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Abstract

Automatically scoring student answers is an
important task that is usually solved using
instance-based supervised learning. Recently,
similarity-based scoring has been proposed as
an alternative approach yielding similar perfor-
mance. It has hypothetical advantages such as
a lower need for annotated training data and
better zero-shot performance, both of which
are properties that would be highly beneficial
when applying content scoring in a realistic
classroom setting. In this paper we take a closer
look at these alleged advantages by comparing
different instance-based and similarity-based
methods on multiple data sets in a number of
learning curve experiments. We find that both
the demand on data and cross-prompt perfor-
mance is similar, thus not confirming the for-
mer two suggested advantages. The by default
more straightforward possibility to give feed-
back based on a similarity-based approach may
thus tip the scales in favor of it, although fu-
ture work is needed to explore this advantage
in practice.

1 Introduction

Approaches in automatic content scoring can be
classified into two paradigms: instance-based scor-
ing and similarity-based scoring (Horbach and
Zesch, 2019). Figure 1 gives a schematic overview
of the two, with most work in the area of content
scoring falling into the instance-based paradigm,
where an algorithm is trained on learner answers
as the only information source and learns about
properties of correct and incorrect answers directly
from these answers. In similarity-based scoring, in
contrast, learner answers are compared to one or
more target answers and correctness judgments are
based on either the similarity to a correct answer
(such as a sample solution) or on the label of the
closest answer(s) to a given learner answer.

In comparison to the instance-based paradigm,
similarity-based scoring is substantially less well

researched (see e.g. Sakaguchi et al. (2015)). Re-
cent work by Bexte et al. (2022) shows that
similarity-based content scoring methods can yield
comparable results to instance-based scoring if a
similarity metric is substantially fine-tuned. How-
ever, it also showed that more research is needed
to understand when it can be successful and how it
compares to instance-based scoring. To do this, we
first identify three possible advantages of similarity-
based scoring: reduced data hunger, better cross-
prompt performance and explainability. These
aspects would be highly beneficial when it comes
to the application of automatic scoring in a realistic
classroom setting: A typical classroom (ideally)
does not consist of hundreds of students, mean-
ing that collecting large amounts of answers to a
question from students is unrealistic. Since state-
of-the-art content scoring builds on prompt-specific
models, it would be highly desirable for a model to
either be able to work well on this smaller amount
directly or at least by making use of larger already
existing cross-prompt data in training a prompt-
specific model. Finally, feedback has been identi-
fied as one of the major influence factors for learn-
ing success (Hattie and Timperley, 2007), but one-
on-one student-teacher time is limited, so a model
that can justify why it awarded a certain number of
points would be preferred over a performance-wise
comparable one that simply returns a score.

We perform a comparison of the two paradigms
on different data sets typically used in one but not
the other, focusing on a setup with limited data and
also assessing to what extent using cross-prompt
data can help overcome these limitations. We find
that while overall highly-dependent on the choice
of cross-prompt data, instance-based scoring ben-
efits more. For a more encompassing comparison
of the two paradigms, we also compute learning
curves extending over a wider range of training
data sizes and while we find that there is no one
best method for smaller amounts of data, there is a

1892



Instance-based Scoring

I would paint the dog house white,
so it doesn’t heat up as much.

Learner Answer

[2.87, 3.51, ..., 2.53]

Featurized Representation

2
Points

Prediction

Similarity-based Scoring

I would paint the dog house white,
so it doesn’t heat up as much.

Learner Answer

I would choose white to make
sure it stays cool inside.

