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Abstract

Word-level Quality Estimation (QE) of Ma-
chine Translation (MT) aims to detect poten-
tial translation errors in the translated sen-
tence without reference. Typically, conven-
tional works on word-level QE are usually de-
signed to predict the quality of translated words
in terms of the post-editing effort, where the
word labels in the dataset， i.e., OK or BAD, are
automatically generated by comparing words
between MT sentences and the post-edited sen-
tences through a Translation Error Rate (TER)
toolkit. While the post-editing effort can be
used to measure the translation quality to some
extent, we find it usually conflicts with hu-
man judgment on whether the word is well
or poorly translated. To investigate this con-
flict, we first create a golden benchmark dataset,
namely HJQE (Human Judgement on Qual-
ity Estimation), where the source and MT sen-
tences are identical to the original TER-based
dataset and the expert translators directly anno-
tate the poorly translated words on their judg-
ments. Based on our analysis, we further pro-
pose two tag-correcting strategies which can
make the TER-based artificial QE corpus closer
to HJQE. We conduct substantial experiments
based on the publicly available WMT En-De
and En-Zh corpora. The results not only show
our proposed dataset is more consistent with
human judgment but also confirm the effective-
ness of the proposed tag-correcting strategies.1

1 Introduction

Quality Estimation of Machine Translation aims
to automatically estimate the translation quality of
the MT systems with no reference available. The
sentence-level QE predicts a score indicating the
overall translation quality, and the word-level QE
needs to predict the quality of each translated word
as OK or BAD. Recently, the word-level QE attracts
much attention for its potential ability to directly

1Corpus of HJQE can be found at: https://github.
com/ZhenYangIACAS/HJQE
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           Matched                      S: Substitution  I: Insertion  D: Deletion

最后   的   征服者   **   *  骑着 他   的  剑 继续前进 .

最后 一个 征服者 骑上 了 马   ， 拔出 了    剑     。PE:

MT:

S I I S S S S S S

QE Tags: OK OKBAD BAD BAD BAD BAD BAD BAD

Sentence-level QE

Overall Human Translation Error Rate (HTER score): 0.82

Source: the last conquistador then rides on with his sword drawn .

Machine Translation (MT): 最后 的 征服者 骑着 他 的 剑 继续前进 .

MT Back: the last conquistador rides on his sword and move on.

Post-edited (PE): 最后 一个 征服者 骑上 了 马 ， 拔出 了 剑 。
PE Back: last one conquistador rides on the horse and draws out the sword.

Word-level QE

Figure 1: Illustration for word-level QE tasks.

detect poorly-translated words and alert the user
with concrete translation errors. Currently, the col-
lection of the word-level QE datasets mainly relies
on the Translation Error Rate (TER) toolkit (Snover
et al., 2006). Specifically, given the machine trans-
lations and their corresponding post-edits (PE, gen-
erated by human translators or target sentences of
the parallel corpus as the pseudo-PE), the rule-
based TER toolkit is used to generate the word-
level alignment between the MT and the PE based
on the principle of minimal editing (Tuan et al.,
2021; Lee, 2020). All MT words not aligned to PE
are annotated as BAD (shown in Figure 1). Such
annotation is also referred to as post-editing effort
(Fomicheva et al., 2020a; Specia et al., 2020).

The post-editing effort measures the translation
quality in terms of the efforts the translator needs to
spend to transform the MT sentence to the golden
reference. However, in our previous experiments
and real applications, we find it usually conflicts
with human judgments on whether the word is well
or poorly translated. Two examples in Figure 2
show the conflicts between the TER-based annota-
tion and human judgment. In figure 2a, the trans-
lated words, namely “我", "很", “高兴" and “发
言", are annotated as BAD by TER since they are
not exactly in the same order with their counter-
parts in the PE sentence. However, from human
judgment, the reordering of these words does not
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Source: It is happy for me to be asked to speak here.

MT: 我 很 高兴 被 要求 在 这里 发言 。  MT Back: I am so happy to be asked to speak here.

PE: 被 邀请 在 这里 讲话 我 很 高兴 。  PE Back: Being invited to talk here makes me so happy.

TER-based: 我 很 高兴 被 要求 在 这里 发言 。

Human: 我 很 高兴 被 要求 在 这里 发言 。

Source: The Zaporizhian Hetman was then dispatched to Istanbul, and impaled on hooks.

MT: 扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。
MT Back: The Zaporizhian Hetman was then dispatched to Istanbul, and was bumped on the hook.

PE: Zaporizhian Hetman 随后 被 派 往 伊斯坦布尔 ， 并 被 钉 在 钩子 上 。
PE Back: Zaporizhian Hetman was then dispatched to Istanbul, and was nailed on hooks.

