen for the pretrained model,
but the behavior is especially severe for models
finetuned on QA tasks using baseline approaches.
We demonstrate this effect in the second row of
Fig. 1. This highlights a need for designing new
methods to improve the controllability of LLMs.

4.2 KAFT and controllability
One of the most striking phenomenon observable
from Fig. 1 is that KAFT achieve immense im-
provements in controllability while maintaining
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Figure 1: LLMs may become less controllable as the model size increases. Interestingly, KAFT significantly
boosts controllability and robustness. The first row shows the EM on the wiki split of TriviaQA when one retrieved
context is supplied. The second row shows the controllability when the context is in conflict with the pretrained
model’s knowledge. The third rows shows robustness against human labelled irrelevant contexts from SQuAD 2.0.

performance on standard QA. For example, the
KAFT PaLM 540B model achieves 24X better con-
trollability compared to the noisy finetuning when
the context is in conflict with the model’s pretrained
factual knowledge, while performing similarly on
regular contexts. In addition, KAFT is the only
finetuning approach that consistently achieves bet-
ter controllability than the pretrained models. Most
of this gain originates from the counterfactual aug-
mentation where the model explicitly learns the
priority order in Eq. 1 when a conflict does appear.
However both relevant only finetuning and KAFT
without counterfactual augmentations also exhibit
stronger controllability compared to noisy finetun-
ing, even when there is no explicit counterfactual
augmentations in both cases. The reason is that
both approaches avoid irrelevant contexts that does
not imply an answer. Thus the model is less prone
to ignore the context compared to noisy finetuning.

4.3 KAFT and robustness

For the pretrained model, the robustness decreased
slightly from T5 XL to XXL and from PaLM 8B
to 62B (see third row in Fig. 1). But the difference
is small. Relevant only finetuning suffers the most
loss because it does not have irrelevant contexts

during training. Noisy finetuning only alleviates
this loss slightly, still vastly underperforming the
pretrained model.

KAFT, on the other hand, significantly boosts
robustness. For example, the KAFT PaLM 540B
model achieves 6X better robustness compared to
noisy finetuning and 1.6X better robustness com-
pared to the pretrained model. Adding the counter-
factual augmentation slightly reduces robustness,
but the difference is comparably small.

4.4 Analysis and ablation studies

We perform ablation studies to understand the
effect of different augmentations in KAFT, as well
as the general effect of added context noise.

Effect of KAFT data augmentations. In Fig. 2,
we systematically reduce the sampling rate of
different data augmentation slices when training
KAFT-T5 XXL models. We observe that reducing
or removing the counterfactual and irrelevant data
augmentations severely reduces controllability
and robustness, respectively. In addition, KAFT
models significantly out-perform the very strong
baselines of Unified QA V2 on both controllabil-
ity and robustness, showing that KAFT cannot
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Method
Controllability Controllability Est. Noise ratio from

PALM 62B T5 XXL relevant slice of TQA

NoisyFT 15% 37% 63%

KAFT noCF EM filter 20% 51% 35%

KAFT noCF 33% 54% 5%

KAFT noCF and noTQA 52% 69% 0%

Table 5: Context noise leads to model ignoring context and thus reduces controllability. We compare the control-
lability of models finetuned with different levels of context noise resulting from different filtering approaches on
the training data. The noise ratio is estimated by sampling a small subset from the relevance slice of TriviaQA and
manually checking the fraction of cases where the context does not entail the QA pair.
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Figure 2: Ablation studies on data mixture ratios show-
ing the importance of KAFT augmentations. We add
Unified QA (Khashabi et al., 2022) and noisy finetun-
ing baselines for comparison.

Model Pretrained KAFT

T5 XL 6.1% 7.2%

T5 XXL 6.6% 6.8%

PaLM 8B 3.3% 4.1%

PaLM 62B 1.4% 1.3%

PaLM 540B 0.6% 0.7%

Table 6: The match rate between models’ closed book
answers and counterfactual answers, among all Trivi-
aQA training set questions with counterfactual augmen-
tations. KAFT shows little unwanted memorization of
counterfactual answers.

be replaced by simply adding more supervised data.

