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Abstract

We propose a simple yet effective and robust
method for contrastive captioning: generating
discriminative captions that distinguish target
images from very similar alternative distractor
images. Our approach is built on a pragmatic in-
ference procedure that formulates captioning as
a reference game between a speaker, which pro-
duces possible captions describing the target,
and a listener, which selects the target given the
caption. Unlike previous methods that derive
both speaker and listener distributions from a
single captioning model, we leverage an off-
the-shelf CLIP model to parameterize the lis-
tener. Compared with captioner-only pragmatic
models, our method benefits from rich vision-
language alignment representations from CLIP
when reasoning over distractors. Like previ-
ous methods for discriminative captioning, our
method uses a hyperparameter to control the
tradeoff between the informativity (how likely
captions are to allow a human listener to dis-
criminate the target image) and the fluency of
the captions. However, we find that our method
is substantially more robust to the value of this
hyperparameter than past methods, which al-
lows us to automatically optimize the captions
for informativity — outperforming past meth-
ods for discriminative captioning by 11% to
15% accuracy in human evaluations.1

1 Introduction

Discriminative captioning provides a challenging
testbed for generating context-sensitive grounded
language. In this task, a model must produce a
description of a target image (e.g., the green high-
lighted image in Figure 1) that allows a person
to correctly identify the target image from among
a set of similar distractor images (e.g., the red
highlighted images). Good captions must strike
a balance between two criteria: (1) being fluent

1The code is available at https://github.com/
JefferyO/prag_clip_contra_caption

Figure 1: Illustration of the contrastive captioning task
with a random example from the ImageCoDe dataset.
Models are tasked with generating captions that dis-
tinguish the target image (a) from other very similar
distractors images (b) to (d). (There are a total of 9 dis-
tractors in each set of images, we omit the rest of them
for simplicity of illustration.) Compared with baselines
from previous work, our proposed approach, PICL, gen-
erates informative captions that help clearly identify the
target out of the distractors, while remaining natural and
fluent.

descriptions of the target image and (2) being dis-
criminative in context: allowing a person to pick
out the target image from the set.

Past work on discriminative captioning has suc-
cessfully applied techniques from computational
pragmatics to trade off between the two criteria
above (Andreas and Klein, 2016; Vedantam et al.,
2017; Cohn-Gordon et al., 2018). Possible cap-
tions are selected using a combination of two scor-
ing functions: (1) the caption’s probability under a
standard image captioning model, or base speaker
score, which measures the caption’s fluency and
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faithfulness to the image, and (2) a base listener
score, which predicts how likely a human listener
would be to correctly identify the target image
given the caption, i.e. measuring discriminative-
ness. These past works typically obtain the listener
scores from the image captioning (speaker) model
itself, for example using Bayesian inference over
the set of possible images (Cohn-Gordon et al.,
2018). The relative weight of these two scores is
controlled using a informativity hyperparameter,2

whose value affects the tradeoff between produc-
ing captions that are predicted to be fluent and
faithful, versus captions that are predicted to be
discriminative. It is challenging to automatically
choose a value for this hyperparameter, as captions
that appear to be discriminative under a caption-
ing model are frequently uninformative for peo-
ple (Dessì et al., 2022).

Our approach, PICL (Pragmatic Inference with
a CLIP Listener) follows this same pragmatic
framework, but scores discriminativeness using
a listener model separate from the speaker. We
implement the listener model using CLIP (Rad-
ford et al., 2021). As shown in previous work,
the rich vision-language representation learned in
CLIP (1) provides robust assessments of model-
generated captions that highly correlate with hu-
man judgments (Hessel et al., 2021), and (2) ef-
fectively quantifies the degree of discriminative-
ness/informativeness of visual referring expres-
sions (Takmaz et al., 2022).

To evaluate PICL, we conduct experiments with
sets of images from ImageCoDe (Krojer et al.,
2022), a challenging dataset originally designed
for contrastive retrieval: retrieving target images
among a set of distractors given contextual descrip-
tions. We perform contrastive captioning on this
dataset for the first time. We compare PICL to past
work on two criteria: (1) informativeness and (2)
fluency, evaluating both metrics using automatic as
well as human evaluations.