TER-based:   扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。         

Human:  扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。

a) Some words in MT are mistakenly annotated to BAD though the overall semantic is not changed.

b) Human annotate the clause “被撞在钩上” as a whole, while TER-based annotations are fragmented.

Figure 2: Two examples show the gap between the TER-based and human’s direct annotation on detecting translation
errors. The red color indicates BAD tags (text with translation errors), while the green color indicates OK tags. For
readability, we also provide the back translation from Google Translate for the Chinese sentences.

hurt the meaning of the translation and even makes
the MT sentence polished. And the word “要求"
is also regarded as a good translation by human
judgment as it is the synonym of the word “邀
请". In figure 2b, the clause “扎波罗齐安海特曼
号" in a very good translation of “The Zaporizhian
Hetman " from human judgment. However, it is an-
notated as BAD by TER since it is not aligned with
any words in the PE sentence. In many application
scenarios and downstream tasks, it is usually impor-
tant even necessary to detect whether the word is
well or poorly translated from the human judgment
(Yang et al., 2021). However, most previous works
still use the TER-based dataset for training and
evaluation, which makes the models’ predictions
deviate from human judgment.

In the recent WMT22 word-level QE shared task,
several language pairs, such as English-to-German,
Chinese-to-English and English-to-Russian, tried
to evaluate the model with the corpus based on the
annotation of Multilingual Quality Metrics (MQM)
which is introduced from the Metrics shared task.2

However, the conflict between the TER-based an-
notation and human judgment and its effects are
still unclear to the researchers. To investigate this
conflict and overcome the limitations stated above,
We first collect a high-quality benchmark dataset,
named HJQE, where the source and MT sentences
are directly taken from the original TER-based
dataset and the human annotators annotate the text
spans that lead to translation errors in MT sen-
tences. With the identical source and MT sentences,
it is easier for us to make insight into the underline

2https://wmt-qe-task.github.io/

causes of the conflict. Then, based on our deep anal-
ysis, we further propose two tag-correcting strate-
gies, namely tag refinement strategy and tree-based
annotation strategy, which make the TER-based
annotations more consistent with human judgment.

Our contributions can be summarized as follows:
1) We collect a new dataset called HJQE that di-
rectly annotates the word-level translation errors
on MT sentences. We conduct detailed analyses
and demonstrate the differences between HJQE
and the TER-based dataset. 2) We propose two
automatic tag-correcting strategies which make the
TER-based artificial dataset more consistent with
human judgment. 3) We conduct experiments on
HJQE dataset as well as its TER-based counterpart.
Experimental results of the automatic and human
evaluation show that our approach achieves higher
consistency with human judgment.

2 Data Collection and Analysis

2.1 Data Collection

To make our collected dataset comparable to
TER-generated ones, we directly take the source
and MT texts from MLQE-PE (Fomicheva et al.,
2020a), the widely used official dataset for WMT20
QE shared tasks. MLQE-PE provides the TER-
generated annotations for English-German (En-De)
and English-Chinese (En-Zh) translation directions.
The source texts are sampled from Wikipedia doc-
uments and the translations are obtained from the
Transformer-based system (Vaswani et al., 2017).

Our data collection follows the following pro-
cess. First, we hire a number of translator experts,
where 5 translators for En-Zh and 6 for En-De.
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Dataset Split English-German English-Chinese

samples tokens MT BAD tags MT Gap BAD tags samples tokens MT BAD tags MT Gap BAD tags

MLQE-PE train 7000 112342 31621 (28.15%) 5483 (4.59%) 7000 120015 65204 (54.33%) 10206 (8.04%)
valid 1000 16160 4445 (27.51%) 716 (4.17%) 1000 17063 9022 (52.87%) 1157 (6.41%)

HJQE (ours)
train 7000 112342 10804 (9.62%) 640 (0.54%) 7000 120015 19952 (16.62%) 348 (0.27%)
valid 1000 16160 1375 (8.51%) 30 (0.17%) 1000 17063 2459 (14.41%) 8 (0.04%)
test 1000 16154 993 (6.15%) 28 (0.16%) 1000 17230 2784 (16.16%) 11 (0.06%)

Table 1: The statistics of TER-based MLQE-PE dataset and the collected HJQE.
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Figure 3: The distribution that reveals how many BAD
spans in every single validation sample.

