
Findings of the Association for Computational Linguistics: ACL 2023, pages 1955–1969
July 9-14, 2023 ©2023 Association for Computational Linguistics

An Empirical Analysis of Leveraging Knowledge for Low-Resource
Task-Oriented Semantic Parsing

Mayank Kulkarni1, Aoxiao Zhong2∗, Nicolas Guenon des mesnards1, Sahar Movaghati1,
Mukund Sridhar1, He Xie1, Jianhua Lu1

1Amazon Alexa AI 2Harvard University
{maykul,mesnarn,movas,harakere,hexie,jianhual}@amazon.com

aoxiaozhong@g.harvard.edu

Abstract

Task-oriented semantic parsing has drawn a lot
of interest from the NLP community, and espe-
cially the voice assistant use-cases as it enables
representing the meaning of user requests with
arbitrarily nested semantics, including multiple
intents and compound entities. SOTA models
are large seq2seq transformers and require hun-
dreds of thousands of annotated examples to be
trained. However annotating such data to boot-
strap new domains or languages is expensive
and error-prone, especially for requests made of
nested semantics. In addition large models eas-
ily break the tight latency constraints imposed
in a user-facing production environment. As
part of this work we explore leveraging exter-
nal knowledge as a replacement for additional
annotated data in order to improve model ac-
curacy in low-resource and low-compute set-
tings. We demonstrate that using knowledge-
enhanced encoders inside seq2seq models does
not result in performance gains by itself, but
multitask learning to uncover entities in addi-
tion to the parse generation is a simple yet ef-
fective way of improving performance across
the domains and data regimes. We show this
is especially true in the low-compute low-data
setting and for entity-rich domains, with rela-
tive gains up to 74.48% in some cases on the
TOPv2 dataset.

1 Introduction

Fostered by NLP advances, virtual assistants such
as Google Home or Alexa are becoming increas-
ingly competent to address complex yet natural,
everyday user needs. While requests as simple as
"turn off the living room lights when the movie
starts" could not be fulfilled with legacy systems
that assigned a single user intent to each utterance
and a single slot label to each token in an utterance
(Mesnil et al., 2013; Liu and Lane, 2016), recent
works on task-oriented semantic parsing (Gupta

∗ The work was done while at Amazon Alexa AI.

et al., 2018; Aghajanyan et al., 2020) represent ut-
terance semantics with arbitrarily nested trees (Fig-
ure 1), thus handling the above use-case among
others (e.g. multiple intents, cross-domain intents,
compound entities, etc.). The research community
tackles this task with success by treating it as a
seq2seq generation task where a linearized seman-
tic tree is predicted iteratively (Rongali et al., 2020),
but such approaches fall short when confronted by
real-life constraints such as strict run-time latency
and scarcity of quality training data. Manual data
annotation of training examples is a costly and
error-prone process, which is exacerbated as utter-
ance target representations become richer (more
nested). The impact of data scarcity has been quan-
tified in recent years with the introduction of the
TOPv2 benchmark (Chen et al., 2020) that provides
low-resource scenarios for task-oriented parsing.

Popular approaches to overcome data scarcity
include synthetic data augmentation (Feng et al.,
2021; Jia and Liang, 2016; Schick and Schütze,
2021), transfer learning (Ruder et al., 2019; Fan
et al., 2017), and meta-learning (Gu et al., 2018;
Huang et al., 2018; Wang et al., 2020). In this paper,
we explore if we can model richer token represen-
tations for mentions by leveraging external knowl-
edge, as mentions are fundamental to generating
the correct parse. The backbone motivation lies in
the observation that several everyday NLP applica-
tions involve real-life entities referenced in knowl-
edge bases (for e.g. street names, sports events, or
public figures). This information can be utilized
for enhancing downstream NLP tasks. For exam-
ple the request "play the green line" could refer to
either a movie name or a song name, modeling this
mention appropriately for the decoder could im-
prove performance while generating a parse. This
is particularly appealing in the low-data regime, for
which rare entities are unlikely to be represented
in the training data at all. Additionally, building en-
tity embeddings through entity-focused modeling

1955



objectives has shown promising results in entity
based NLP tasks such as named entity recognition
(Yamada et al., 2020) and entity linking (Wu et al.,
2020).

While there has been prior work to leverage
knowledge for generation tasks (Guu et al., 2020;
Izacard et al., 2022; Cao et al., 2020) this largely fo-
cused on unstructured text generation tasks such as
Question-Answering or Entity Linking. To the best
of our knowledge, we are the first to investigate its
use in seq2seq models for task-oriented semantic
parsing, a complex and structured text generation
task.

We present an empirical analysis of using knowl-
edge to improve accuracy of semantic parsing mod-
els, with a special focus on low-latency models
such as small-decoder seq2seq models and non-
auto-regressive models like RINE (Mansimov and
Zhang, 2022). Our contributions are as follow:

• We benchmark three popular Knowledge-
Enhanced encoders inside seq2seq models and
show this way of leveraging knowledge does
not consistently improve accuracy in the low-
data regimes for task-oriented semantic pars-
ing generation. However when reformulated
as a classification task we see promising re-
sults with knowledge-enhanced encoders.

• We propose a joint training objective combin-
ing semantic parsing and mention detection
as a simple and effective approach to leverage
external knowledge and improve accuracy. We
find up to 74.48% relative gains over baselines
for low-data settings and entity-rich domains.

• We quantify the benefits of source training for
regular, knowledge-enhanced and low-latency
models, in gradually increasing low-data sce-
narios.