Results show that our approach typically outper-
forms past methods on both criteria, and is substan-
tially more robust to the value of the informativ-
ity hyperparameter. In particular, we are able to
choose this hyperparameter automatically by maxi-
mizing how informative the captions are predicted
to be to human evaluators. In contrast, we find
that maximizing predicted informativity leads past

2This parameter is also sometimes referred to as a ratio-
nality parameter.

methods to produce captions that are so disfluent
that they are misleading for people. In this auto-
matic hyperparameter selection setting, our method
produces captions that are 11% to 15% easier for
human annotators to interpret correctly than past
work.

2 Related Work

Contrastive Captioning A variety of methods
for contrastive captioning generate captions that
optimize for discriminative objectives, e.g., mini-
mizing the textual similarity between captions for
the target and distractor images (Wang et al., 2020),
using generated captions as input to image retrieval
models (Luo et al., 2018; Liu et al., 2018), and com-
puting CLIP similarity scores between captions
and target images (Cho et al., 2022). Other meth-
ods involve leveraging fine-grained image regional
features to generate distinctive captions based on
similar and/or unique objects among target and dis-
tractors (Wang et al., 2021; Mao et al., 2022), para-
phrasing generic captions to enhance both diversity
and informativeness (Liu et al., 2019), and fine-
tuning RL-optimized caption models to encourage
low-frequency words (Honda et al., 2022). Most
of the methods above require training a discrim-
inative captioning model — either by designing
an discriminative captioning architecture that takes
multiple images as input, or fine-tuning a model
using discriminative rewards. In contrast, our pro-
posed approach is fully inference-time — it requires
no training, and is applicable to any off-the-shelf
generic captioning model.

Our approach builds on a family of inference-
time pragmatic-based contrastive captioning meth-
ods which have taken one of two approaches: (1)
incrementally generating captions but using only
a captioning model (our speaker model), where
tokens are chosen that have high probability for
the target image and low probability for the dis-
tractor (Vedantam et al., 2017; Cohn-Gordon et al.,
2018; Nie et al., 2020) or (2) using a separate dis-
criminative model but selecting a discriminative
caption from among a set of entire captions gener-
ated by the speaker model for the target image (An-
dreas and Klein, 2016; Luo and Shakhnarovich,
2017). Our work shows that these approaches can
be productively combined, using a strong off-the-
shelf discriminative model (CLIP) to guide the in-
cremental generation of captions. This allows us
to tackle a more challenging dataset and task than
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previous discriminative captioning work, contain-
ing a large number (10) of highly-similar distractor
images.

Pragmatics Our approach to contrastive genera-
tion follows a long line of work on computational
pragmatics, particularly in the Rational Speech
Acts framework (Frank and Goodman, 2012; Good-
man and Frank, 2016) which models language gen-
eration as an interaction between speakers and lis-
teners. Prior work has found that pragmatic genera-
tion can improve performance on a variety of NLP
tasks, including reference games (Monroe et al.,
2017), instruction generation (Fried et al., 2018),
summarization (Shen et al., 2019), machine trans-
lation (Cohn-Gordon and Goodman, 2019), and
dialogue (Kim et al., 2020; Fried et al., 2021).

Tradeoff between discriminativeness and accu-
racy/fluency Assessing the quality of image cap-
tions requires multifaceted evaluation. Prior work
on contrastive/discriminative captioning investi-
gates the tradeoff of model performance between
discriminativeness and accuracy/fluency (Wang
et al., 2021; Liu et al., 2019; Honda et al., 2022;
Cho et al., 2022; Vedantam et al., 2017; Andreas
and Klein, 2016). In this paper, we also perform an
extensive study on the tradeoff between informa-
tiveness and fluency. Specifically, we focus on ana-
lyzing the robustness of the proposed and baseline
methods in the tradeoff according to the selection
of hyperparameters.

3 Method

Our PICL approach conducts incremental prag-
matic inference at the token level by combining
a base speaker and a CLIP listener to derive a prag-
matic speaker. At each step of decoding, the base
speaker selects a set of candidate tokens and adds
them to partial captions. Given candidate partial
captions, the listener updates its beliefs on which is
the target among the set of images based on CLIP
similarity measurement. In particular, it contrasts
each partial caption to all the images by calculating
the CLIP similarity scores of partial caption-image
pairs and normalizes over all images to derive the
listener likelihood. Finally, a pragmatic speaker
reasons over both the base speaker and listener by
combining their distribution to rerank partial cap-
tions, select a highly-scored subset and proceed to
the next decoding step.