KAFT models memorize few counterfac-
tual. One potential risk of adding counterfactual
context-answer pairs in the training set is unwanted
memorization. We check whether KAFT models
memorizes the counterfactual answers in the

training set using the same prompts we used
to probe the pretrained model’s closed book
answers. We find very little memorization: e.g., the
KAFT-PALM 540B model only memorized 0.1%
more counterfactuals compared to the pretrained
PALM model after KAFT finetuning. Results
for other models are similar (cf. Table. 6). The
model learns the desirable correlation between the
context and the output, rather than memorizing the
counterfactual answers.

Context noise reduces controllability. By context
noise we refer to the subset of training data where
the model is required to produce an answer that is
not implied by the provided context, or required to
ignore the context while it actually imply the an-
swer. On the flip side, we find that it is possible to
achieve good controllability without explicit coun-
terfactual augmentations if we can reduce context
noise in the training data.

Table. 5 shows how different amounts of context
noise impact the model’s controllability. In par-
ticular, because TriviaQA contexts are produced
by a retrieval system, it is not guaranteed that a
context logically implies the answer. This is even
true when the context contains exact matches of
the answer. On the other hand, TReX, SQuAD
and QASC contains much less context noise given
our KAFT construction methods Sec. A.1. Due to
this intrinsic noise, including TriviaQA in KAFT
caused a negative impact on controllability, espe-
cially when there are no explicit counterfactual
augmentations. The first row shows noisy finetun-
ing, which contains the most noise. The last row
shows that KAFT with TriviaQA data removed.
Even though this model is not finetuned on Trivi-
aQA, it has the best controllability. The second row
uses a simpler and more noisy filter than KAFT by
considering a context to be relevant if it contains
the answer.
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5 Conclusion

In this work, we analyzed the interaction between
LLMs’ parametric knowledge (stored in its model
parameters) and knowledge contained in informa-
tional contexts provided as a part of the input se-
quence. We find that models are prone to ignoring
the context, especially when the context is in con-
flict with the parametric knowledge. In addition,
the model’s output can be swayed by irrelevant
context even when there is no logical link between
such context and the model’s task at hand. We
quantitatively characterize these behaviours as con-
trollability and robustness of LLMs when one at-
tempts to control their working memory with noisy
context. We proposed a new finetuning method,
KAFT, that utilizes data augmentations to substan-
tially boost the controllability and robustness of
an LLM without significantly affecting its perfor-
mance on standard QA tasks. With KAFT, we can
build LLMs with a clear order of priority when
utilizing information from difference sources, in-
cluding its own parametric knowledge.

6 Limitations

6.1 Multiple sources

In this work, we trained a model that can utilize
two sources of information with predefined pri-
ority order, with one of them being the model’s
own parametric knowledge. While this is the first
step towards LLM’s information utilization with
clear, predefined priorities, we acknowledge that
real world applications could be more nuanced. For
example, KAFT may need to be expanded to treat
multiple sources of information with different trust-
worthiness which may translate to the following
desired priority order:

relevant context 1 > relevant context 2 (5)

> model’s parametric knowledge (6)

> relevant context 3 (7)

> all irrelevant context (8)

This orders of priority determines the handling of
conflicts. In addition, any irrelevant context should
have no influence on the model’s output.

6.2 Multitask / in-context learning

KAFT currently only explores QA tasks. We ac-
knowledge that the applications of LLMs go far
beyond a single style of tasks. We have not yet

achieved controlled utilization of information in a
task agnostic way. Ideally, the model should learn
to prioritize retrieved relevant information in any
task that LLMs are capable of, including in-context
few-shot or zero-shot scenarios.