2 Related Work

Task-oriented Semantic Parsing Semantic pars-
ing refers to the task of mapping natural language
queries into machine-executable representations.
Voice assistants typically transform a voice record-
ing into text, that is further mapped to a backend
exploitable representation containing the semantics
of the request: the user intent, the invoked entities,
relations between those entities, etc. Task-oriented
parsing was popularized with the introduction of
the TOP dataset (Gupta et al., 2018), and is usu-

ally treated as a seq2seq task where utterance to-
kens are copied into a semantic tree constructed
auto-regressively (Rongali et al., 2020; Arkoudas
et al., 2022). However such models are not always
applicable in production environments with strict
memory and latency constraints. This limitation
is commonly addressed by reducing model sizes
(Jiao et al., 2019; Kasai et al., 2020) and leveraging
non-auto-regressive modeling (Gu et al., 2017; Zhu
et al., 2020; Mansimov and Zhang, 2022).

Knowledge-Enhanced LMs Retrieval-based
seq2seq models such as REALM (Guu et al., 2020)
and ATLAS (Izacard et al., 2022) leverage factual
knowledge from a corpus or knowledge-graph
during training and inference, hence incur a
considerable latency cost, despite attempts to make
the retrieval more efficient (Wu et al., 2022). Given
our low-latency setup, we focus on parametric
knowledge that is learnt during the pre-training
or fine-tuning process of large language models
(LLMs), resulting in embeddings that do not
require explicit knowledge retrieval at inference.

Knowledge-enhanced pretraining focuses on
modeling entities: WKLM (Xiong et al., 2019)
learns to determine if an entity was replaced with
another entity of the same type in addition to
Masked Language Modeling (MLM) and shows
gains on downstream knowledge-intensive tasks
such as Question-Answering (QA) and Relation
Extraction (RE). LUKE (Yamada et al., 2020) ex-
plicitly models entity-embeddings through entity-
embedding prediction during MLM and entity-
entity self-attention layers during fine-tuning, with
gains on Named Entity Recognition (NER), QA
and RE. KBIR (Kulkarni et al., 2022) learns to
reconstruct keyphrases in a combination and ex-
tension of WKLM and SpanBERT (Joshi et al.,
2020), improving keyphrase extraction/generation
tasks. Lastly, BLINK (Wu et al., 2020) learns entity-
disambiguation by aligning entity surface forms to
their descriptions resulting in rich entity embed-
dings. Work in the area of parametric knowledge-
enhanced seq2seq models is limited to KeyBART
(Kulkarni et al., 2022) for Keyphrase Generation
and GENRE (Cao et al., 2020) for Entity Disam-
biguation.

3 Methods

We explore two complementary methods for
leveraging knowledge: (1) fine-tuning knowledge-
enhanced encoders for task-oriented semantic pars-

1956



Figure 1: Multitask architecture that detects mentions of ‘water parks‘ (CATEGORY_LOCATION slot) and ‘minneapo-
lis‘ (Location entity), and also generates the semantic parse by leveraging jointly learned encoder token embeddings.

ing inside seq2seq models, and (2) multi-tasking
the parse generation with a mention detection task.

Task formulation We follow the task formula-
tion of the Seq2Seq-PTR model as a sequence-to-
sequence generation setup (Rongali et al., 2020).
The source sequence is an utterance and the tar-
get sequence is a linearized representation of the
semantic parse. The target sequence is modified
to contain only intent and slot labels or pointers
to tokens in the utterance. Following (Aghajanyan
et al., 2020) and subsequent work we use the de-
coupled format that limits prediction to tokens that
are leaves of slots1 as it yielded better downstream
performance in previous work. We illustrate the for-
mat used with an example from the TOPv2 dataset
below:

Source: water parks in minneapolis
Target: [IN:GET_LOCATION
[SL:CATEGORY_LOCATION @ptr0 @ptr1 ]
[SL:LOCATION_MODIFIER @ptr3]]

Each @ptri token here points to the ith token in
the source sequence. Here @ptr3 corresponds to
the word minneapolis.

Proposed Architecture Based on the observa-
tion that many slot-values present in our task are ac-
tual real-life entities, we hypothesize that learning
more effective representations of these slot-values
may result in generating more accurate semantic
parses as mentions play a critical role in understand-
ing the utterance. We use knowledge-enhanced pre-
trained encoders (as described in Section 2) inside

1The remaining tokens do not contribute to the semantics
beyond what is already captured in their parent intent node.

the Seq2Seq-PTR architecture used in Rongali et al.
(2020), extended to multitask training of parse gen-
eration and training of the encoder to perform token
classification (mention detection), as it aligns with
classification-based pre-training of the encoder. We
anticipate that the multitask training will allow the
knowledge-enhanced encoder representations to be
attended and leveraged more effectively by the de-
coder generating the parse. Further, by modeling
mentions inherently present in the annotated data,
this serves well for low-resource use cases since
we maximize the potential to learn from the data
available.

Figure 1 illustrates our proposed architecture,
whereby for a given input utterance [x1, .., xn]
we obtain encoder representation [e1, ..., en], from
which we jointly learn two tasks: a) Mention De-
tection and b) Parse Generation.

Mention Detection We frame this as a token clas-
sification task to identify spans corresponding to
mentions using the BIO tagging schema. Given
the input sequence containing two mention spans
[x0, x1] and [x3], the corresponding target labels
are [B-MEN, I-MEN, O, B-MEN], where B rep-
resents the beginning of the span, I represents an
intermediate label within the mention span and O
represents a non-mention span token. We only use
this coarse-grained single entity-type label (MEN)
as this is not used for inference but rather only to
guide learning better encoder representations to be
used by the decoder. We use a cross-entropy loss
to learn these model parameters:

1957



Lm = −
3∑

c=1

yo,c log(po,c)

Parse Generation Given the first t−1 generated
tokens, the decoder generates the token at step t as
follows: the decoder first produces a hidden state
dt through a multi-layer, multi-head self-attention
(MHA) on the encoder hidden states and the de-
coder states so far, in line with the transformer
decoder from Vaswani et al. (2017). The hidden
state dt is fed into a dense layer to produce scores
over the target vocabulary and weights are learnt
using a reconstruction loss Lr.