Reference Answer(s)

[0.23, 1.75, ..., 1.07]

Featurized Representation

[0.44, 1.38, ..., 0.96]

Featurized Representation

0.86

Similarity

2
Points

Prediction

Figure 1: Comparison of instance-based and similarity-based scoring.

point where similarity-based deep learning starts to
consistently outperform all other methods, closely
followed by instance-based deep learning. In com-
paring how much predictions vary based on the
choice of training data, we find an overall smaller
standard deviation for similarity-based predictions.
We make all our code publicly available.1

2 Instance-Based vs. Similarity-Based
Scoring

Instance-based scoring has become the de facto
state of the art in automated scoring. Recent exper-
iments however showed that, with the emergence
of deep learning, similarity-based models can keep
up with instance-based ones:

For essay scoring, Xie et al. (2022) use a BERT
model in a pairwise contrastive regression setup to
score an essay in comparison to a reference, thereby
outperforming the instance-based state of the art.
For content scoring, Bexte et al. (2022) reach com-
parable performance to an instance-based BERT
model by using fine-tuned SBERT embeddings in
a knn-like search for the most similar answer(s).
Tunstall et al. (2022) introduce Sentence Trans-
former Finetuning (SETFIT), which successfully
uses SBERT in a few-shot setting by using the fine-
tuned embeddings to train a classification head.

In line with this low-resource setup, similarity-
based scoring is often applied to data sets contain-
ing only few answers per prompt. This includes
work on computer science questions (Mohler and
Mihalcea, 2009; Mohler et al., 2011), English and
German reading comprehension data (Bailey and
Meurers, 2008; Meurers et al., 2011) and several

1https://github.com/mariebexte/
sbert-learning-curves

approaches on the Student Response Analysis data
set (Dzikovska et al., 2013), such as Levy et al.
(2013) or more recently Willms and Padó (2022).
Even though in contrast, research on data with hun-
dreds of answers per prompt or more is often asso-
ciated with instance-based methods, such as most
work on the ASAP data set (e.g., Higgins et al.
(2014); Heilman and Madnani (2015); Kumar et al.
(2019)), this does not necessarily mean that the
data hunger is smaller for similarity-based mod-
els than for instance-based models as the former
are often used to train a classifier across prompts.
Still, also considering the recent success of SET-
FIT in a few-shot setting , we address the perceived
dichotomy in data sets by contrasting the perfor-
mance of both paradigms on both kinds of data
sets. This gives insight into the difference regard-
ing their data hunger. To investigate the supposed
advantage of similarity-based scoring on limited
data, we focus on learning curve experiments on
smaller amounts of training data.

Previous work comparing instance-based
to similarity-based scoring however showed
similarity-based performance to be close to the
respective best-performing instance-based model
on both small (Logistic Regression) or larger
amounts of training data (BERT). (Bexte et al.,
2022), whereas Logistic Regression and BERT
have their strengths towards the lower and higher
end of the training size spectrum, respectively. To
further investigate this, we extend our learning
curves beyond the low-resource spectrum and
include a wider range of training sizes.

Another aspect Tunstall et al. (2022) already
touched on the influence of the reference answer
choice on scoring performance, thus asking how
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Figure 2: Overview of how SBERT is used for similarity-based scoring, adapted from Bexte et al. (2022). Left:
Fine-tuning using pairs of answers with either the same (similarity label 1) or a different (similarity label 0) scoring
label. Right: Using SBERT at inference to identify the most similar training answer, thus predicting its number of
points for the test answer.

(un)lucky one can be when selecting these and
whether it is worth investing time to carefully pick
them. To investigate this, we compare the stan-
dard deviation of different training data samples
for instance-based and similarity-based scoring.

As mentioned above, the dichotomy of
similarity-based and instance-based data sets is
accompanied by instance-based scoring typically
training one model per prompt, while similarity-
based approaches often make use of data across
different prompts, suggesting a possible superior-
ity of similarity-based methods regarding cross-
prompt transfer. Further supporting this notion
is the fact that a similiarity-based model won the
cross-prompt track of the 2021 NAEP Automatic
Scoring challenge2, although the overall perfor-
mance level of submissions lagged behind state-
of-the-art instance-based models in within-prompt
settings. It is however unclear how well a state-
of-the-art instance-based model would fare on the
same cross-prompt data, as such comparisons are
lacking. Condor et al. (2021) use different ways
of encoding answers to train a cross-prompt model
in an instance-based fashion. They find SBERT
embeddings to be superior over Word2Vec embed-
dings or a bag of words approach, leaving open the
question of whether using the SBERT embeddings
in a similarity-based fashion would have yielded
even better performance. Since the similarity-based
zero-shot cross-prompt experiments by Bexte et al.
(2022) showed mixed results, we undertake a com-
parison of the non-zero-shot cross-prompt perfor-

2https://github.com/NAEP-AS-Challenge/
reading-prediction

mance of instance-based and similarity-based meth-
ods.