3.1 Incremental Pragmatic Inference
Framework

Similar to Cohn-Gordon et al. (2018), we for-
mulate the process of generating contrastive cap-
tions as a series of reference games between two
agents, a speaker and a listener. Given a shared
visual context I = i+ ∪ I− consisting of a tar-
get image i+ and a set of m similar distractors
I− = {i−1 , . . . , i−m}, the speaker aims to produce
a sequence of T tokens o1:T = (o1, . . . oT ) that
could let the listener identify i from I . Such prag-
matic inference is conducted incrementally: at each
step t of the caption generation, the speaker selects
the next token ot by playing the reference game
with the listener based on the context I and the
partial caption o<t obtained from the last step. In
the following subsections, we will introduce the
speaker and listener models as well as the incre-
mental inference strategy in detail.

3.2 Speaker and Listener Models
Base Speaker At each step of generation,
the base speaker S0 yields a distribution
PS0(ot|o<t, i

+) over the token vocabulary for
the next possible token ot, conditioning on the
previous partial caption and the target image.
We parameterize PS0 with a context-agnostic
captioning model. In particular, we use OFA3

(Wang et al., 2022), a unified sequence-to-sequence
multimodal pretraining model and finetune it on
MSCOCO Image Captioning dataset (Chen et al.,
2015). Finetuned OFA is a strong base captioner;
at the time of this work, it achieves state-of-the-art
performance on MSCOCO Image Captioning.

Base Listener Given a candidate partial caption
o1:t = (o<t, ot) generated by S0, the base listener
L0 yields a distribution PL0(i|o1:t, I) over all can-
didate images i ∈ I, modeling the likelihood of
choosing each candidate given the partial caption
at step t and the shared context I. We derive PL0

from a zero-shot CLIP model by normalizing its
similarities between images and partial captions
over all image candidates:

PL0(i|o1:t, I) =
exp(c(i, o1:t))

Σi′∈I exp(c(i
′ , o1:t))

(1)

where c(i, o1:t) denotes the cosine similarity
between the CLIP visual encoding of i and textual

3We use the OFA-base configuration from https://
github.com/OFA-Sys/OFA
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encoding of o1:t

Pragmatic Speaker From the base speaker and
listener, we derive a distribution for the pragmatic
speaker S1 as

PS1(ot|o<t, i
+, I) =PL0(i

+|o1:t, I)λ

·PS0(ot|o<t, i
+)1−λ (2)

where λ ∈ [0, 1] is a “informativity” hyper-
parameter that trades off between producing fluent
(from S0) and informative (from L0) captions.

3.3 Decoding with Approximation

To iteratively generate captions with the pragmatic
speaker S1, we perform beam search with beam
width B, which involves solving

argmax
ot

PS1(ot|o<t, i
+, I) (3)

for each beam item. However, it is computation-
ally infeasible to obtain the exact solution to Equa-
tion 3 since it requires encoding all #(vocabulary
size) possible next partial captions with CLIP to
calculate PL0 at each step. Thus, we adopt a sub-
sampling approach similar to Andreas and Klein
(2016); Fried et al. (2018). At each step of decod-
ing, a subset of N(N > B) candidate next partial
captions o1:T are obtained via beam search from the
base speaker distribution PS0 , and these N candi-
dates are rescored with Equation 2 to approximate
Equation 3. Finally, only the top B candidates after
rescoring are retained to continue with.

4 Experimental Setup

We evaluate PICL on ImageCoDe (Krojer et al.,
2022), a dataset originally designed for image re-
trieval with contextual descriptions. Given the high
visual similarity of the images in each problem in
the dataset, we adopt it as a challenging testbed for
discriminative captioning. We evaluate PICL and
competitive baseline methods on two criteria, infor-
mativeness and fluency, using both automatic and
human evaluation. For informativeness, we follow
previous work (Cohn-Gordon et al., 2018; Newman
et al., 2020) to automatically evaluate the perfor-
mance of pragmatic models with an evaluating lis-
tener Leval. The discriminativeness of the method
being evaluated is quantified by the retrieval accu-
racy of Leval with method-generated captions as
input. For fluency, we score the well-formedness of

generated captions with the perplexity (PPL) under
GPT-2 (Radford et al., 2019).