As the loss scales are similar, we use an equally
weighted joint loss combining the losses from both
the task to update the model parameters.

Lθ = Lr + Lm

4 Experimental Setup

Dataset We use a crowdsourced dataset called
TOPv2 (Chen et al., 2020) for this empirical anal-
ysis. The dataset maps user queries to hierarchi-
cal representation as exemplified in Figure 1. The
dataset contains 8 domains, such as Reminder (used
to set alarms, reminders) and Navigation (used to
get driving directions, traffic information). Some
domains are more complex than others, by having
larger catalogs and overall more nested semantics.
TOPv2 is a relevant testbed for virtual assistant un-
derstanding models in low-data settings, as it comes
with different data regimes called Samples Per In-
tent and Slot (SPIS), for example 10 SPIS which
means that each intent and slot label is present in
only 10 different annotations.

Mention Distribution We use the FLAIR (Ak-
bik et al., 2019, 2018) NER model2 to tag entities
and then leverage BLINK3 (Wu et al., 2020) to link
entities to get their canonical surface form when
available. Entity-type information is only used to
facilitate linking. Table 1 shows the entity distri-
bution across the various domains of the TOPv2
dataset. This leads us to pick the following domains
for our analysis:

• Event, which has the highest percentage of
utterances that contain entities, serving as an
ideal candidate to test our hypothesis.

2https://huggingface.co/flair/
ner-english-large

3https://github.com/facebookresearch/BLINK

• Navigation, which has the second highest en-
tity presence and happens to be the domain
with the most complex semantics (deepest
trees, large catalogs).

• Reminder, which has the second least num-
ber of entities per utterance. We consider this
domain to evaluate the impact of our proposed
method for entity-scarce domains4.

Because FLAIR NER tagger is limited to iden-
tify only three types of entities: Organizations
(ORG), Persons (PER) and Locations (LOC), we
extend our entity set by using slot-values present in
the TOPv2 annotations. We manually select slots
labels that are close to real-life entity types, but
which slot values might not be recognized by the
NER tagger. We describe the slots used for each
domain in Appendix A.2.

The updated mention distribution is illustrated in
Table 2. We see that trends between domains stay
relatively the same, however there are significantly
more utterances now containing entities. Event and
Navigation almost double the number of average
entities present in their utterances: from 1.04 to
1.76 for Event, and 1.31 to 1.86 for Navigation.
For Reminder it remains more or less the same as
before (1.03 vs 1.07). Even by adding those slots
there isn’t a lot of salient information to be captured
in the form of entities in Reminder.

Our experiments show that using a combination
of the entities tagged by FLAIR NER + BLINK
and those tagged by the slot-matching mechanism
described in A.2, was more effective than using
either of these methods independently. We consider
the spans of the tagged entities as labels. In the case
both systems flag overlapping spans of text, longer
spans override the shorter spans in case of nested
entities as shown in A.3.

Source Training A common scenario for de-
ployed production systems that serve N domains
is to scale to a new N+1th domain. We assume
the existing N domains have longer established,
larger datasets that we can use as training data to
bootstrap the new domain, on which we want to
fine-tune and perform evaluation.

Models Given our resource-constrained setting,
all models we evaluate are base variants of the

4The number of entities is small but not zero, as having
zero would not be different from simple (non-multitask) train-
ing.

1958

https://huggingface.co/flair/ner-english-large
https://huggingface.co/flair/ner-english-large
https://github.com/facebookresearch/BLINK


Domain Alarm Event Messaging Music Navigation Reminder Timer Weather

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Avg Entities (All Utt.) 0.00 0.00 0.37 0.37 0.16 0.16 0.06 0.05 0.37 0.38 0.04 0.03 0.00 0.00 0.21 0.20
Avg Entities (Utt. w/ entity) 1.00 1.00 1.04 1.03 1.08 1.09 1.01 1.01 1.31 1.31 1.03 1.03 1.00 1.00 1.05 1.04
% utterances w/ entities 0% 0% 36% 36% 15% 14% 6% 5% 28% 29% 4% 3% 0% 0% 20% 19%
Total Utterances 20,430 7,123 9,170 2,654 10,018 3,048 11,563 4,184 20,998 6,075 17,840 5,767 11,524 4,252 23,054 5,682

Table 1: Entity distributions (FLAIR NER and BLINK Entity Disambiguation) across domains in the TOPv2 dataset.

Domain Event Navigation Reminder

Train Test Train Test Train Test

Avg Entities (All Utt.) 1.46 1.50 1.23 1.23 0.72 0.70
Avg Entities (Utt. w/ entity) 1.76 1.80 1.86 1.88 1.07 1.06
% utterances w/ entities 83% 83% 66% 66% 67% 66%

Table 2: Updated mention distributions after manually
adding some of domain’s slot labels to valid entity types.

publicly available models, unless specified oth-
erwise. We work with both seq2seq pre-trained
transformer models and pre-trained transformer en-
coders stitched with a transformer decoder as done
in Rongali et al. (2020). We primarily experiment
with:

• BART: We use the pre-trained encoder-
decoder BART-base5 (Lewis et al., 2020) as
our baseline for the sequence generation task.

• RoBERTa2BART: We use the RoBERTa-
base6(Liu et al., 2019) as the encoder and
randomly initialize a six layer decoder in the
same configuration as the BART-base decoder.
This largely serves as a baseline to LUKE as a
parametric non-knowledge-enhanced encoder
i.e. a vanilla encoder.