6.3 Dynamically enforce "learning to ignore"

In this work, it was necessary to build a different
KAFT dataset for each model. Because in Eq. 4,
whenever the context is irrelevant, the model fits on
to the pretrained model’s answers which depends
on the model. This presents additional workload
when applying KAFT to new models. In future,
it’s worthwhile to explore a dynamic methods that
generates closed booked answers during training.
At each training step involving irrelevant context,
we could run the forward pass twice, one with the
provided context and another without. Then we
can compute a new loss:

r = 1 : Loss = CE(M ′(c+ q), label) (9)

r = 0 : Loss = CE(M ′(c+ q),

stop_gradient(M ′(q))) (10)

where + denotes string concatenation. This is dif-
ferent from Eq. 4 as it fits on to the closed book
answers of the current version of the finetuned
model, rather than that of the pretrained model.
It’s not yet clear whether this would achieve bet-
ter robustness. It’s also more expensive because
two forward passes are necessary for each training
example. However it might be justified by the im-
proved simplicity in directly applying KAFT with
minimal prepossessing.

This approach is somewhat similar to classifier
free guidance (Ho and Salimans, 2022), which has
been successfully applied to image generation mod-
els. One added benefit of classifier free guidance
is the ability to tune the strength of context condi-
tioning after the model is trained, which is another
interesting direction to explore here.

7 Ethics statement: Broader impacts and
potential risks

In this work, we study approaches to finetune
LLMs to make them more grounded and faithful to
provided contexts. If our method is applied broadly,
it has the potential to correct the unwanted or bi-
ased behavior of LLMs with a carefully curated
set of natural language instructions without expen-
sive retraining. This provides one feasible avenue
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towards improving language models to correct a
potential bias that is embedded in the pretraining
corpus. At the same time, we acknowledge that
our method does not completely address such is-
sues on its own, because 1) instances where the
model’s working memory is not controllable by the
context even after KAFT is applied may remain; 2)
the finetuning dataset used in KAFT may inadver-
tently introduce or strengthen certain biases. For
example, we acknowledge that all KAFT datasets
used in this study are English datasets, and so it is
a valuable future work direction to extend KAFT
to be more representative of all languages.

In addition, we acknowledge that the use of
LLMs can be expensive in terms of energy usage.
We utilize existing pretrained LLMs such as T5 and
PaLM. KAFT’s energy usage is small compared to
the pretraining process, but it still leaves a signif-
icant energy footprint. In particular, the most ex-
pensive training, KAFT-PaLM 540B, takes 12190
TPU v4 hours. It is our hope that methods such as
KAFT will provide a way for reducing the need for
frequently retraining LLMs, and thus could lead to
a more environmentally friendly experimentation.
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A Appendix

A.1 Details on relevant context construction
SQuAD 2.0 has human labels for this particular
aspect. But most datasets do not. For TReX, the
question is cloze style where we mask a certain en-
tity within the triples statement. We build a relevant
context by concatenating the original statements
with a number of sampled irrelevant statements,
after randomly shuffling their order. This ensures
the relevance of the context while keeping it chal-
lenging. The training set of QASC provides 2 gold
statements that implies the answer via a two hop
reasoning. We are using the 2-stage retrieved col-
lection of statements similar to (Khashabi et al.,
2020). We find that the gold statements, or seman-
tically equivalent ones, often exist in the retrieved
results. To improve relevance we will randomly
add one of the two golden statements and mix it in
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the retrieved context to build a relevant context for
the KAFT training set. We manually checked on a
random small subset that this ensures a relevance
ratio around 90%.

TriviaQA is especially challenging because there
is no human labeled gold context, while all existing
contexts are obtained by a retrieval system. We
filter the context by whether they contain the an-
swer. This turned out to be insufficient and leaves
a large fraction of irrelevant contexts that do not
logically entail the answer. We apply additional
filters based on the unigram overlaps of the context
with the question, as well as based on the output of
a logically entailment model.

A.2 Training Details

We use a learning rate of 0.0002 on all models. The
batch size is 32 for all PaLM models and 16 for
T5 models. For T5 XL we pick the checkpoint
at 100000 finetune steps and for T5 XXL models
we pick the checkpoint at 90000 steps. For PaLM
8B and 62B, we pick the checkpoint at 40000 fine-
tuning steps. For PaLM 540B we pick the check-
point at 15000 steps. These steps are generally
determined by avoiding overfitting. However for
larger models we are also constrained by compute
resources.