A third possible advantage of similarity-based
scoring that requires user studies to investigate and
is thus beyond the scope of this paper is that one
can show which reference answer(s) led to a cer-
tain classification decision, by default lending it a
certain degree of explainability that could serve as
pedagogical feedback to students. This feedback
is mainly aimed at students or teachers as opposed
to AI experts, since we do not directly disclose
the inner workings of the algorithm, but rather pro-
vide some rationale about why a score has been
assigned. A similar direction is addressed by clus-
tering approaches for automatic scoring (such as
Basu et al. (2013); Wolska et al. (2014); Zehner
et al. (2016)) with clustering essential also being
a similarity-based method bearing the advantage
of structured output that can be used to provide
human feedback to learners efficiently.

To summarize, we identified three potential ben-
efits of similarity-based models: a reduced training
data hunger, the ability to abstract across prompts
and the possibility of giving feedback based on ref-
erence answers, the latter of which we leave for
future work.

3 Experimental Setup

3.1 Scoring Approaches

Similarity-based approach We use the
similarity-based approach described in Bexte
et al. (2022), where a pre-trained Sentence-BERT
(SBERT) model (All-miniLM-L6-v2) is fine-tuned
on sentence pairs formed from the training data.
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These sentence pairs are labeled with a similarity
score of 1 (0), if both answers in the pair have
the same (a different) label. In this manner, we
create as many pairs as possible. Figure 2 gives an
overview of this fine-tuning setup, and also shows
how the fine-tuned model is then used to obtain
predictions on the test data: With the training data
serving as a set of reference answers, each answer
from the test set is compared against every answer
from the training set, and the label of the most
similar training answer is then used as prediction.

We train for 5 epochs with batch size 8 and with-
out warmup, using an OnlineContrastiveLoss and
an EmbeddingSimilarityEvaluator, otherwise keep-
ing all values at their defaults. Validation is done
after each epoch and we use the model with mini-
mal validation loss for evaluation on the test data.

Similarity-based baselines Since similarity-
based scoring also works without any finetuning,
we include similarity-based baselines that essen-
tially perform only the inference step described in
the above SBERT setup. An answer from the test
set is thus compared to all answers from the refer-
ence (i.e. training) set, predicting the scoring label
of the most similar reference answer.

While we also ran experiments using overlap and
cosine similarity of word count vectors3, we for the
sake of brevity only report results for edit distance,
as an example of surface similarity, and the pre-
trained SBERT model without any adaptation to
the respective prompt, as an example of working
on vectorized representations.

Instance-based approaches Experimenting with
a number of shallow algorithms4 showed Logistic
Regression (LR) to perform best, which is why
we only report results for this method. We used
the scikit-learn implementation in standard config-
uration (apart from setting max_iter to 1000) with
token uni- to trigram features. As a representation
of instance-based deep learning, we also fine-tune
a BERT model (bert_base_uncased) from hugging-
face5. We train this model for 20 epochs with a
batch size of 8, running evaluation after each epoch
and keeping the model with the lowest validation
loss for evaluation on testing data. Other than that,
parameters are kept at their default values.

3Results using these methods were in the same ballpark as
edit distance and pre-trained SBERT model.

4We used SVMs, random forests and logistic regression.
5https://huggingface.co/

bert-base-uncased

ASAP SRA-Beetle SRA-SEB

Domains Science, Electricity, Science
Bio, ELA∗ Electronics

# Prompts 10 47 135
# Answers/prompt
- Train 1704 84 37
- Test 522 9 4
Label set
- # Labels 2-3 2 or 5 2 or 5
- Scale numerical categorical categorical

Table 1: data sets used in our experiments. ∗English
Language Arts

We trained on NVIDIA Quadro RTX 6000 and
A100 GPUs for a total of close to 4000 GPU hours.