They are all graduated students who major in trans-
lation and have the professional ability in the cor-
responding translation direction. For En-Zh, the
translations are tokenized as MLQE-PE. To make
the annotation process as fair and unbiased as pos-
sible, each annotator is provided only the source
sentence and its corresponding translation (the hu-
man annotators are not allowed to access the PE
sentences in MLQE-PE). For each sample, we ran-
domly distribute it to two annotators. After one
example has been annotated by two translators, we
check whether the annotations are consistent. If
they have annotation conflicts, we will re-assign
the sample to the other two annotators until we get
consistent annotations. For the annotation protocol,
we ask human translators to find words, phrases,
clauses, or even whole sentences that contain trans-
lation errors in MT sentences and annotate them
as BAD tags. Here, the translation error means the
translation distorts the meaning of the source sen-
tence but excludes minor mismatches such as syn-
onyms and punctuation. Meanwhile, if the trans-
lation does not conform to the target language’s
grammar, they should also find them and anno-
tate them as BAD. The annotation and distribution

of samples are automatically conducted through
the annotation system. After all the samples are
annotated, we ask another translator to check the
annotation accuracy by sampling a small propor-
tion (400 samples) of the full dataset and ensure
the accuracy is above 98%.

2.2 Statistics and Analysis

Overall Statistics. In Table 1, we show detailed
statistics of the collected HJQE. For comparison,
we also present the statistics of MLQE-PE. First,
we see that the total number of BAD tags decreases
heavily when human’s annotations replace the TER-
based annotations (from 28.15% to 9.62% for En-
De, and from 54.33% to 16.62% for En-Zh). It in-
dicates that the human annotations tend to annotate
OK as long as the translation correctly expresses
the meaning of the source sentence, but ignores the
secondary issues like synonym substitutions and
constituent reordering. Second, we find the num-
ber of BAD tags in the gap (indicating a few words
are missing between two MT tokens) also greatly
decreases. It’s because human annotations tend
to regard the missing translations (i.e., the BAD
gaps) and the translation errors as a whole but only
annotate BAD tags on MT tokens3.

Unity of BAD Spans. To reveal the unity of
the human annotations, we group the samples ac-
cording to the number of BAD spans in every single
sample, and show the overall distribution. From
Figure 3, we can find that the TER-based anno-
tations follow the Gaussian distribution, where a
large proportion of samples contain 2, 3, or even
more BAD spans, indicating the TER-based annota-
tions are fragmented. However, our collected anno-
tations on translation errors are more unified, with
only a small proportion of samples including more
than 2 BAD spans. Besides, we find a large number
of samples that are fully annotated as OK in human
annotations. However, the number is extremely
small for TER-based annotations (78 in English-

3As a result, we do not include the sub-task of predicting
gap tags in HJQE.
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a) The overall architecture of our model. b) The construction steps of artificial QE dataset for pre-training.

Split with 10-fold 

cross validation

Figure 4: The model architecture and the construction of artificial QE dataset.

German and 5 for English-Chinese). This shows
a large proportion of BAD spans in TER-based an-
notations do not really destroy the semantics of
translations and are thus regarded as OK by human
annotators.

Based on the above statistics and the examples in
Figure 2, we conclude the two main issues that re-
sult in the conflicts between the TER-based annota-
tions and human judgment. First, the PE sentences
often substitute some words with better synonyms
and reorder some constituents for polish purposes.
These operations do not destroy the meaning of the
translated sentence, but make some words mistak-
enly annotated under the exact matching criterion
of TER; Second, when a fatal error occurs, the hu-
man annotator typically takes the whole sentence or
clause as BAD. However, the TER toolkit still tries
to find trivial words that align with PE, resulting in
fragmented and wrong annotations.

2.3 Difference from MQM

In the recent WMT22 word-level QE shared task,
several language pairs began to use MQM-based
annotation introduced from the Metrics shared task
as the quality estimation (Freitag et al., 2021a,c).
There are two main differences between the pro-
posed HJQE and the MQM-based corpus: 1) The
MQM-based corpus is mainly collected to eval-
uate the metrics of MT. To temper the effect of
long segments, only five errors per segment are im-
posed for segments containing more errors. How-
ever, as HJQE is collected to evaluate the qual-
ity of each translated word, we impose all errors
in each segment； 2) HJQE are collected by tak-
ing the identical source and MT sentences to the
TER-based benchmark dataset, namely MLQE-PE,
which makes it more straightforward to perform
comparison and analysis.

3 Approach

This section first introduces the model backbone
and the self-supervised pre-training approach based
on the large-scale MT parallel corpus. Then, we
propose two correcting strategies to make the TER-
based artificial tags closer to human judgment.