In addition to the automatic evaluation, we con-
duct human evaluation where annotators are tasked
to a) retrieve the target image given the caption and
b) score the fluency of the caption.

4.1 Dataset
We use sets of images collected in ImageCoDe
(Krojer et al., 2022) to evaluate the proposed ap-
proach. Each image set in ImageCoDe consists of
10 visually similar images. The image sets are col-
lected in two categories: static pictures and video
frames. A random subset of images per set is se-
lected as targets, for which human annotators write
discriminative captions that are retained if other hu-
mans can successfully use it to retrieve the target.

In our experiments, we use the validation split of
ImageCoDe for hyper-parameter selection and eval-
uate model performance on the test split. The valid
and test sets contain 1,039 and 1,046 sets of im-
ages and 2,302 and 2,306 human written captions,
respectively.

Table 1 shows the retrieval performance of sev-
eral models on ImageCoDe test split, where CLIP-
zero-shot is the base listener used in PICL and
ALBEF-finetuned is the evaluating listener used
for automatic evaluation (see Section 4.2). Given
the large performance gap of all models between
static and video subsets, we believe the video
frames are too challenging for current neural mod-
els to make pragmatic and contextual inferences
for both captioning and retrieving. Therefore, we
use only static images in our experiments.

4.2 Automatic Evaluation
Informativeness Following Cohn-Gordon et al.
(2018) and Newman et al. (2020), we evaluate
the informativeness of captions generated by our
method and baselines using a listener test: whether
an evaluative listener model could identify the tar-
get image out of the distractors, given generated
captions. However, an evaluative listener can only
be an imperfect proxy for human listeners, and
past work has found that utterances that are in-
formative to an evaluative listener model can be
uninterpretable to people, a phenomenon known
as codebooking (Kim et al., 2019) or language
drift (Lazaridou et al., 2020). This issue is par-
ticularly likely to complicate evaluation in a prag-
matic framework like ours, where an explicit lis-
tener model (a frozen CLIP model, in our PICL
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All Video Static

CLIP-zero-shot 22.4 15.6 47.8
CLIP-finetuned-best 29.9 22.0 59.8
ALBEF-finetuned 33.6 22.7 74.2

Table 1: Retrieval accuracy on ImageCoDe test split
with human-written contextual captions as input. In
the proposed method, we use CLIP-zero-shot as the
base listener and ALBEF-finetuned as the listener for
evaluation. CLIP-finetuned denotes the best-performing
model in previous work. The fine-tuned ALBEF outper-
forms the best CLIP model with a large margin on static
images while improving slightly on video frames. Com-
paring with performances on static images, all models
struggle on video frames.

approach) is used to guide utterance generation.
To mitigate this codebooking issue in evaluation,

past work has made the evaluative listener dissim-
ilar by training it on separate data (Cohn-Gordon
et al., 2018; Kim et al., 2019; Fried et al., 2021);
we additionally use a separate architecture for the
evaluative listener, dissimilar from our CLIP lis-
tener: the ALBEF vision-language model (Li et al.,
2020). We finetune ALBEF on the human-written
contextual captions for the retrieval task in Image-
Code.4 As shown in Table 1, finetuned ALBEF
outperforms the best-performing retrieval model
from previous work (Krojer et al., 2022) on Im-
ageCoDe with human-written captions, so we use
ALBEF-finetuned as our evaluating listener in au-
tomatic evaluations of informativeness.
Fluency While being informative, discrimina-
tive captions should also be natural and fluent.
Therefore, we additionally perform automatic eval-
uations of the fluency of generated captions by
computing their perplexity using a GPT-2 language
model (Radford et al., 2019).