• LUKE2BART: We use the LUKE-base7 as the
encoder and randomly initialize a six layer de-
coder in the same configuration as the BART-
base decoder. LUKE8 serves as our parametric
knowledge-enhanced encoder in evaluations.

Lightweight Architecture Variants As we ex-
plore the computation constrained setting with lim-
ited latency budget, we also implemented our mod-
els using a Single Layer Decoder (SLD) while
maintaining the same size encoder. We do this as
the largest portion of the latency footprint comes

5https://huggingface.co/facebook/bart-base
6https://huggingface.co/roberta-base
7https://huggingface.co/studio-ousia/

luke-base
8It is directly comparable to ROBERTA in architecture

and size since we use only the token embeddings, and not the
entity-entity self-attention layers. For results including these
too see Section 6.

from the passes through the decoder, since auto-
regressive decoding requires token representation
to travel all their way up to the decoder as many
times as there are tokens to generate. As such
we propose BART2SLD, RoBERTa2SLD, and
LUKE2SLD variants with a randomly initialized
single layer decoder. Another angle to latency re-
duction is to use non-auto-regressive modeling,
such as RINE (Mansimov and Zhang, 2022), a
RoBERTa-based approach that achieve state-of-
the-art accuracy on low and high-resource TOP
dataset while being 2-3.5 times faster than auto-
regressive counterparts. In this work we experiment
with rine-roberta (the original RINE model), and
rine-luke, where we instead initialize the encoder
model weights with the LUKE-base parameters.

Implementation Details We use HuggingFace
Transformers (Wolf et al., 2020) for seq2seq mod-
eling architecture to ensure reproducibility. We do
not tokenize intent and slot tags, but instead learn
embeddings from scratch. For all our experiments
we use 8 V100 NVIDIA GPUs, with batch sizes
of 32 per GPU with a gradient accumulation of 2
with FP16 enabled. Source training uses a learning
rate of 1e−5 over 100 epochs and fine-tuning uses
a learning rate of 8e−5 over 50 epochs. Both use
the Adam optimizer (Kingma and Ba, 2015). We
use beam search decoding with beam size 3, and a
maximum generation length of 128.

Evaluation We report Exact Match (EM) accu-
racy score metrics in line with previous literature
(Chen et al., 2020; Aghajanyan et al., 2020; Ron-
gali et al., 2020). Exact match accuracy is the most
important metric to report as it strictly penalizes
any incorrectly generated intermediate tokens as
the end-performance of a semantic parsing system
would result in a failure even for partially correct
answers.

5 Results

All our results are source trained + fine-tuned, un-
less specified otherwise. We perform 3 runs across
each experiment setting and report average scores

1959

https://huggingface.co/facebook/bart-base
https://huggingface.co/roberta-base
https://huggingface.co/studio-ousia/luke-base
https://huggingface.co/studio-ousia/luke-base


and standard deviations. Our findings are as fol-
lows:

Knowledge-enhanced encoders don’t improve
generative semantic parsing Table 3 shows re-
sults for the six layer (full) decoder setting and
Table 4 shows results for a single layer decoder.
In both the Multitasking and Non-Multitask set-
ting, we see that the best performing model across
data-regimes and domains is not consistently the
knowledge-enhanced encoder LUKE. In the full
decoder setting, LUKE-encoder based models per-
form on par but no better than the vanilla RoBERTa-
encoder based models. We also note that both
these model underperform BART, but that the gap
bridges as we add more training samples. In the
light-decoder setting, we also see similar trends,
however an interesting finding is that BART tends
to underperform when compared to RoBERTa and
LUKE, even in the full data setting. This could be
attributed to the smaller encoder size for BART.

The above findings are contrary to expected
performance improvements typically seen using
knowledge-enhanced encoders for other entity-
related tasks such as NER, RE and QA. We believe
the reason for this is that the aforementioned tasks
are all classification-based tasks that are able to
leverage the entity representations in making deci-
sions on class-types, but in contrast Task-Oriented
Semantic Parsing is a complex generation task.
Even though entities play a critical role, the entity
representations are not able to effectively guide the
from-scratch decoder. This problem is alleviated
to a certain extent through the Multitask training
that we hypothesize is able to jointly learn repre-
sentations of entities that will guide the decoder,
but these jointly learnt representations do not nec-
essarily benefit from the knowledge-enhanced en-
coder. Further, the application of Source Training
potentially wipes out any gains the knowledge-
enhanced encoder had over the vanilla counterparts
as they have seen sufficient data to negate the gains
through knowledge-enhancements as discussed in
Section 6.

However knowledge-enhanced encoders can
bring gains when reformulating parsing as a
classification task as shown in Table 5 with the
RINE approach that inserts utterance tokens in
a semantic tree by recursively predicting triplets
(label, start position, end position) until it pre-
dicts termination. We do not penalize misplaced

non-semantic tokens in metric calculation. Recast-
ing the generation task to a classification task
serves to be more in-line with how LUKE was
pre-trained. Further, we also do not require any
form of source training in this setting. We observe
that rine-luke outperforms rine-roberta in most sce-
narios for the two entity-rich domains, but not on
the entity-poor domain Reminder.

Multitasking with mention detection is an effi-
cient way to leverage knowledge and improves
performance across the board on the two TOPv2
domains with strong entity presence (Navigation
and Event), especially in the lightweight decoder
setting (up to 74.48%, Table 4), but also non-
negligible in the full decoder setting (up to 8.60%,
Table 3). When trained in domains with a weak
entity presence (Reminder) multitasking serves as
noise in the loss and results in a worse performing
model for both full (-31.14%) and lightweight de-
coder (-82.83%). We also observe minor regression
on 10 SPIS in Event but not in other data regimes
for the domain, leading us to believe this may be an
aberration. We find that while for certain settings
such as Navigation+Lightweight decoder trained
w/ MT knowledge-enhanced encoders outperform
their vanilla counterparts, this behavior is not con-
sistent across domains and decoder settings. Hence
while the gains through multitasking remain con-
sistent throughout, KE encoders do not play a large
role in these gains. However, we also find that in
the full decoder setting in the Navigation domain,
LUKE seems to benefit the most from the Multi-
tasking across all data regimes albeit performing
slightly worse than RoBERTa still. Finally we also
observe that as more data is added to the train-
ing set, the effectiveness of the Multitask learning
reduces drastically. We believe this helps demon-
strates that Multitask learning is most effective in
the lower-data regime by leveraging knowledge
available in the data.