3.1 Model Architecture
Following (Ranasinghe et al., 2020; Lee, 2020;
Moura et al., 2020; Ranasinghe et al., 2021),
we select the XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020) as the backbone of our
model. XLM-R is a transformer-based masked
language model pre-trained on large-scale
multilingual corpus and demonstrates state-of-
the-art performance on multiple cross-lingual
downstream tasks. As shown in Figure 4a, we
concatenate the source sentence and the MT
sentence together to make an input sample: xi =
<s>wsrc

1 , . . . , wsrc
m </s><s>wmt

1 , . . . , wmt
n </s>,

where m is the length of the source sentence (src)
and n is the length of the MT sentence (mt). <s>
and </s> are two special tokens to annotate
the start and the end of the sentence in XLM-R,
respectively.

For the j-th token wmt
j in the MT sentence, we

take the corresponding representation from XLM-
R for binary classification to determine whether wj

belongs to good translation (OK) or contains trans-
lation error (BAD) and use the binary classification
loss to train the model:

sij = σ(wTXLM-Rj(xi)) (1)

Lij = −(y · log sij + (1− y) · log(1− sij))
(2)

where XLM-Rj(xi) ∈ Rd (d is the hidden size
of XLM-R) indicates the representation output by
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b) The proposed tag refinement strategy.
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Figure 5: The proposed two tag correcting strategies: Tag Refinement strategy and Tree-based Annotation strategy.

XLM-R corresponding to the token wmt
j , σ is the

sigmoid function, w ∈ Rd×1 is the linear layer for
binary classification and y is the ground truth label.

3.2 Self-Supervised Pre-training Approach

Since constructing the golden corpus is expensive
and labor-consuming, automatically building the
synthetic corpus based on the MT parallel corpus
for pre-training is very promising and has widely
been used by conventional works (Tuan et al., 2021;
Zheng et al., 2021). As shown in Figure 4b, the
conventional approaches first split the parallel cor-
pus into the training and the test set. The NMT
model is trained with the training split and then
used to generate translations for all sentences in
the test split. Then, a large number of triplets are
obtained, each consisting of source, MT, and target
sentences. Finally, the target sentence is regarded
as the pseudo-PE, and the TER toolkit is used to
generate word-level annotations.

3.3 Tag-correcting Strategies

As we discussed above, the conflicts between
the TER-based annotation and human judgment
limit the performance of the conventional self-
supervised pre-training approach on the proposed
HJQE. In this section, we introduce two tag cor-
recting strategies, namely tag refinement and tree-
based annotation, that target these issues and make
the TER-generated synthetic QE annotations more
consistent with human judgment.

Tag Refinement Strategy. In response to the
first issue (i.e., wrong annotations due to the syn-
onym substitution or constituent reordering), we
propose the tag refinement strategy, which corrects
the false BAD tags to OK. Specifically, as shown
in Figure 5a, we first generate the alignment be-

tween the MT sentence and the reference sentence
(i.e., the pseudo-PE) using FastAlign4 (Dyer et al.,
2013). Then we extract the phrase-to-phrase align-
ment by running the phrase extraction algorithm of
NLTK5 (Bird, 2006). Once the phrase-level align-
ment is prepared, we substitute each BAD span with
the corresponding aligned spans in the pseudo-PE
and use the language model to calculate the change
of the perplexity ∆ppl after this substitution. If
|∆ppl| < α, where α is a hyper-parameter indicat-
ing the threshold, we regard that the substitution
has little impact on the semantic and thus correct
the BAD tags to OK. Otherwise, we regard the span
does contain translation errors and keep the BAD
tags unchanged (Figure 5b).

Tree-based Annotation Strategy. Human di-
rect annotation tends to annotate the smallest con-
stituent that causes fatal translation errors as a
whole (e.g., the whole words, phrases, clauses,
etc.). However, TER-based annotations are often
fragmented, with the translation being split into
multiple BAD spans. Besides, the BAD spans are of-
ten not well-formed in linguistics i.e., the words in
the BAD span from different linguistic constituents.

To address this issue, we propose the constituent
tree-based annotation strategy. It can be regarded
as an enhanced version of the tag refinement strat-
egy that gets rid of the TER-based annotation. As
shown in Figure 5c, we first generate the con-
stituent tree for the MT sentences. Each internal
node (i.e., the non-leaf node) in the constituent tree
represents a well-formed phrase such as a noun
phrase (NP), verb phrase (VP), prepositional phrase
(PP), etc. For each node, we substitute it with

4https://github.com/clab/fast_align
5https://github.com/nltk/nltk/blob/

develop/nltk/translate/phrase_based.py
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Model English-German (En-De) English-Chinese (En-Zh)

MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span

Baselines
FT on HJQE only 26.29 95.08 31.09 20.97 38.56 90.76 47.56 26.66
PT (TER-based) 9.52 34.62 13.54 3.09 15.17 36.66 31.53 2.40
+ FT on HJQE 24.82 94.65 29.82 18.52 39.09 91.29 47.04 25.93

Pre-training only with tag correcting strategies (ours)
PT w/ Tag Refinement 10.12* 49.33 14.32 3.62 19.36* 53.16 34.10 3.79
PT w/ Tree-based Annotation 8.94 84.50 15.84 6.94 21.53* 59.21 35.54 6.32

Pre-training with tag correcting strategies + fine-tuning on HJQE (ours)
PT w/ Tag Refinement + FT 27.54* 94.21 35.25 21.13 40.35* 90.88 49.33 25.60
PT w/ Tree-based Annotation + FT 27.67* 94.44 32.41 21.38 41.33* 91.22 49.82 27.21

Table 2: Performance on the test set of HJQE. PT indicates pre-training and FT indicates fine-tuning. Results are all
reported by ×100. The numbers with * indicate the significant improvement over the corresponding baseline with p
< 0.05 under t-test (Semenick, 1990). The results on the validation sets are presented in Appendix B.

the corresponding aligned phrase in the pseudo-
PE. Then we still use the change of the perplexity
∆ppl to indicate whether the substitution of this
phrase improves the fluency of the whole transla-
tion. To only annotate the smallest constituents
that exactly contain translation errors, we normal-
ize ∆ppl by the number of words in the phrase
and use this value to sort all internal nodes in the
constituent tree: ∆pplnorm = ∆ppl

r−l+1 , where l and r
indicate the left and right positions of the phrase,
respectively. The words of a constituent node are
integrally labeled as BAD only if |∆pplnorm| < β
as well as there is no overlap with nodes that are
higher ranked. β is a hyper-parameter.

4 Experiments

Datasets. To verify the effectiveness of the pro-
posed corpus and approach, we conduct experi-
ments on both HJQE and MLQE-PE. Note that
MLQE-PE and HJQE share the same source and
MT sentences, thus they have exactly the same
number of samples. We show the detailed statistics
in Table 1. For the pre-training, we use the parallel
dataset provided in the WMT20 QE shared task to
generate the artificial QE dataset.

Baselines. To confirm the effectiveness of
our proposed self-supervised pre-training approach
with tag-correcting strategies, we mainly select two
baselines for comparison. In the one, we do not use
the pre-training, but only fine-tune XLM-R on the
training set of HJQE. In the other, we pre-train the
model on the TER-based artificial QE dataset and
then fine-tune it on the training set of HJQE.

Implementation and Evaluation. The QE
model is implemented based on an open-source

framework, OpenKiwi6. We use the large-sized
XLM-R model released by the hugging-face.7 We
use the KenLM8 to train the language model on
all target sentences in the parallel corpus. For the
tree-based annotation strategy, we obtain the con-
stituent tree through LTP9 (Che et al., 2010) for
Chinese and through Stanza10 (Qi et al., 2020) for
German. We set α to 1.0 and β to -3.0 based on the
empirical results on the evaluation sets. 11 Follow-
ing the WMT20 QE shared task, we use Matthews
Correlation Coefficient (MCC) as the main metric
and also report the F1 score (F) for OK, BAD and
BAD spans. We refer the readers to Appendix A for
implementation details.

4.1 Main Results

The results are shown in Table 2. We can observe
that the TER-based pre-training only brings very
limited performance gain or even degrade the per-
formance when compared to the “FT on HJQE
only” setting (-1.47 for En-De and +0.53 for En-
Zh). It suggests that the inconsistency between
TER-based and human annotations leads to the lim-
ited effect of pre-training. However, when apply-
ing the tag-correcting strategies to the pre-training
dataset, the improvement is much more significant
(+2.85 for En-De and +2.24 for En-Zh), indicating
that the tag correcting strategies mitigate such in-
consistency, improving the effect of pre-training.