4.3 Human Evaluation

Recent analysis on ImageCode (Dessì et al., 2022)
and in other reference game settings (Lazaridou
et al., 2020) reveals that utterances generated by
neural models can be discriminative enough for
other neural models to retrieve the target image
while being misleading to humans. This implies
that the performance of a neural retriever evalu-
ative listener (e.g., ALBEF) on model-generated
captions might not correctly reflect the degree of
informativeness of the captions from a human’s

4Specifically, we finetuned the refcoco-checkpoint con-
trastively, i.e. with the 9 distractors in the same batch.

perspective. Therefore, we further conduct a hu-
man evaluation for PICL and baseline methods on
Amazon MTurk, where we present human workers
with the same image retrieval task as for ALBEF,
and use the success rate of workers in identifying
the correct target images (retrieval accuracy) to
measure the informativeness of the given captions.
To obtain human judgments of caption fluency, we
additionally ask workers to score the captions on a
Likert scale ranging from 1 (nonsense) to 5 (com-
pletely natural). We randomly sampled 100 sets of
static images from the ImageCoDe test split and
select one image with the human-written caption
as the target. For each target, we produce a caption
with each model and, together with the original
human caption, present each caption-set pair to 3
workers. More details about the human evaluation
setup could be found in Section A.3.

4.4 Baselines

We compare PICL to three baselines:
Base Speaker We use the base speaker S0 intro-
duced in Section 3. The base speaker takes only
the target image as input and generates context-
agnostic captions regardless of the distractors.
Incre-RSA We further implement the incremen-
tal RSA model (Incre-RSA) from Cohn-Gordon
et al. (2018) as a competitive baseline. Specifically,
we derive the Bayesian RSA model introduced in
Cohn-Gordon et al. (2018) from our base speaker
S0, which enables direct comparison with our pro-
posed approach. Unlike PICL, Incre-RSA does not
have a separate model as the listener. The listener
probabilities are derived with Bayesian inference
at each decoding step based on the speaker distri-
bution and an image prior.
E-S Also based on S0, we implement the emitter-
suppressor (E-S) beam search introduced in Vedan-
tam et al. (2017) for discriminative image caption-
ing. Similar to Incre-RSA, the E-S approach dif-
fers from PICL mainly in that it does not contain
a separate model to rescore partial captions from a
listener’s perspective. Instead, it incorporates con-
textual reasoning by selecting tokens that, under the
base speaker, have high probability for the target
image but low probability for the distractor images,
using a weighted difference of scores. Since their
task and model formulation considers only a sin-
gle distractor image, we extend it to include all
distractors in the set by calculating the suppressor
distribution as the mean of the distribution of the
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Figure 2: Automatic evaluations show a tradeoff be-
tween the informativeness (measured by ALBEF re-
trieval accuracy) and fluency (GPT-2 perplexity) of dis-
criminative captions on the ImageCoDe valid set in auto-
matic evaluations. Each curve is obtained by varying the
value of the informativity hyperparameter. Compared
with previous methods, our proposed PICL approach
achieves a more robust trade-off between fluency and
informativeness. The vertical line depicts the fluency-
controlled criterion (Section 4.5), choosing a perplex-
ity value that matches the perplexity of the maximally-
informative PICL.

next token conditioned on each of the distractors.
For all three baselines, we use beam search at

inference with the same beam width B as PICL.

4.5 Informativity Hyperparameter Selection

Both our PICL method and the Incre-RSA and E-
S baselines use an informativity hyperparameter5

to trade off between predicted informativity and
fluency in generated captions. We describe two
methods for choosing a value for this hyperparam-
eter for each method.

Informativity Maximization In our primary set
of experiments, we set the informativity hyperpa-
rameter for each method automatically to maximize
the performance of our evaluating listener, ALBEF,
on the captions in the validation set. We refer to
the models obtained under this scheme as PICL,
Incre-RSA, and E-S, respectively.

When maximizing predicted evaluative listener
accuracy, we observe qualitatively that PICL typ-
ically generates captions which are fluent and
human-understandable. In contrast, E-S and Incre-
RSA are less robust, and under this informativity
maximization objective typically produce highly

5Sometimes also referred to as a “rationality” parameter.

disfluent captions — identifying captions that are
interpretable under our evaluating listener model,
ALBEF, but potentially confusing to a human, con-
sistent with past work identifying language drift
in reference game setups (Lazaridou et al., 2020;
Dessì et al., 2022). This trend is depicted in Fig-
ure 2, where optimizing for high ALBEF accuracy
in E-S and Incre-RSA pushes the average GPT-2
perplexity of captions to extremely high values.
We will see in human evaluations in Section 5
that the disfluent captions obtained by maximizing
predicted informativity in the Incre-RSA and E-S
baselines, though “understandable” to the ALBEF
model, are often uninterpretable for humans.