A.3 Knowledge Probing Prompts

In this section we provide details on how the knowl-
edge probing prompts in Table 7-9 are constructed.
In particular, our goal is to make the model only
answer questions where it knows the answer. To do
this, we construct prompts that contains two types
of QA pairs:

1. Regular QA pairs if the model can answer the
specific question correctly in multiple few-shot
in-context settings.

2. QA pairs where the answer is "I don’t know"
for T5 models or "?" for PaLM models, if the
model cannot answer the question correctly in
most few-shot in-context settings.

With such specially designed prompts, we encour-
age the model to abstain if it does not know the
answer. The counterfactual context used in the
controllability benchmark is constructed using the
same method. However we ensure no entities over-
laps exist between the prompts that generates the
training data vs the test data.

A.4 Counterfactual Generation

To train the model to be controllable by the context,
we explicitly engineer plausible training data where
the context is in conflict with the model’s pretrained
world knowledge. This is done in 3 steps:

1. We apply a diverse set of few-shot prompts
similar to Table 10 to condition a pretrained T5
XXL model to generate plausible counterfactual
answers.

2. We remove examples if the generation is un-
successful, when it’s either too long or have a
large overlap with the original answer.

3. We replace all occurrences of the original an-
swer with the counterfactual answer in the origi-
nal context to build the counterfactual context.

With this approach, we build a new QA data set
where the answer implied by the context is likely to
be in conflict with the model’s existing knowledge.

A.5 Evaluations for Counterfactual
memorization and relevance
classification

One potential danger of adding counterfactual
context-answer pairs in the training set is unwanted
memorization. We check whether KAFT models
memorizes the counterfactual answers in the train-
ing set using the same prompts we used to probe the
pretrained model’s closed book answers. The re-
sults in Table 6 show that KAFT has little unwanted
memorization of counterfactual answers. Instead
the model learns the desirable correlation between
the context and the output, as demonstrated in Fig-
ure 1.

As illustrated in Table 1 and described in Table 3,
we require the model to generate its judgements
on whether the provided context is relevant. As a
sanity check, we evaluated this part of the output on
1000 class-balanced SQuAD2 validation questions,
the relevance prediction from KAFT-T5-XXL has
84% precision and 98% recall.

A.6 Postprocessing

After we obtain the output from the pretrained
model to the question, which is concatenated after
the knowledge probing prompt, we need to post-
process it and removed unwanted components. We
do two types of post-processing on the pretrained
predictions:
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Model Standard QA Knowledge Probe Prompts

T5 XL

Q: Into what body of water does the Hudson River terminate? A: The Atlantic Ocean.
Q: What method formally adds inverses to elements to any monoid? A: I don’t know.
Q: Supply and what else causes child labour to still exist today? A: demands.
Q: Who is the prime minister of Japan in 2015? A: Shinzo Abe.
Q: Who is responsible for judicial review? A: Courts.
Q: what was the name of the other HD channel Virgin media could carry in the future? A: I don’t know.
Q: What is the term for a hyperactive immune system that attacks normal tissues? A: autoimmunity.
Q: What complexity class is commonly characterized by unknown algorithms to enhance solvability? A: I don’t know.
Q: Which nation contains the majority of the amazon forest? A: Brazil.

T5 XXL

Q: Into what body of water does the Hudson River terminate? A: The Atlantic Ocean.
Q: What method formally adds inverses to elements to any monoid? A: I don’t know.
Q: Supply and what else causes child labour to still exist today? A: demands.
Q: Who is the prime minister of Japan in 2015? A: Shinzo Abe.
Q: Who is responsible for judicial review? A: Courts.
Q: What religion did the French spread along with their imperialism? A: Catholicism.
Q: The symbol for mercuric oxide is? A: HgO.
Q: What religion did the Yuan discourage, to support Buddhism? A: Taoism.