6https://github.com/Unbabel/OpenKiwi
7https://huggingface.co/xlm-roberta
8https://kheafield.com/code/kenlm.tar
9http://ltp.ai/index.html

10https://stanfordnlp.github.io/stanza
11We find that α and β is not so sensitive if they are set in

the reasonable ranges, [0.8, 1.5] for α and [-2.0, -3.5] for β.
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Evaluate on →
Fine-tune on ↓

MLQE-PE HJQE

MCC* MCC F-BAD MCC F-BAD

WMT20’s best 59.28 - - - -

No pre-training (fine-tuning only)
MLQE-PE 58.21 46.81 75.02 22.49 34.34
HJQE 49.77 23.68 36.10 45.76 53.77

TER-based pre-training
w/o fine-tune 56.51 33.58 73.85 11.38 27.41
MLQE-PE 61.85 53.25 78.69 21.93 33.75
HJQE 41.39 29.19 42.97 47.34 55.43

Pre-training with tag refinement
w/o fine-tune 55.03 28.89 70.73 18.83 31.39
MLQE-PE 61.35 48.24 77.17 21.85 33.31
HJQE 39.56 25.06 67.40 47.61 55.22

Pre-training with tree-based annotation
w/o fine-tune 55.21 26.79 68.11 20.98 32.84
MLQE-PE 60.92 48.58 76.18 22.34 34.13
HJQE 40.30 26.22 39.50 48.14 56.02

Table 3: Performance comparison for En-Zh with dif-
ferent fine-tuning and evaluation settings. Since the test
labels of MLQE-PE are not publicly available, we re-
port the results on the validation set of both datasets.
MCC* indicates the MCC score considering both the
target tokens and the target gaps.

On the other hand, when only pre-training is ap-
plied, the tag-correcting strategies can also improve
performance. It shows our approach can also be ap-
plied to the unsupervised setting, where no human-
annotated dataset is available for fine-tuning.

Tag Refinement v.s. Tree-based Annotation.
When comparing two tag-correcting strategies, we
find the tree-based annotation strategy is generally
superior to the tag refinement strategy, especially
for En-Zh. The MCC improves from 19.36 to 21.53
under the pre-training only setting and improves
from 40.35 to 41.33 under the pre-training then
fine-tuning setting. This is probably because the
tag refinement strategy still requires the TER-based
annotation and fixes based on it, while the tree-
based annotation strategy actively selects the well-
formed constituents to apply phrase substitution
and gets rid of the TER-based annotation.

Span-level Metric. Through the span-level met-
ric (F-BAD-Span), we want to measure the unity
and consistency of the model’s prediction against
human judgment. From Table 2, we find our mod-
els with tag correcting strategies also show higher
F1 score on BAD spans (from 26.66 to 27.21 for
En-Zh), while TER-based pre-training even do
harm to this metric (from 26.66 to 25.93 for En-
Zh). This phenomenon also confirms the aforemen-
tioned fragmented issue of TER-based annotations,
and our tag-correcting strategies, instead, improve
the span-level metric by alleviating this issue.

Scores En-De En-Zh

TER Ours TER Ours

1 (terrible) 3 1 5 0
2 (bad) 36 16 34 6
3 (neutral) 34 20 29 21
4 (good) 26 61 24 59
5 (excellent) 1 2 8 14

Average score: 2.86 3.47 2.96 3.81
% Ours ≥ TER: 89% 91%

Table 4: The results of human evaluation. We select
the best-performed model fine-tuned on MLQE-PE and
HJQE respectively.

4.2 Analysis

Comparison with MLQE-PE. To demonstrate the
difference between the MLQE-PE and our HJQE
datasets, and analyze how the pre-training and fine-
tuning influence the results on both datasets, we
compare the performance of different models on
MLQE-PE and HJQE respectively. The results for
En-Zh are shown in Table 3. When comparing re-
sults in each group, we find that fine-tuning on the
training set identical to the evaluation set is neces-
sary for achieving high performance. Otherwise,
fine-tuning provides marginal improvement (e.g.,
fine-tuning on MLQE-PE and evaluating on HJQE)
or even degrades the performance (e.g., fine-tuning
on HJQE and evaluating on MLQE-PE). This re-
veals the difference in data distribution between
HJQE and MLQE-PE. Besides, Our best model
on MLQE-PE outperforms WMT20’s best model
(61.85 v.s. 59.28) using the same MCC* metric,
showing that the modeling ability of our model is
strong enough even under the TER-based setting.

On the other hand, we compare the performance
gain of different pre-training strategies. When eval-
uating on MLQE-PE, the TER-based pre-training
brings higher performance gain (+6.44) than pre-
training with two proposed tag correcting strate-
gies (+1.43 and +1.77). While when evaluating
on HJQE, the case is the opposite, with the TER-
based pre-training bringing lower performance gain
(+1.58) than tree-based annotation (+2.38) strate-
gies. In conclusion, the pre-training always brings
performance gain, no matter evaluated on MLQE-
PE or HJQE. However, the optimal strategy de-
pends on the consistency between the pre-training
dataset and the downstream evaluation task.