Fluency Control Given the qualitative failures of
E-S and Incre-RSA when maximizing automated
proxies for informativity, we propose to improve
these baselines using a fluency-controlled optimiza-
tion scheme that pivots around PICL. In particular,
we search for the informativity parameters for E-S
and Incre-RSA so that the average GPT-2 perplex-
ity of the generated captions are as close as possible
to that of PICL. We refer to the models obtained
under this scheme as ES (PPL) and Incre-RSA
(PPL).

5 Results

5.1 Automatic Evaluation

We use automatic evaluations (Section 4.2) to evalu-
ate the tradeoff between the predicted informativity
(using ALBEF) and predicted fluency (using GPT-
2) of captions over a wide range of values for the
informativity hyper-parameter of each method.

Hyper-parameter Sensitivity Figure 2 depicts
how each method trades off between discrimina-
tiveness and fluency by varying the informativity
hyper-parameter. PICL demonstrates higher ro-
bustness to hyper-parameter selection than Incre-
RSA and ES in the trade-off: while optimizing
for ALBEF-predicted informativity-maximization,
Incre-RSA and ES produce more corrupted and dis-
fluent captions with high perplexity whereas PICL’s
perplexity degrades less.
Informativeness As shown in Table 2, PICL
substantially outperforms the base speaker and the
incremental RSA (Incre-RSA, Cohn-Gordon et al.
2018) methods on ALBEF retrieval accuracy, and
achieves comparable results to emitter-suppressor
(E-S, Vedantam et al. 2017). The results demon-
strate that our method could leverage CLIP as a
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ALBEF GPT-2
Accuracy Perplexity

Human 74.2 138.4
Base Speaker 54.2 99.4

Optimized for Informativity

Incre-RSA 64.3 2703.0
E-S 77.5 4093.6
PICL 77.3 380.2

Perplexity-Matched to PICL

Incre-RSA (PPL) 62.9 446.5
E-S (PPL) 73.2 366.6

Table 2: Automatic evaluation results on the ImageCode
test set: We evaluate informativity using the retrieval ac-
curacy of the ALBEF evaluative listener using captions
generated by each approach. PICL substantially out-
performs Base Speaker, Incre-RSA, Incre-RSA (PPL),
and E-S (PPL), achieving a competitive level of infor-
mativeness to E-S. In fluency, evaluated using GPT-2
perplexity, methods that control for the fluency (PPL)
pivoting around PICL achieve similar level of perplexity,
while E-S and Incre-RSA that optimized for informativ-
ity are substantially less fluent.

listener model in incremental pragmatic caption
generation. For both E-S and Incre-RSA, control-
ling for fluency negatively affects ALBEF accuracy,
which conforms with the trend in Figure 2.
Fluency Table 2 also shows the perplexity that
GPT-2 assigns to the output of each model on the
ImageCoDe test set. As discussed in Section 4.5,
Incre-RSA and E-S are less robust when being opti-
mized for informativity, which is reflected by their
extremely high perplexity. In contrast, when con-
trolling for the fluency to match PICL’s validation
perplexity, both Incre-RSA and E-S generate sub-
stantially more fluent captions with test perplexity
similar to PICL, at the cost of predicted informa-
tiveness, as shown by a drop in ALBEF accuracy.

5.2 Human Assessment Performance

We perform human evaluations (Section 4.3) to val-
idate these findings about the informativeness and
fluency of the discriminative captioning methods.