3.2 Data

We perform experiments on two widely used En-
glish content scoring data sets that are freely
available for research purposes: ASAP6, which
is typically used for instance-based scoring, and
the Student Response Analysis (SRA) corpus
(Dzikovska et al., 2013), which has often been used
for similarity-based experiments and consists of the
two subsets Beetle and SciEntsBank (SEB). Since
these data sets consist of answers to factual ques-
tions, they do not contain identifying information
of students or offensive content.

While labels in ASAP are numerical (0 to ei-
ther 2 or 3 points), answers in SRA are labeled
nominally following a textual entailment view on
automatic scoring with 5 possible outcomes: cor-
rect, contradictory, partially_correct_incomplete,
irrelevant or non_domain. We refer to this data
set as 5-way. In addition, we also use the 2-way
version, where labels other than correct are merged
into an incorrect class.

We use the default split into training and test data
as provided in the respective data set. In all deep
learning setups (i.e. fine-tuning BERT & SBERT),
we use parts of the training data for each prompt
as a separate validation data set, whereas in shal-
low learning all training instances are used in the
actual learning process. The rationale behind this
is that we want to compare the overall amount of
human annotation effort required to train a model,
regardless how exactly this annotated data is used.

We randomly chose 4 answers per prompt for
validation. Picking just 4 answers might seem a low
number, but is reasonable since our experiments

6https://www.kaggle.com/c/asap-sas
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specifically target the use of limited training data.7

3.3 Evaluation

We compare the instance-based and similarity-
based methods in a learning curve setup to examine
the influence of different training set sizes. For
ASAP with numeric labels, we use quadratically
weighted kappa (QWK) (Cohen, 1968) as evalua-
tion metric, whereas we use weighted F1 measure
for the categorical labels in SRA.

Depending on the number of labels present in a
data set, we consider different training sizes for the
learning curve. For ASAP and SRA with 5-way
labels, we start with five instances and go up to 50
in steps of five. For SRA with 2-way labels, we
start with two instances, and also go up to 50, but
first in steps of 2 (until 14 instances) and then in
steps of four. For each training size, we train with
20 different randomly taken training data samples
to mitigate sampling effects.

Due to the low number of on average 37 answers
per prompt in SEB, we for this data set cut off re-
sults at a maximum training size of 30, as results
for larger training sizes would only rely on the few
prompts with enough answers to compute these re-
sults. Also note that the limited number of training
answers to sample from allows for little variance
between the 20 randomly sampled subsets.

4 Data Hunger

In comparing instance-based and similarity-based
scoring methods, we focus on the amount of train-
ing data needed (i.e. how data hungry the ap-
proaches are). We focus on the low-resource set-
ting, as (i) it is more realistic in a classroom setting,
and (ii) the fact that similarity-based and instance-
based perform on par has already been established
when training data is abundant (Bexte et al., 2022).

Results in Figure 3 show that SBERT has the
upper hand on SEB and ASAP, while it is outper-
formed by LR on Beetle. Other than on ASAP,
baseline similarity-based methods are often surpris-
ingly strong on both Beetle and SEB. We speculate
that this might be due to shorter and simpler an-
swers, which is also indicated by a higher overall
performance. As expected, performance is overall
higher on the 2-way-labeled data, but apart from
this, relative results of the different methods are

7We also validated on a few random prompts that this split
is a good trade-off to save as many instances as possible for
the actual training process.

similar on the five-way-labeled data. Note that
results are averaged across all prompts of the re-
spective data set and that individual performances
per prompt again vary tremendously.