PaLM 8B

Only answer the questions you know the answer to:
Q: Into what body of water does the Hudson River terminate? A: The Atlantic Ocean.
Q: What year was the county of Hampshire officially named? A: ?.
Q: Who said the following statement? "Enlightenment is manś emergence from his self-incurred immaturity". A: Immanuel Kant.
Q: What method formally adds inverses to elements to any monoid? A: ?.
Q: What King and former Huguenot looked out for the welfare of the group? A: Henry IV.
Q: The principle of faunal succession was developed 100 years before whose theory of evolution? A: Charles Darwin.
Q: Who is the hero who killed a dragon on the Drachenfels? A: Siegfried.

PaLM 62B

Only answer the questions you know the answer to:
Q: Into what body of water does the Hudson River terminate? A: The Atlantic Ocean.
Q: What year was the county of Hampshire officially named? A: ?.
Q: Who said the following statement? "Enlightenment is man’s emergence from his self-incurred immaturity". A: Immanuel Kant.
Q: What method formally adds inverses to elements to any monoid? A: ?.
Q: Who was the US Secretary of State in 2001? A: Colin Bowell.
Q: The principle of faunal succession was developed 100 years before whose theory of evolution? A: Charles Darwin.
Q: Who is the hero who killed a dragon on the Drachenfels? A: Siegfried.
Q: When did the European Anti-Fraud Office investigate John Dalli? A: 2012.
Q: What religion did the French spread along with their imperialism? A: Catholicism.
Q: When did Costa v ENEL take place? A: 1964.

PaLM 62B

Only answer the questions you know the answer to:
Q: Into what body of water does the Hudson River terminate? A: New York Bay.
Q: What year was the county of Hampshire officially named? A: ?.
Q: Who said the following statement? "Enlightenment is manś emergence from his self-incurred immaturity". A: Immanuel Kant.
Q: What method formally adds inverses to elements to any monoid? A: ?.
Q: When was the Parental Leave directive created? A: 1996.
Q: How many megaregions are there in the United States? A: 11.
Q: Where is DÓlier Street? A: Dublin.
Q: What is the speed limit set to reduce consumption? A: 55 mph.
Q: What channel replaced Sky Travel? A: Sky Three.
Q: Who founded McKinsey & Company? A: James O. McKinsey.

Table 7: Knowledge probing prompts for standard QA datasets. These prompts are used to probe the pretrained
model’s answer to questions in SQuAD 2.0 and TriviaQA.
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Model Cloze Style QA Knowledge Probe Prompts

T5 XL

The Hudson River terminate into ___ . A: The Atlantic Ocean.
___ formally adds inverses to elements to any monoid. A: ?.
Supply and ___ causes child labour to still exist today? A: demands.
___ was the prime minister of Japan in 2015? A: Shinzo Abe.
___ is responsible for judicial review. A: Courts.
___ was the name of the other HD channel Virgin media could carry in the future. A: ?.
___ is defined as a hyperactive immune system attacking normal tissues? A: autoimmunity.
___ complexity class is commonly characterized by unknown algorithms to enhance solvability. A: ?.
___ contains the majority of the amazon forest? A: Brazil.

T5 XXL

The Hudson River terminate into ___ . A: The Atlantic Ocean.
___ formally adds inverses to elements to any monoid. A: ?.
Supply and ___ causes child labour to still exist today? A: demands.
___ was the prime minister of Japan in 2015? A: Shinzo Abe.
___ is responsible for judicial review. A: Courts.
The French spread along with their imperialism the ___ religion. A: Catholicism.
The symbol for mercuric oxide is ___. A: HgO.
The Yuan discouraged ___ to support Buddhism. A: Taoism.

PaLM 8B

Only answer the questions you know the answer to:
The Hudson River terminate into ___ . A: The Atlantic Ocean.
The county of Hampshire was officially named in ___ . A: ?.
___ said "Enlightenment is manś emergence from his self-incurred immaturity". A: Immanuel Kant.
___ formally adds inverses to elements to any monoid. A: ?.
King ___ and former Huguenot looked out for the welfare of the group. A: Henry IV.
The principle of faunal succession was developed 100 years before ___’s theory of evolution. A: Charles Darwin.
___ is the hero who killed a dragon on the Drachenfels? A: Siegfried.