Informativeness Human retrieval accuracies on
model- and human-generated captions are depicted
in Table 3. In the setting where models are au-
tomatically optimized for predicted informativity
(Section 4.5), PICL substantially outperforms the
Incre-RSA and E-S methods, with gains in human

Human Fluency
Method Accuracy Rating

Human 81.7 4.76
Base Speaker 48.7 4.80

Optimized for Informativity

Incre-RSA 50.7 2.87
E-S 54.0 3.59
PICL 65.7 4.07

Perplexity-Matched to PICL

Incre-RSA (PPL) 53.3 4.23
E-S (PPL) 63.7 4.54

Table 3: Human evaluation results on 100 sets of images
from ImageCoDe test split: Informativity is assessed by
the retrieval accuracy of human annotators using cap-
tions generated by each approach. PICL outperforms all
other models on human informativeness judgments. For
fluency, human annotators evaluate using ratings on a
1-5 scale. Similar to results in the automatic evaluations
of fluency (Table 2), annotators assign much lower flu-
ency scores to E-S and Incre-RSA, which do not control
for fluency.

accuracy of 11% and 15% respectively. The results
indicate that captions generated by PICL are more
informative than by other approaches, judged by
human annotators. When we control the disflu-
ency of the other methods to be similar to PICL (as
measured by GPT-2 perplexity in automatic evalua-
tions), PICL still substantially outperforms Incre-
RSA (PPL) and slightly outperforms ES (PPL).
Moreover, for both E-S and RSA, controlling for
PPL results in more informative captions, which
is not reflected in the automatic evaluations using
ALBEF (Table 2), implying that disfluency has a
more significant negative effect on informativity
for humans. While past work has often relied only
on automated evaluations, our results indicate that
human evaluations are important to accurately com-
pare the performance of discriminative captioning
systems.

Fluency Table 3 also shows the average fluency
scored by human workers for model- and human-
generated captions. Similarly to Table 2 captions
generated by E-S and Incre-RSA without control-
ling for perplexity are much more disfluent as
scored by humans.

Informativity-Fluency Trade-off We further
combine the human accuracy and fluency in Ta-
ble 3 for each model and plot them in Figure 3.
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Figure 3: Human eval results on 100 test split static
image sets.

To depict the informativity-fluency trade-off under
human assessments, we also include a setting of in-
formativity hyperparameters for each method with
an intermediate level of automatically predicted
fluency. Specifically, for each model, we search
for its informativity parameter so that the average
GPT-2 perplexity of generated captions are as close
as possible to the average perplexity of the base
speaker + PICL. We refer to the models obtained
under this scheme as ES (mid PPL), Incre-RSA
(mid PPL) and PICL (mid PPL).

With the resulting plot shown in Figure 3, PICL
outperforms Incre-RSA along both dimensions. In
comparison with E-S, PICL achieves better dis-
criminativeness with a loss in fluency. For E-S and
Incre-RSA, the trade-off patterns are different from
that under ALBEF (Figure 2). While optimizing
for ALBEF accuracy consistently induces more
disfluent generation, the optimal informativeness
under human judgment is likely to be achieved with
a moderate level of disfluency.

5.3 Automatic vs. Human Evaluation

The analysis above reflects both agreement and mis-
match between automatic evaluation and human
judgments on different aspects. To further reveal
the correlation between them, and lay a founda-
tion for future work on discriminative captioning
to make automatic evaluations more predictive of
human performance, we conduct analysis along
both axes of informativity and fluency.

ALBEF vs. Human Retrieval Accuracy Fig-
ure 4 plots ALBEF against human retrieval accu-
racy on the same 100 sets of images. ALBEF accu-
racy has a strong positive correlation with human
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Figure 4: ALBEF accuracy and human accuracy are pos-
itively correlated for model-generated outputs, with the
exception of disfluent captions produced by the variants
of E-S and Incre-RSA that do not control for perplexity.
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Figure 5: Mean perplexity, under GPT-2, is predictive
of human fluency evaluations across systems.

judgments except for having human, E-S, and Incre-
RSA as outliers. We posit that the performance
mismatch on human written captions is because
it is challenging for neural retrieval models like
ALBEF to interpret human-written descriptions,
which are highly nuanced and grammatically com-
plex (Krojer et al., 2022). The high disfluency of
the captions of E-S and and Incre-RSA hinders
evaluators in interpreting them accurately, despite
being discriminative to models.