One application that would benefit from models
that are doing well on small amounts of data is the
use of automated scoring in a realistic classroom
setting, since the average number of students in a
class does not allow collecting larger amounts of
answers to any given question. If a teacher were
however to make up exemplary answers for the
different possible outcomes, they might produce a
more balanced sample of reference answers than
what we use in our random sampling of training
data. In Figure 4(a), we therefore also show learn-
ing curves using balanced sampling of ASAP data,
which means that samples will contain the same
amount of answers for each label.8

Averaged for LR, BERT and SBERT over all
training sizes, this yields a .09 increase in QWK
compared to random sampling. The order of perfor-
mance for individual methods does however vary
substantially between the two settings and across
different training sizes, with a tendency in most
cases of SBERT outperforming other methods and
the baseline methods (pre-trained and edit) being
inferior. A curious exception to this observation is
the curve for BERT on randomly drawn data.

Previous work on ASAP had found that both
BERT and SBERT outperform LR on larger
amounts of training data, while LR was superior on
smaller data sizes (Bexte et al., 2022). Although
our results do not find a general superiority of LR,
we take a closer look at how the different meth-
ods compare for larger training sizes. We therefore
extend the ASAP learning curve (with random sam-
pling) to include up to 1000 training instances (Fig-
ure 4(b)).9 We observe that soon after 100 training
instances, there is a clear advantage of neural over
shallow methods, with SBERT outperforming LR
much earlier. Overall, SBERT consistently outper-
forms or is at least on par with all other methods.

4.1 Potential for Combining Approaches

As the different methods sometimes show widely
differing performance, one idea towards improving
overall performance is to combine their predictions.

8Since, apart from the expected slight performance in-
crease, there were no notable effects of the different sampling
strategy on SRA, Figure 4(a) only shows results on ASAP.

9Due to data set sizes, this experiment can only be per-
formed on ASAP.
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Figure 3: Learning curves on Beetle and SEB with 5-way (top) and 2-way (bottom) labeling, as well as on ASAP.
Dotted lines represent baselines, dashed ones combinations of the individidual methods.

We do this in two different ways:
In the voting condition, we employ a majority

voting strategy over the predictions of all methods,
i.e. take the most frequently predicted label. In
case of ties, we randomly decide on one of them.

In the oracle condition, we predict the correct
label whenever at least one of the methods is able
to do so. If none of them is, we use the prediction
that is closest to the ground truth. This is of course
a hypothetical, idealized setting, as we in practice
do not know beforehand which method gives the
correct prediction, and can therefore be seen as the
ceiling performance on combining all methods.

Results for both settings are included in Fig-
ures 3 and 4. The only setting where the vot-
ing condition tops all individual methods is ASAP
with balanced sampling. In all other cases there is
enough disagreement between the individual pre-
dictions that there is always one method that is on
par with and in many cases even outperforming
the voting condition. Combining predictions of all
methods into an oracle condition, however, yields
a pronounced performance increase of around .2 in
weighted F1 for SRA and an even more pronounced
one of around .4 in QWK for ASAP, suggesting that
future experiments might build a stacked classifier
to test how much of this potential can be realized.

To dissect the cause for these performance in-

Unique to

All LR BERT SBERT Pretr. Edit Σ

2-
w

ay Beetle .44 .02 .02 .01 .01 .03 .09
SEB .44 .02 .02 .01 .01 .02 .08

5-
w

ay Beetle .32 .02 .02 .01 .01 .03 .09
SEB .30 .02 .02 .02 .01 .03 .10

ASAP .23 .02 .03 .02 .03 .04 .14

Table 2: Overview of which percentage of the test
answers only one of the methods classifies correctly
(unique to), and for which proportion all of them are
able to predict the correct score (all).

creases, we perform two further analyses: In the
unique condition, we for each of the methods eval-
uate which proportion of the answers in a data
set was scored correctly by the respective method
alone, i.e. misclassified by all other methods. In
the all condition, we evaluate which proportion of
answers was scored correctly by all methods, i.e.
misclassified by none of them.

Table 2 shows the results, with the percentage
of answers falling into the all condition indicating
how many are easy to predict correctly, which is of
course varying in line with the overall performance
level on the different data sets. We observe the
highest proportion of ’easy’ answers .44 for SRA
with 2-way labeling and the lowest of .23 for ASAP.
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Figure 4: Additional learning curves on the ASAP data. (a) Comparing different training data sampling strategies.
(b) Computing curves for larger training sizes (with random sampling of training data).