Source-training is essential as shown in Table
8 in which KE models on their own are not suffi-
cient to reach reasonable accuracy, as is the case
for BART and was reported in Chen et al. (2020).
We show that source-training improves accuracy by
up to 86.36% in full data regimes, with larger per-
centage gains for LUKE and RoBERTa when com-
pared to BART, further demonstrating that Source
Training is required to tune the encoders to the gen-
eration task as knowledge-enhanced pre-training

1960



Data Regime 10 SPIS 25SPIS 50SPIS Full Data
Training w/o MT w/ MT rel improv w/o MT w/ MT rel improv w/o MT w/ MT rel improv w/o MT w/ MT rel improv

Navigation

bart 50.28 ± 3.33 51.86 ± 1.11 3.14% 56.58 ± 3.12 58.07 ± 0.25 2.63% 60.8 ± 2.82 61.9 ± 0.56 1.81% 83.7 ± 0.43 83.69 ± 0.1 -0.01%
roberta2bart 44.48 ± 2.46 46.77 ± 1.95 5.15% 53.21 ± 1.39 54.75 ± 1.35 2.89% 61.04 ± 0.96 61.8 ± 1.68 1.25% 83.95 ± 0.47 84.62 ± 0.16 0.80%
luke2bart 43.35 ± 1.83 47.08 ± 0.81 8.60% 53.11 ± 0.58 56.16 ± 1.61 5.74% 58.33 ± 2.57 60.81 ± 2.8 4.25% 83.39 ± 1 83.96 ± 0.28 0.68%

Event

bart 63.85 ± 1.17 61.77 ± 0.14 -3.26% 67.39 ± 1.51 67.81 ± 0.66 0.62% 71.31 ± 0.51 72.14 ± 0.58 1.16% 83.71 ± 0.62 83.32 ± 0.44 -0.47%
roberta2bart 65.12 ± 2.68 61.29 ± 2.45 -5.88% 67.13 ± 0.85 68.74 ± 0.47 2.40% 71.06 ± 0.68 71.29 ± 0.38 0.32% 84.29 ± 0.39 83.9 ± 0.46 -0.46%
luke2bart 63.07 ± 3.83 61.09 ± 3.3 -3.14% 67.6 ± 0.97 68.05 ± 0.3 0.67% 72.24 ± 0.89 71.57 ± 0.78 -0.93% 84.05 ± 0.38 84.39 ± 0.27 0.40%

Reminder

bart 52.29 ± 1.4 39.97 ± 1.61 -23.56% 62.23 ± 0.99 47.24 ± 2.74 -24.09% 68.04 ± 1.38 59.83 ± 1.08 -12.07% 82.88 ± 0.38 82.59 ± 0.25 -0.35%
roberta2bart 54.5 ± 1.35 37.53 ± 1.74 -31.14% 65.16 ± 1.11 50.04 ± 1.73 -23.20% 69.28 ± 1.36 59.71 ± 2.67 -13.81% 82.69 ± 0.11 82.64 ± 0.27 -0.06%
luke2bart 54.69 ± 1.22 40.33 ± 1.53 -26.26% 66.12 ± 1.43 52.52 ± 1 -20.57% 70.39 ± 1.19 61.55 ± 0.67 -12.56% 82.35 ± 0.11 82.94 ± 0.18 0.72%

Table 3: The impact of Multitask (MT) training on Exact Match (EM) performance across models and domains of
the TOPv2 dataset in a Full Decoder setting. Bold is best performing and Italic is second best.

Data Regime 10 SPIS 25SPIS 50SPIS Full Data
Training w/o MT w/ MT rel improv w/o MT w/ MT rel improv w/o MT w/ MT rel improv w/o MT w/ MT rel improv

Navigation

bart2SLD 5.59 ± 1.74 5.88 ± 1.62 5.19% 16.88 ± 1.46 19.03 ± 0.75 12.74% 28.2 ± 5.57 27.54 ± 0.94 -2.34% 78.69 ± 0.35 78.13 ± 0.71 -0.71%
roberta2SLD 5.02 ± 1.64 8.63 ± 3.16 71.91% 14.03 ± 2.27 24.48 ± 2.66 74.48% 27.58 ± 1.09 35.82 ± 5.63 29.88% 80.44 ± 0.27 80.9 ± 0.25 0.57%
luke2SLD 6.76 ± 1.11 9.13 ± 3.48 35.06% 18.47 ± 0.76 20.81 ± 3.55 12.67% 30.74 ± 3.33 39.42 ± 5.5 28.24% 80.61 ± 0.5 82.29 ± 0.63 2.08%

Event

bart2SLD 24.84 ± 4.49 17.65 ± 1.37 -28.95% 42.17 ± 1.92 37.72 ± 4.34 -10.55% 56.92 ± 1.68 54.39 ± 1.07 -4.44% 79.88 ± 0.65 80.13 ± 0.25 0.31%
roberta2SLD 12.93 ± 0.79 14.9 ± 0.33 15.24% 24.04 ± 0.9 30.09 ± 7.32 25.17% 41.26 ± 4.9 57.13 ± 2.86 38.46% 81.15 ± 0.28 81.96 ± 0.64 1.00%
luke2SLD 12.95 ± 5.88 13.62 ± 4.54 5.17% 22.74 ± 10.19 31.68 ± 5.74 39.31% 45.09 ± 9.12 54.28 ± 2.73 20.38% 80.04 ± 1.88 80.99 ± 0.28 1.19%