Human Evaluation. To evaluate and compare
the models pre-trained on TER-based tags and cor-
rected tags more objectively, human evaluation is
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conducted for both models. For En-Zh and En-De,
we randomly select 100 samples from the valida-
tion set and use two models to predict word-level
tags for them. Then, the human translators (without
participating the annotation process) are asked to
give a score for each prediction, between 1 and 5,
where 1 indicates the predicted tags are fully wrong,
and 5 indicates the tags are fully correct. Table 4
shows the results. We can see that the model pre-
trained on corrected tags (Ours) achieves higher
human evaluation scores than that pre-trained on
TER-based tags. For about 90% of samples, the
prediction of the model pre-trained on the corrected
dataset can outperform or tie with the prediction
of the model pre-trained on the TER-based dataset.
The results of the human evaluation show that the
proposed tag-correcting strategies can make the
TER-based annotation closer to human judgment.
The case study is also presented in Appendix C.

Limitation We analyze some samples that are
corrected by our tag-correcting strategies and find
a few bad cases. The main reasons are: 1) There is
noise from the parallel corpus. 2) The alignment
generated by FastAlign contains unexpected errors,
making some entries in the phrase-level alignments
missing or misaligned. 3) The scores given by
KenLM, i.e., the perplexity changes, are sometimes
not sensitive enough. We propose some possible
solutions to the above limitations as our future ex-
ploration direction. For the noise in the parallel
corpus, we can use parallel corpus filtering meth-
ods that filter out samples with low confidence. For
the alignment errors, we may use more accurate
neural alignment models (Lai et al., 2022).

5 Related Work

Early approaches on QE, such as QuEst (Specia
et al., 2013) and QuEst++ (Specia et al., 2015),
mainly pay attention to feature engineering. They
aggregate various features and feed them to ma-
chine learning algorithms. Kim et al. (2017) first
propose the neural-based QE approach, called
Predictor-Estimator. They first pre-train an RNN-
based predictor on the large-scale parallel corpus
that predicts the target word given its context and
the source sentence. Then, they extract the fea-
tures from the pre-trained predictor and use them
to train the estimator for the QE task. This model
achieves the best performance on the WMT17 QE
shard task. After that, many variants of Predictor-
Estimator are proposed (Fan et al., 2019; Moura

et al., 2020; Cui et al., 2021; Esplà-Gomis et al.,
2019). Among them, Bilingual Expert (Fan et al.,
2019) replaces RNN with multi-layer transform-
ers as the architecture of the predictor. It achieves
the best performance on WMT18. Kepler et al.
(2019) release an open-source framework for QE,
called OpenKiwi, that implements the most pop-
ular QE models. Recently, with the development
of pre-trained language models, many works se-
lect the cross-lingual language model as the back-
bone (Ranasinghe et al., 2020; Lee, 2020; Moura
et al., 2020; Rubino and Sumita, 2020; Ranasinghe
et al., 2021; Zhao et al., 2021). Many works also
explore the joint learning or transfer learning of
the multilingual QE task (Sun et al., 2020; Ranas-
inghe et al., 2020, 2021). Meanwhile, Fomicheva
et al. (2021) propose a shared task with the new-
collected dataset on explainable QE, aiming to pro-
vide word-level hints for sentence-level QE score.
Freitag et al. (2021b) also study multidimensional
human evaluation for MT and collect a large-scale
dataset for evaluating the metrics of MT. Addition-
ally, Fomicheva et al. (2020b); Cambra and Nun-
ziatini (2022) evaluate the translation quality from
the features of the NMT systems directly.

The QE model can be applied to the post-editing
process. Wang et al. (2020) and Lee et al. (2021)
use the QE model to identify which parts of the MT
sentence need to be corrected. Yang et al. (2021)
needs the QE model to determine error spans before
giving translation suggestions.

6 Conclusion

In this paper, we focus on the task of word-level QE
in machine translation and target the inconsistency
issues between TER-based annotation and human
judgment. We collect and release a benchmark
dataset called HJQE which has identical source
and MT sentences with the TER-based corpus and
reflects the human judgment on the translation er-
rors in MT sentences. Besides, we propose two tag-
correcting strategies, which make the TER-based
annotations closer to human judgment and improve
the final performance on the proposed benchmark
dataset HJQE. We conduct thorough experiments
and analyses, demonstrating the necessity of our
proposed dataset and the effectiveness of our pro-
posed approach. Our future directions include im-
proving the performance of phrase-level alignment.
We hope our work will provide some help for future
research on quality estimation.
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A Implementation Details

In the pre-processing phase, we filter out parallel
samples that are too long or too short, and only
reserve sentences with 10-100 tokens. We pre-train
the model on 8 NVIDIA Tesla V100 (32GB) GPUs
for two epochs, with the batch size set to 8 for each
GPU. Then we fine-tune the model on a single
NVIDIA Tesla V100 (32GB) GPU for up to 10
epochs, with the batch size set to 8 as well. Early
stopping is used in the fine-tuning phase, with the
patience set to 20. We evaluate the model every
10% steps in one epoch. The pre-training often
takes more than 15 hours and the fine-tuning takes
1 or 2 hours. We use Adam (Kingma and Ba, 2014)
to optimize the model with the learning rate set to
5e-6 in both the pre-training and fine-tuning phases.
For all hyper-parameters in our experiments, we
manually tune them on the validation set of HJQE.