While this proportion tells us how many answers
are reasonably easy to score correctly, it also tells
us that the remainder of the answers it mislabeled
by at least one of the methods. Taking this to the
extreme and looking at the fraction of answers that
is scored correctly by only one of them, i.e. look-
ing towards unique condition, the per-method per-
centages are highest for ASAP and lowest for the
SBERT methods (both pre-trained and fine-tuned).
Even though the individual numbers may overall
not seem that high, note that in the oracle condition
it is actually the sum of all these proportions that
contributes to the observed high performance.

4.2 Influence of Reference Answer Selection

The choice of the specific training answers (which
are the reference answers in similarity-based
scoring) influences performance beyond the bal-
anced/random dichotomy. To highlight this vari-
ability, Figure 5 plots the distribution of perfor-
mances across the 20 runs for ASAP for both bal-
anced and randomly sampled data.10

In general, we see that standard deviation is
lower and varies less for SBERT than for BERT.
Notably, for SBERT it shows a further decline
for larger training sizes when using balanced sam-
pling, which we do not see for BERT. A similarly
pronounced decline in standard deviation was ob-
served for the similarity-based baselines. Overall,
this indicates that the choice of reference answers
for the similarity-based approach introduces less

10We limit this analysis to ASAP, as its larger pool of train-
ing instances allows for more sampling variance. For the sake
of brevity we only report results for BERT and SBERT.

9 14 19 24 29 34 39 44 49 54
# of Training Examples

0.0

0.1

0.2

0.3

QW
K 

SD

Random Sampling
BERT SBERT

Figure 5: Distribution of average SD over the 10 ASAP
prompts for BERT and SBERT, with balanced (top) and
random (bottom) sampling of training examples.

variance than for instance-based BERT training .

5 Cross-Prompt Scoring

Another claim often implicitly attached to
similarity-based methods is that they might have
greater capabilities of learning a cross-prompt
model. This intuitively makes sense as instance-
based approaches rely on the presence or absence
of certain lexical material while similarity-based
approaches can exploit the closeness to a model
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Figure 6: Cross-prompt performance change over
within-prompt performance for BERT (top) and SBERT
(bottom). Black borders indicate topic groups.

answer. Bexte et al. (2022) did however find that
in some cases fine-tuning an SBERT model to one
prompt before adapting it to another was actually
detrimental to performance, with an off-the-shelf
pre-trained SBERT model sometimes even outper-
forming the fine-tuned one. Since they did a zero-
shot application to the new prompt, no data from
the target prompt was used adapt the model to it.

We therefore first fine-tune a model on 1000
answers from a base prompt, and then use a smaller
amount (again building the learning curves from
Figure 3) to adapt this model to the target prompt.11

Figure 6 shows the change in performance for
each combination of prompts in ASAP12 compared
to a prompt-specific setup without pre-training (i.e.
the results from Experimental Study 1). To gain a
better overview, results are not only averaged over
all prompts but also all training sizes.

Like Bexte et al. (2022), we group prompts ac-
cording to the underlying topics Science, Biology
ELA, as a transfer within the same topic group
might be more successful than one across topic

11We again only report results for the SOTA models BERT
and SBERT for the sake of brevity.

12As only this data set provides a large enough amount of
answers, we only perform this experiment on ASAP.

groups. We see that - contrary to the implied su-
periority of similarity-based scoring - , the largest
performance increases of up to .3 in QWK hap-
pen for the instance-based BERT model. These
relatively pronounced increases mostly occur for
transfers within topic groups, but there are also
instances of (albeit less) successful cross-prompt
transfer, thus partially confirming the hypothesis -
at least for BERT. There seems to be a systematic
detrimental effect of using a Biology base prompt
for a target ELA prompt, which does however not
occur when prompts are used the other way round.
Apart from this, there is quite some symmetry to
the results, meaning that if using prompt A as base
for target prompt B helps (harms), the same is true
for using B as a base for A.