Reminder

bart2SLD 27.54 ± 1.96 7.56 ± 3.64 -72.55% 43.72 ± 2.03 22.11 ± 3.57 -49.43% 57.27 ± 0.81 37.71 ± 1.39 -34.15% 76.31 ± 0.72 76.15 ± 0.71 -0.21%
roberta2SLD 35.82 ± 2.74 6.15 ± 2.51 -82.83% 51.31 ± 4.46 24.46 ± 5.65 -52.33% 62.77 ± 2.25 39 ± 1.36 -37.87% 79.85 ± 0.55 80.07 ± 0.64 0.28%
luke2SLD 39.42 ± 3.96 8.6 ± 2.73 -78.18% 54.03 ± 1.08 23.11 ± 2.55 -57.23% 64.1 ± 1.58 38.96 ± 5.04 -39.22% 80.03 ± 0.3 80.04 ± 0.36 0.01%

Table 4: The impact of Multitask (MT) training on Exact Match (EM) performance across models and domains of
the TOPv2 dataset in the Light Decoder setting. Bold is best performing and Italic is second best.

Data Regime 10 SPIS 25 SPIS 50 SPIS Full Data

Navigation

rine-roberta 37.63 ± 2.21 55.33 ± 0.44 61.15 ± 1.11 80.01 ± 0.13
rine-luke 37.22 ± 0.82 56.88 ± 1.91 62.85 ± 1.12 80.02 ± 0.36

Event

rine-roberta 26.91 ± 2.46 43.50 ± 0.41 65.12 ± 2.48 79.98 ± 4.87
rine-luke 30.40 ± 3.42 46.82 ± 4.94 64.98 ± 1.59 82.97 ± 0.10

Reminder

rine-roberta 34.47 ± 2.90 54.26 ± 1.38 64.63 ± 1.23 83.45 ± 0.61
rine-luke 34.79 ± 3.19 52.54 ± 2.78 64.23 ± 1.12 83.20 ± 0.23

Table 5: RINE model EM using RoBERTa-base encoder
(rine-roberta) and LUKE-base encoder (rine-luke).

is typically classification-based. We also find that
source-training drastically improves performance
especially in low-data regimes with gains of up to
1262.20%. However, as more training data is made
available, the impact of Source Training also drops
quickly. In the absence of further pretraining of
KE models, source training is a required step, and
can actually be viewed as pretraining step. We also
explored if using a pre-trained decoder from BART-
base helps in improving performance but found
no significant gains hence skipped the results for
brevity.

Data Regime 10 SPIS 25 SPIS

Navigation

luke2bart 43.35 ± 1.83 53.11 ± 0.58
luke2bart + linked entities 45.85 ± 2.35 52.91 ± 2.16
luke2bart + unlinked entities 44.91 ± 1.68 51.75 ± 1.51
luke2bart + unlinked mentions 42.49 ± 3.52 51.72 ± 0.71

luke2bart + MHA 40.14 ± 1.54 50.04 ± 2.79

Table 6: Exact Match (EM) performance improvements
and degradations in an effort to further augment the
knowledge-encoder LUKE on the Navigation domain
of TOPv2.

6 Case Study on Knowledge-enhanced
encoders

To better understand the lack of performance boost
by KE encoders we propose a deeper dive on using
LUKE as well as two alternative KE encoders.

Further enhancements to LUKE only result in
limited gains For our previous experiments we
restrict to using only LUKE’s token embeddings
to make a fair comparison with RoBERTa. How-
ever the original LUKE encoder is armed with
many more parameters, including the entity-entity
self-attention that allows us to leverage richer en-
tity embeddings. We explore using the entity em-

1961



Data Regime 10 SPIS 25SPIS
Training w/o MT w/ MT rel improv w/o MT w/ MT rel improv

Navigation

roberta2bart 44.48 ± 2.46 46.77 ± 1.95 5.15% 53.21 ± 1.39 54.75 ± 1.35 2.89%
luke2bart 43.35 ± 1.83 47.08 ± 0.81 8.60% 53.11 ± 0.58 56.16 ± 1.61 5.74%
kbir2bart* 41.42 ± 0.91 43.21 ± 1.28 4.32% 51.29 ± 0.54 52.42 ± 0.63 2.20%
blink2bart* 33.08 ± 3.77 40.75 ± 0.84 23.19% 45.57 ± 2.28 50.16 ± 0.88 10.07%

Table 7: Exact Match (EM) performance by leveraging other knowledge-enhanced encoders on the Navigation
domain of TOPv2. *Only large variants of models are available publicly.

Data Regime 10 SPIS 25SPIS 50SPIS
Training w/o ST w/ ST rel improv w/o ST w/ ST rel improv w/o ST w/ ST rel improv

Navigation

bart 10.65 50.28 372.11% 40.25 56.58 40.57% 50.67 60.8 19.99%
roberta2bart 4.25 44.48 946.59% 24.3 53.21 118.97% 39.05 61.04 56.31%
luke2bart 6.12 43.35 608.33% 24.15 53.11 119.92% 37.55 58.33 55.34%

Events

bart 7.27 63.85 778.27% 25.77 67.39 161.51% 50.9 71.31 40.10%
roberta2bart 4.86 65.12 1239.92% 10.32 67.13 550.48% 38.13 71.06 86.36%
luke2bart 4.63 63.07 1262.20% 13.53 67.6 399.63% 39.68 72.24 82.06%