B Main Results on the Validation Set

In Table 5, we also report the main results on the
validation set of HJQE.

C Case Study

In Figure 6, we show some cases from the vali-
dation set of the English-Chinese language pair.
From the examples, we can see that the TER-based
model (noted as PE Effort Prediction) often an-
notates wrong BAD spans and is far from human
judgment. For the first example, the MT sentence
correctly reflects the meaning of the source sen-
tence, and the PE is just a paraphrase of the MT
sentence. Our model correctly annotates all words
as OK, while the TER-based one still annotates
many BAD words. For the second example, the
key issue is the translation of “unifies” in Chinese.
Though “统一” is the direct translation of “uni-
fies” in Chinese, it can not express the meaning
of winning two titles in the Chinese context. And
our model precisely annotated the “统一 了” in
the MT sentence as BAD. For the third example,
the MT model fails to translate the “parsley” and
the “sumac” to “欧芹” and “盐肤木” in Chinese,
since they are very rare words. While the TER-
based model mistakenly predicts long BAD spans,
our model precisely identifies both mistranslated
parts in the MT sentence.
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Model English-German (En-De) English-Chinese (En-Zh)

MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span

Baselines
FT on HJQE only 34.69 94.28 40.38 28.65 45.76 91.96 53.77 29.84
PT (TER-based) 13.13 37.30 18.80 4.72 11.38 25.91 27.41 2.16
+ FT on HJQE 35.02 94.00 40.86 26.68 47.34 91.30 55.43 28.53

With tag correcting strategies (ours)
PT w/ Tag Refinement 13.26 52.43 19.78 6.42 18.83 53.29 31.39 3.48

+ FT on HJQE 37.70 94.08 43.32 30.83 47.61 92.39 55.22 28.33
PT w/ Tree-based Annotation 13.92 84.79 22.75 9.64 20.98 59.32 32.84 6.53

+ FT on HJQE 37.03 94.46 42.54 31.21 48.14 91.88 56.02 28.17
PT w/ Both 13.12 39.68 18.94 5.26 21.39 56.76 32.74 5.72

+ FT on HJQE 38.90 94.44 44.35 32.21 48.71 90.74 56.47 25.51

Table 5: The word-level QE performance on the validation set of HJQE for two language pairs, En-De and En-Zh.
PT indicates pre-training and FT indicates fine-tuning.

Source: To win, a wrestler must strip their opponent’s tuxedo off.

MT: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .  

MT Back: To win, the wrestler had to take his opponent’s dress off.

PE: 要 赢得 胜利 ， 摔跤 运动员 必须 脱掉 对手 的 燕尾服 。 

PE Back: To win the victory, the wrestler had to remove his opponent’s tuxedo.

TER-based: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .

Ours: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .

Source: April 28 Juan Díaz unifies the WBA and WBO Lightweight titles after defeating Acelino Freitas.

MT: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

MT Back: On April 28, Juan Díaz Unified the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE: 4 月 28 日 ， Juan Díaz 在 击败 Acelino Freitas 之后 ， 将 W 世界 拳击 协会 和 世界 拳击 组织 的 轻量级 冠军 揽于 一身 。 

PE Back: On April 28, Juan Díaz won both the WBA and WBO lightweight titles after defeating Acelino Freitas.

TER-based: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

Ours: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

Source: Fattoush is a combination of toasted bread pieces and parsley with chopped cucumbers, radishes, tomatoes and flavored by sumac.

MT: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。 

MT Back: Fadush is a combination of toast and pasai with chopped cucumbers, radishes, tomatoes and onions and scented consumables.

PE: Fattoush 是 烤面包片 和 欧芹 与 切碎 的 黄瓜 ， 萝卜 ， 西红柿 和 葱 的 组合 ， 并 以 盐肤木 调味 。
PE Back: Fattoush is a combination of toast and parsley with chopped cucumbers, radishes, tomatoes and scallions, seasoned with rhus salt.

TER-based: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。

Ours: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。

Figure 6: Examples of word-level QE from the validation set of English-Chinese language pair.
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