6 Summary & Future Work

We compared instance-based and similarity-based
methods for content scoring, examining whether
properties that are often implicitly attributed to the
latter are in fact empirically observable. In a set of
learning curve experiments directed at the claim of
similarity-based methods being less data hungry,
we find that a fine-tuned SBERT model does often
yield the best results, but not for Beetle, where this
method was outperformed by the instance-based
logistic regression. The suggested superiority of
similarity-based scoring when it comes to smaller
training sizes could thus not be confirmed.

When running experiments with larger train-
ing sizes on ASAP, SBERT remains the best-
performing method up until using 750 training in-
stances, from when on it is joined by Bert. In a
comparison of how much performance varies de-
pending on the choice of training data, SBERT had
the upper hand, especially when a relatively large
amount of balanced training data that is sampled.

Another proposed property of similarity-based
scoring is the ability to transfer across prompts.
This could however not be confirmed by our ex-
periments, where the largest performance increases
were observed for the instance-based BERT model.

Examining performance of a hypothetical ora-
cle condition showed that it might be worthwhile
to learn a stacked classifier, thus combining the
strengths of the different (both similarity- and
instance-based) methods. Other possible avenues
of future work are topics that have been researched
in the context of instance-based scoring but not, or
at least not to the same extent, for similarity-based
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scoring. These include the importance of spelling
errors or the vulnerability to adversarials.

7 Limitations

Since our results regarding a fine-tuned similarity
method are limited to the SBERT fine-tuning in-
troduced by Bexte et al. (2022), our findings are
limited to this specific similarity-based setup and
cannot exclude that other similarity-based methods
might behave differently. We also did not consider
training sizes larger than 1000 instances of ASAP,
and can therefore not speak for how the relative
performance of the different methods would be af-
fected by using even more training data. Regarding
the experiment on larger training data sizes, we
also limited our analysis to ASAP, so it is neces-
sary to compare the observed effects to those that
occur on other data sets. The same goes for our
cross-prompt experiments, which were also lim-
ited to ASAP . Other data sets cover other content
domains and can thus produce different effects. Fi-
nally, while we do discuss the advantage of a more
straightforward explainability of similarity-based
models regarding feedback, this is an entirely theo-
retical argument that goes beyond the scope of this
paper and would therefore have to be investigated
further in future work.

8 Ethical Considerations

Automatic scoring can foster great efficiency over
manual scoring, and can thus, especially consider-
ing limitations regarding human scoring resources,
be a highly useful addition to the educational world.
It enables instantaneous teacher-indepedent feed-
back and frees up teacher resources.

Nonetheless, automatically scoring student an-
swers brings about a number of concerns regarding
when it may be more or less appropriate.

While automated scoring in general can, depend-
ing on model implementation and quality, both
contribute to and reduce fairness, similarity-based
scoring at least provides model introspection at the
level of being able to return the answers that lead
to a certain classification outcome as feedback. In
general, automatic scoring puts a certain pressure
of conformity on answers: An answer that differs
in style from what was observed during training,
irrespective of whether it is in fact correct, is at risk
of being misclassified.

Regarding such biases, it should be noted that hu-
mans are not perfect either - but an English teacher

is biased against a particular student, they still have
the option of switching classes. The same may
not be possible if a widely used scoring model is
negatively biased against the kinds of answers they
give.

Finally, whether to use automatic or manual scor-
ing does not have to be a question of one or the
other - it may be worthwhile to have a model only
perform a first grouping, in hopes that this would
speed up the human grading process (Pado and
Kiefer, 2015) or return answers it is unsure about
for manual reassessment. Another option that is
already employed in practice (for example by the
Educational Testing Service) is to have the same set
of answers graded by both a human and a scoring
model, only requiring a second humand annotator
when there is too much disagreement between the
two. This ensures that the high-stakes TOEFL test
can benefit from more efficient, machine-supported
scoring while also putting a layer of quality control
on its predictions. In a lower-stakes scoring setup,
for example in an optional training exercise for stu-
dents, one may want to be more lenient towards the
model predictions, employing a scoring approach
without human involvement at the risk of getting a
certain percentage of erroneous predictions.
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