Table 8: The impact of Source Training (ST) on Exact Match (EM) performance across models and domains of the
TOPv2 dataset

beddings in various forms and methods as we re-
port in Table 6. luke2bart+linked entities finds the
corresponding entity representation from LUKE’s
entity vocab and concatenates the embedding to
the token representation. We also explore the ap-
proach luke2bart+unlinked entities that does not
rely on finding a match in LUKE’s entity vocab-
ulary but rather generates the entity embedding
based only on the given surface form. While the
two aformentioned approaches are run only on
entities tagged by FLAIR NER and linked with
BLINK, we also try luke2bart+multitask entities,
where the setup is similar to luke2bart+unlinked
entities but leverages a larger entity set, which
is actually the entity set used for the Multitask-
ing, and uses entity embeddings for each surface
form. We find that luke2bart+linked entities is the
most effective methodology for 10 SPIS (+2.5 EM),
however gains are neutralized as data is added (-
0.2 EM). luke2bart+unlinked entities serves as a
slightly more resource efficient way of improving
performance as it skips the need to link entities
before using them (+1.56 EM). Most interestingly,
in contrast to the multitask learning setup we find
that only concatentating representations of the slot-

values in luke2bart+unlinked mentions actually
hurts model performance (-0.86 EM). We believe
the reason for this is that without the jointly learnt
embeddings a higher number of concatenations to
token representations introduces more noise than
useful information, especially in low-data settings
where there is insufficient data to learn across many
parameters. Lastly, along the same lines of having
too many parameters to learn from too few data,
we made the additional finding that in the pointer
generator network used by the decoder, using Dot
Product Attention (DPA) is more effective than
Multi-Head Attention (MHA) as it contains fewer
parameters to learn.

Other KE encoders than LUKE lead to similar
conclusions We explore using other knowledge-
enhanced encoders: KBIR and BLINK. KBIR is
potentially better suited as it is pre-trained to ex-
ploit keyphrases, which are closer to slot-values
than entities. However Table 7 shows that KBIR
performance is worse than its LUKE and RoBERTa
counterparts (-3.87 EM). Using BLINK as the pre-
trained encoder also results in sub-par performance
(-6.33 EM). This further strengthens our claim that

1962



the knowledge-enhanced encoders do not automat-
ically enhance model performance. However, we
see that Multitasking still continues to largely ben-
efit both these encoders too, with BLINK making
the largest gains of up to 23.19%.

Any potential KE encoder gains are diluted by
Source Training We further investigated if KE
encoders could have had a larger impact with less
source training, for e.g. over fewer training epochs.
We plot training curves for all our settings as seen
in Figure 2. Our main observation here is that in
the multitask setting LUKE outperforms RoBERTa
in the single layer decoder setups early in training.
However, as we train over more steps, the perfor-
mance from both models converge. Further, in all
other settings LUKE shows no discernible edge
over RoBERTa during Source Training.

7 Conclusion & Future Work

We presented an empirical analysis of how we
can leverage external knowledge for task-oriented
semantic parsing in the low-resource and low-
compute settings, by conducting a rigorous set
of experiments. We demonstrated that simply us-
ing a knowledge-enhanced encoder is not suffi-
cient to improve performance over baselines for the
complex task of sequence generation, but shows
promising result when the task is reformulated as a
classification task. We presented a multitask learn-
ing framework that leverages external knowledge
and requires little to no extra data annotation, and
demonstrated its effectiveness in the low-data and
low-compute settings. Future work could probe the
type of knowledge learned by this method, and at-
tempt to apply it to other entity-rich tasks, across
model architectures. It could also explore an in-
depth error analysis of where knowledge-enhanced
encoders fail in order to address these shortcomings.
Further we could extend this work for retrieval-
based seq2seq models to improve task-oriented se-
mantic parsing.

Limitations

We concede that there are differences in the num-
ber of parameters between the BART models when
compared to the RoBERTa and LUKE counterparts.
However, as per our result discussions and obser-
vations, the gains are orthogonal to the encoder
used and the differences in the base models are
not as significant when comparing the larger coun-
terparts. We note that we also explored seq2seq

Figure 2: Training Curves for Source Training on the
Navigation domain across various settings.

pre-trained knowledge-enhanced models like Key-
BART and GENRE, however both resulted in un-
derwhelming performance compared to BART. Fur-
ther exploration is required in improving perfor-
mance for such models. We also note that while we
demonstrate gains by switching to a classification-
based approach in RINE, such models are limited
in other generation task capabilities such as transla-
tion or summarization. We will release the data and
code used for this work, but emphasize that some
processing was done over the raw TOPv2 dataset,
namely reconstructing source utterances directly
from the provided target instead of using the pro-
vided source, as we encountered mismatches when
constructing pointers. The source was then lower-
cased.

Ethics Statement

We use publicly available data sets in our experi-
ments with permissive licenses for research experi-
ments. We do not release new data or annotations
as part of this work.

Acknowledgements

We would like to thank Ryan Gabbard, Amir Saf-
fari, Kai-Wei Chang, Haidar Khan, Thomas Gueu-
dre and Chandana Prakash for insightful discus-
sions and feedback during the development of this
work.

1963



References
Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,

Keith Diedrick, Mike Haeger, Haoran Li, Yashar
Mehdad, Ves Stoyanov, Anuj Kumar, Mike Lewis,
et al. 2020. Conversational semantic parsing. arXiv
preprint arXiv:2009.13655.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In COLING 2018, 27th International Conference on
Computational Linguistics, pages 1638–1649.