GPT-2 Perplexity vs. Human Fluency Score
As illustrated in Figure 5, on the 100 evaluation
image sets, there is a strong correlation between
the mean GPT-2 perplexity of captions and human
fluency scores, implying that GPT-2 perplexity is a
good proxy for human fluency judgments.
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Accuracy

PICL 77.3

- incremental 65.4
- distractors 57.5

Table 4: Automated ablation evaluations of informative-
ness. We evaluate “- incremental” that only conducts
CLIP scoring and reranking on full captions generated
by the speaker model, and“- distractor" in which only
the target image is included during inference.

5.4 Ablation Results

To further understand the performance of PICL, we
conduct ablation studies to investigate the role of 1)
incremental pragmatic inference and 2) grounding
language to distinguish from distractors.

For 1), we experiment with PICL - incremen-
tal that removes incremental inference by first us-
ing only the base speaker S0 to generate a set of
complete and context-agnostic captions, and us-
ing CLIP to score these entire captions. For 2),
we evaluate PICL - distractors, excluding all dis-
tractors and providing only the target image dur-
ing inference. At each decoding step, the listener
distribution is derived by normalizing the CLIP
similarities between partial captions and the target
image over all candidates. As shown in Table 4,
the retrieval accuracy drops substantially on both
variations, suggesting that both the incremental in-
ference and grounding to distractors are vital com-
ponents for pragmatic reasoning in PICL.

6 Conclusion

We propose an incremental pragmatic inference ap-
proach with a CLIP listener, which combines the
strengths of previous approaches that conduct in-
cremental pragmatic reasoning with a separately
modeled listener. We identify strengths and weak-
nesses of automatic model-based evaluation of dis-
criminative captioning systems, and suggest that
future work 1) control for the disfluency of gener-
ated captions and not solely optimize for predicted
informativity and 2) use human evaluations. In
human evaluations, our approach outperforms pre-
vious discriminative captioning methods, and is
substantially more robust than previous approaches
in trading off between the fluency and informativity
of the captions to human listeners.
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Limitations

We evaluate only on the “static” image partition of
the ImageCoDe dataset. ImageCoDe contains an-
other more challenging partition, containing frames
from short temporal intervals in videos, which re-
mains extremely difficult for all current discrimi-
native captioning methods, including our PICL ap-
proach. (This partition, along with the static image
partition that we use, has previously only been used
in contrastive retrieval tasks, not in discriminative
captioning.)

While we made a substantial effort to explore
the tradeoff between informativity and fluency, we
were limited in the number of human evaluations
that we were able to do and could only evaluate
a few settings of the informativity parameter for
each method. We complement these human evalua-
tions with automated evaluations on a much wider
range of parameters, and analyze the correlations
between human performance and judgements and
the automated metrics.
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A Implementation Details

A.1 Computational Resources
The finetuning of OFA model on COCO captions
is run on 4 × Tesla V100 32GB GPUs.

All pragmatic inference experiments are run on 4
× GeForce RTX 2080 Ti GPUs.

A.2 Hyperparameter Searching
A.2.1 Rationality Parameters
Searching Range The search ranges of the ratio-
nality parameter for PICL, E-S, and Incre-RSA are
[0, 1], [0, 1], [0, 2] respectively.

Searching Method We conduct all the hyperpa-
rameter searching via coarse-to-fine search, with
step sizes 0.1, 0.01, and 0.001 respectively.

A.2.2 Beam Search Parameters
For beam search parameters B,N discussed in Sec-
tion 3.2, we set B = 16 and N = 256.

A.3 Human Evaluation
Figure 6 shows an example interface of the human
evaluation. We have three MTurk workers evaluate
each of the 100 instances of (images, caption) for
each of the ten configurations of methods (includ-
ing human-written captions) for informativity (by
requiring them to choose the image referred to by
the caption) and fluency (on a 1-5 Likert scale) .
Workers are paid with $0.15 per caption evaluation.
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Instructions:
Given the description and the set of 10 images below,
1. Select the image that is best described by the description.
2. Score the fluency of the description.

Click on the images to display them in full size.

Description:
White table and chairs behind bright green plants.

Images:

1 2 3 4 5

6 7 8 9 10

1. Which image is best described by the description?
Select an option (Please select)

2. How fluent is the description?
 5: Fluent
 4
 3: Slightly ungramatical or unnatural, but understandable
 2
 1: Totally ungramatical or unnatural

Submit

Figure 6: Human Evaluation Interface
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