PaLM 62B

Only answer the questions you know the answer to:
The Hudson River terminate into ___ . A: The Atlantic Ocean.
The county of Hampshire was officially named in ___ . A: ?.
___ said "Enlightenment is manś emergence from his self-incurred immaturity". A: Immanuel Kant.
___ formally adds inverses to elements to any monoid. A: ?.
___ was the US Secretary of State in 2001. A: Colin Bowell.
The principle of faunal succession was developed 100 years before ___’s theory of evolution? A: Charles Darwin.
___ is the hero who killed a dragon on the Drachenfels. A: Siegfried.
The European Anti-Fraud Office investigate John Dalli in year ___ . A: 2012.
The French spread along with their imperialism the ___ religion. A: Catholicism.
Costa v ENEL happend in year ___ . A: 1964.

PaLM 62B

Only answer the questions you know the answer to:
The Hudson River terminate into ___ . A: New York Bay.
The county of Hampshire was officially named in ___ . A: ?.
___ said "Enlightenment is manś emergence from his self-incurred immaturity". A: Immanuel Kant.
___ formally adds inverses to elements to any monoid. A: ?.
The Parental Leave directive created in year ___ . A: 1996.
There are ___ megaregions in the United States. A: 11.
D’Olier Street is located in ___ . A: Dublin.
The speed limit was set to ___ to reduce consumption. A: 55 mph.
___ channel replaced Sky Travel. A: Sky Three.
___ founded McKinsey & Company. A: James O. McKinsey.

Table 8: Knowledge probing prompts for Cloze style QA datasets. These prompts are used to probe the pretrained
model’s answer to questions in TReX.

Model Multiple Choice QA Knowledge Probe Prompts

PaLM 62B

Question: Into what body of water does the Hudson River terminate? (A) The great lakes
(B) Amazon river (C) The red sea (D) the Atlantic Ocean (E) San Francisco bay
(F) The north sea (G) Indian Ocean (H) Lake Mississippi -Answer: (D) the Atlantc Ocean.
Question: Who was the prime minister of Japan in 2015? (A) Donald Trump (B) Miho Nonaka
(C) Andrew Yang (D) a France citizen (E) a political outsider (F) Shinzo Abe (G) woman
(H) Zoe. -Answer: (F) Shinzo Abe.Question: what increases moisture? (A) density (B) the sun
(C) wind (D) droughts (E) Honey (F) 17 (G) rain (H) meat -Answer: (G) rain.
Question: What can be found inside a cell? (A) soil (B) dogs (C) ovum (D) starfish
(E) Most plants (F) RNA (G) washer (H) abundant -Answer: (F) RNA.
Question:What kind of coloring do chomoplasts make? (A) fat (B) move
(C) RNA (D) grow (E) red (F) skin (G) eyes (H) DNA -Answer: (E) red.

Table 9: Knowledge probing prompts for Cloze style QA datasets. These prompts are used to probe the pretrained
model’s answer to questions in TReX.
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Question In which country did Warsaw Pact officials meet to dissolve the alliance?

Original answer Hungary

Counterfactual answer Russia

Original context On 25 February 1991, the Warsaw Pact was declared disbanded at a meeting
of defense and foreign ministers from remaining Pact countries meeting in
Hungary.

Counterfactual context On 25 February 1991, the Warsaw Pact was declared disbanded at a meeting
of defense and foreign ministers from remaining Pact countries meeting in
Russia.

T5 Prompt to generate the
counterfactual answer

Let’s play a game of writing fake answers Who did US fight in world war
1? Real answer: Germany. Fake answer: Somalia. Who is the CEO of
Amazon? Real Answer: Jeff Bezos. Fake Answer: Richard D. Fairbank.
. . . 7 more examples . . . In which country did Warsaw Pact officials meet to
dissolve the alliance? Real answer: Hungary. Fake answer: 〈extra_id_0〉.

Table 10: An example from the counterfactual split of the KAFT training set. We take an original question, answer,
and context triple. We then use a few examples to prompt a pretrained T5 XXL model to generate a plausible
counterfactual answer. Finally, we replace all occurrences of the original answer with the counterfactual answer to
build the counterfactual context.