Konstantine Arkoudas, Nicolas Guenon des Mesnards,
Melanie Rubino, Sandesh Swamy, Saarthak Khanna,
Weiqi Sun, and Khan Haidar. 2022. Pizza: A new
benchmark for complex end-to-end task-oriented
parsing. arXiv preprint arXiv:2212.00265.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
CoRR, abs/2010.00904.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

Xing Fan, Emilio Monti, Lambert Mathias, and Markus
Dreyer. 2017. Transfer learning for neural semantic
parsing. arXiv preprint arXiv:1706.04326.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation ap-
proaches for nlp. arXiv preprint arXiv:2105.03075.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho,
and Victor OK Li. 2018. Meta-learning for low-
resource neural machine translation. arXiv preprint
arXiv:1808.08437.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar,
and Mike Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. arXiv
preprint arXiv:1810.07942.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language to
structured query generation via meta-learning. arXiv
preprint arXiv:1803.02400.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Atlas: Few-shot learning with retrieval
augmented language models.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. arXiv preprint arXiv:2006.10369.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mayank Kulkarni, Debanjan Mahata, Ravneet Arora,
and Rajarshi Bhowmik. 2022. Learning rich repre-
sentation of keyphrases from text. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 891–906, Seattle, United States. Associ-
ation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bing Liu and Ian Lane. 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. arXiv preprint arXiv:1609.01454.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

1964

http://arxiv.org/abs/2010.00904
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://doi.org/10.48550/ARXIV.2208.03299
https://doi.org/10.48550/ARXIV.2208.03299
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Elman Mansimov and Yi Zhang. 2022. Semantic pars-
ing in task-oriented dialog with recursive insertion-
based encoder. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11067–11075.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Interspeech, pages
3771–3775.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented
semantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Sebastian Ruder, Matthew E Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Transfer
learning in natural language processing. In Proceed-
ings of the 2019 conference of the North American
chapter of the association for computational
linguistics: Tutorials, pages 15–18.

Timo Schick and Hinrich Schütze. 2021. Generating
datasets with pretrained language models. arXiv
preprint arXiv:2104.07540.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2020.
Meta-learning for domain generalization in semantic
parsing. arXiv preprint arXiv:2010.11988.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Min-
ervini, Pontus Stenetorp, and Sebastian Riedel. 2022.
An efficient memory-augmented transformer for
knowledge-intensive nlp tasks.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2019. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. CoRR, abs/1912.09637.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Qile Zhu, Haidar Khan, Saleh Soltan, Stephen Rawls,
and Wael Hamza. 2020. Don’t parse, insert: Multilin-
gual semantic parsing with insertion based decoding.
arXiv preprint arXiv:2010.03714.

A Appendix

A.1 RINE Implementation Details
RINE uses an encoder, in this case RoBERTa-base,
to encode the input sequence into hidden vectors,
then uses a sequence classification head to predict
the output label. It uses attention probabilities from
the first and second attention head of the last atten-
tion layer to predict the begin and end positions,
respectively. Finally, it trains the model by optimiz-
ing the combined three objectives, label loss, start
position loss and end position loss.

The training data for RINE is different from
seq2seq models. Unlike seq2seq models, RINE
predicts a label to insert into the input sequence.
Hence, to train the model we need to create a
dataset with partial parses, where each training
example corresponds to inserting one more label
into a partial linearized parse, creating a new non-
terminal semantic node in the parse tree. Similar to
RINE paper, we follow a top-down generation or-
dering to create pairs of partially constructed trees.

A.2 Slot Matching Schema
Table 9 shows the slots we have used from each
domain in TOPv2 while generating all for the slot-
value augmentation of the FLAIR and BLINK rec-
ognized entities. Note we need these slot label
schemas for all domain as Source Training is con-
ducted across all domain except one (the target
domain) and thus we require this information dur-
ing Source Training. We had two authors define
this schema based on inter-annotator agreement
and data analysis.

A.3 Multitask Entity Labeling Example
For the utterance, "How long is the drive to 401
North Highway". In the case where FLAIR NER

1965

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.48550/ARXIV.2210.16773
https://doi.org/10.48550/ARXIV.2210.16773
http://arxiv.org/abs/1912.09637
http://arxiv.org/abs/1912.09637
http://arxiv.org/abs/1912.09637
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523


identifies "401 North" as a Location (LOC) entity-
type, whereas our slot-matching schema identifies
"401 North Highway" as it corresponds to the Desti-
nation Slot. Since these are overlapping spans from
two systems we consider the longer span, which
in this case leads to "401 North Highway" span
tagged as an entity and "401 North" discarded.

1966



Domain Entity Slots

ALARM N/A
EVENT LOCATION, ORGANIZER_EVENT, CATEGORY_EVENT, NAME_EVENT, CATEGORY_LOCATION, ATTENDEE_EVENT, POINT_ON_MAP
MESSAGING CATEGORY_LOCATION, CATEGORY_EVENT, RECIPIENT, RESOURCE, LOCATION, CONTACT, SENDER
MUSIC MUSIC_PLAYLIST_TITLE, MUSIC_PROVIDER_NAME, MUSIC_TRACK_TITLE, MUSIC_ARTIST_NAME, MUSIC_ALBUM_TITLE
NAVIGATION LOCATION, DESTINATION, SOURCE, POINT_ON_MAP, CATEGORY_LOCATION, MUTUAL_LOCATION, LOCATION_WORK, LOCATION_CURRENT, NAME_EVENT, PATH, PATH_AVOID
REMINDER PERSON_REMINDED, ORGANIZER_EVENT, CATEGORY_EVENT, ATTENDEE_EVENT, RECIPIENT, ATTENDEE, CONTACT, SENDER
TIMER N/A
WEATHER LOCATION, CONTACT

Table 9: Slots schema matching mechanism to detect mentions in all the TOPv2 Domains.

1967



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Ethics

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 2 and Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Ethics

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Ethics

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Ethics

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Table 1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Table 1 and Table 2

C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4 - Implementation Details

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1968

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 - Implementation Details

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4 - Implementation Details

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1969