1. Truncation: We truncate the model’s output
on special tokens such as < extra_id_1 >, punc-
tuation, line change symbols and question/context
initialization symbols such as "Q:", "Question:",
"CONTEXT:". These symbols are a frequent in
the pretrained model’s responds to our QA style
knowledge probe prompts and indicate that the
model is ready to move on to the next question
that is unrelated to the answer of the current ques-
tion.

2. Abstain: We normalize all abstain symbols.
Whenever the model indicate abstaining using
either "I don’t know", "unsure" or "?" in the output
as responses to our prompt, we record "unsure"
as its answer when constructing the label in the
irrelevant slices of KAFT.

A.7 Dataset and task details
KAFT mixes together a number of datasets, each
with multiple augmentation slices. During training,
data from these difference sources are sampled in
a round-robin style according to predefined mix-
ture weights. We list these weights as well as the
corresponding dataset stats as in Table 11. The
sampling ratio from each slice is computed using a
product of the normalized dataset level rate and the
normalized slice level rate as follows:

R(d, s) =
rd∑
d′ rd′

rds∑
s′ rds′

(11)

where d, d′ denote different datasets and s, s′ de-
note difference slices within each dataset. For ex-

ample, the sampling ratio from the QASC relevant
slice is given by:

R(QASC, relevant)

=
0.3

1.3 + 0.3 + 0.1 + 0.2

0.5

0.5 + 0.25 + 0.02

= 0.0831 (12)

The KAFT-TriviaQA training set contains 45593
relevant examples and 72697 irrelevant examples.
The KAFT-QASC training set contains 8134 rele-
vant examples and the same number of irrelevant
examples. The KAFT-SQuAD2 dataset contains
78125 relevant examples and 117287 irrelevant ex-
amples. The KAFT-TReX training set contains
75365 relevant examples and 47503 irrelevant ex-
amples.

A.8 Licensing and scientific artifacts

In this work, we used the following scientific arti-
facts: TriviaQA is licensed under Apache License
2.0. The SQuAD 2.0 dataset is licensed under CC
BY-SA 4.0. T-REx is under a Creative Commons
Attribution-ShareAlike 4.0 International License.
QASC is under CC BY license. T5 models are
under Apache License 2.0. Unified QA models are
under Apache License 2.0. The PaLM models are
proprietary. All these artifacts are properly cited
when we mention them the first time. Our use for
these artifacts are consistent with their licenses.

We create the following scientific artifacts and
we will partly release them after this paper is pub-
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dataset dataset
weight

slice slice weight

SQuAD 2.0 1.3 relevant 0.8
counterfactual 0.1
original irrelevant abstain 0.1
original irrelevant other 0.1
empty correct 0.33
empty abstain 0.02
empty other 0.05
sampled irrelevant correct 0.33
sampled irrelevant abstain 0.02
sampled irrelevant other 0.03

QASC 0.3 relevant 0.5
irrelevant correct 0.25
irrelevant other 0.02

TReX 0.1 relevant 0.4
counterfactual 0.4
2-hop relevant 6
irrelevant correct 0.15
irrelevant abstain 0.03
irrelevant other 0.03

TriviaQA 0.2 relevant 0.8
counterfactual 0.15
irrelevant/empty correct 0.5
irrelevant/empty other 0.2

Table 11: Task mixture weights. During finetuning, training data from each split is computed in a round robin
fashion according to these weights. The sampling rate from each slice is computed with these weights using
in Eq. 12. Here "relevant", "irrelevant", "empty" indicates the relevance (or absence) of the context relative to
the question, and "counterfactual" indicates counterfactual context constructed using answer replacement. The
additional specification for irrelevant/emtpy slices, "correct", "abstain", and "other" indicate the pretrained model’s
answers’ type and quality relative to the ground truth. For TReX, we have a special slice called "2-hop relevant".
These are relevant contexts contructed using 2-hop reasoning over the triplet structure of TReX.
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lished: The KAFT finetuning method will be re-
leased under Apache License 2.0. The KAFT-T5
models will be released under Apache License 2.0.
The KAFT-PaLM models will be proprietary.
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