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Abstract

Multilingual language models trained using var-
ious pre-training tasks like mask language mod-
eling (MLM) have yielded encouraging results
on a wide range of downstream tasks. De-
spite the promising performances, structural
knowledge in cross-lingual corpus is less ex-
plored in current works, leading to the seman-
tic misalignment. In this paper, we propose a
new pre-training task named Structural Con-
trast Pretraining (SCP) to align the structural
words in a parallel sentence, improving the
models’ linguistic versatility and their capacity
to understand representations in multilingual
languages. Concretely, SCP treats each struc-
tural word in source and target languages as
a positive pair. We further propose Cross-
lingual Momentum Contrast (CL-MoCo) to op-
timize negative pairs by maintaining a large
size of the queue. CL-MoCo extends the orig-
inal MoCo approach into cross-lingual train-
ing and jointly optimizes the source-to-target
language and target-to-source language repre-
sentations in SCP, resulting in a more suitable
encoder for cross-lingual transfer learning. We
conduct extensive experiments and prove the
effectiveness of our resulting model, named
XLM-SCP, on three cross-lingual tasks across
five datasets such as MLQA, WikiAnn. Our
codes are available at https://github.
com/nuochenpku/SCP.

1 Introduction

Following the promising results of the pre-training
paradigm in the monolingual natural language do-
main, the efforts of multilingual pre-trained lan-
guage models (xPLMs) (Huang et al., 2019; Liang
et al., 2020; Conneau et al., 2019; Chi et al., 2021a;
Chen et al., 2022) have been proposed rapidly.
In general, these xPLMs are always trained on
large-scale multilingual corpora using various pre-
training language modeling tasks, such as MLM
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(a) XLM-Roberta (b) Ours

Figure 1: A visualization example from XLM-Roberta
and Ours. Here we present the same sentence in English
and German. The words in red and blue box refers to
the aligned verb and object words, separately.

(Devlin et al., 2018; Lan et al., 2020), NSP (Pires
et al., 2019), CLISM (Chen et al., 2022), and TRTD
(Chi et al., 2021c). In this manner, xPLMs acquire
robust contextually relevant representations and,
as a result, excel at a variety of downstream tasks,
like question answering (Hermann et al., 2015; He
et al., 2018; Chen et al., 2021a) and name entity
recognition (Liang et al., 2021). For instance, Chen
et al. (2022) propose to train xPLMs with CLISM
and MLM, achieving remarkable performances in
multilingual sequence labeling tasks (Huang et al.,
2019; Lewis et al., 2020; Artetxe et al., 2019a).

Although these pre-training tasks help xPLMs
learn promising multilingual contextualized rep-
resentations at hierarchical level (i.e., token or
sentence-level) (Li et al., 2022a), they don’t take
structural knowledge into consideration. One ob-
vious limitation of the above approaches is the
semantic misalignment between structural words
from different languages, leading to a bias in the
understanding of the multilingual representations.
We showcase the parallel sentences in English and
German in Figure 1 that are quite different in the
syntax structure. The main components of this sen-
tence are “Ebydos AG” (subject), “founded” (verb),
“subsidiary” (object) and “Wroclaw” (entity). Un-
fortunately, as one of the current state-of-the-art
xPLMs: XLM-Roberta (XLM-R) (Conneau et al.,

2042

https://github.com/nuochenpku/SCP
https://github.com/nuochenpku/SCP


2019) is incapable of capturing the alignment of
these crucial words in German, leading to semantic
deviation. Specifically, XLM-R pays less attention
to the corresponding words of “founded” and “sub-
sidiary” in German due to the sentence structure
barrier between these two languages.

One step further, from the perspective of human
behavior, when a language learner reads a sentence
in another language, it can help him/her understand
this sentence quickly and accurately by pointing
out the structural words in a sentence, including
subject, verb, object and entities. This effect will be
more noticeable when the sentence is lengthy and
complex. Similarly, by providing the extra clues
of aligned crucial/informative words in the parallel
sentence, the model can benefit from a closer gap
of cross-lingual representations.

Motivated by the above factors, we design a
Structural Contrastive Pretraining (SCP) task to
enhance xPLMs’ comprehension ability via con-
trastive learning, bridging the misalignment be-
tween structural words in a parallel corpus. Con-
sidering the facts that subject, verb, object (S-V-O)
are the backbone of a sentence and aligned entities
in cross-lingual parallel sentences convey corefer-
ence and information short-cuts (Chen et al., 2022),
in this work, we consider S-V-O and entities as
the structural words in a sentence, which are all
insightful or crucial. Concretely, we divide the par-
allel corpus into a number of smaller groups. Each
sub-group has two versions of the same sentence,
one in the source language (high resource) and one
in the target language (low resource). Each struc-
tural word in the source and target languages is
considered as a positive pair.

Due to the nature of contrastive learning,
wherein comparisons are made between positive
and negative pairs, an increase in the number of
negative pairings may potentially improve perfor-
mances of the resulting model (Chen et al., 2020).
Inspired by momentum contrast in computer vision
(He et al., 2020), we keep a queue and employ the
encoded embeddings from the previous mini-batch
to increase the quantity of negative pairs. In this
method, momentum contrast employs a pair of fast
and slow encoders to encode the source language
sentences and target language sentences, separately.
And the fast encoder is saved for fine-tuning on
down-stream datasets. However, directly applying
this approach to cross-lingual pre-training could
lead to another problem: As the fast encoder only

sees the source language during pre-training, the
training becomes insensitive to other target lan-
guages. As a consequence, the resulting model
may underperform on cross-lingual transfer. To
address this issue, we creatively incorporate the
original momentum contrast into the cross-lingual
setting, naming it Cross-lingual Momentum Con-
trast (short for CL-MoCo). Specifically, CL-MoCo
utilizes two pairs of fast/slow encoders to jointly
optimize source-to-target language and target-to-
source language representations, further bridging
the cross-lingual gap. In light of the fact that al-
most all down-stream cross-lingual understanding
tasks only need one encoder, the two fast encoders
share parameters in our pre-training.

Based on the above two proposed strategies for
building positive and negative pairs in SCP, our re-
sulting model XLM-SCP can accurately capture the
alignment of sentence structures across different
languages, improving the performances on cross-
lingual understanding tasks. As seen in Figure 1
(b), ours successfully grasp the correspondence be-
tween sentence verbs (“founded”-“gegründet”) and
objects (“subsidiary”-“Ableger”) in English and
German. We conduct experiments with two differ-
ent xPLMs encoders on three multilingual tasks
to test the effectiveness of our approach: Name
Entity Recognition (NER) (Sang, 2002; Pan et al.,
2017), Machine Reading Comprehension (MRC)
(Lewis et al., 2020; Artetxe et al., 2019b) and Part-
of-Speech Tagging (POS) (Zeman et al., 2019). Ex-
tensive results show our method can improve the
baseline performances across 5 datasets in terms of
all evaluated metrics. For example, ours initialize
from XLM-R improves the baselines from 61.35%
to 63.39% on WikiAnn dataset (Pan et al., 2017).

In general, our contributions can be summarized
as follows:

• We observe that misalignment of the infor-
mative and crucial structural words occurs in
xPLMs, and design a new pre-trained task
called SCP to alleviate this problem.

• We propose CL-MoCo via keeping a large
queue to increase the amount of negative pair-
ings via momentum updating, which pushes
the model toward more nuanced learning in
cross-lingual.

• We conduct extensive experiments on differ-
ent tasks, demonstrating the effectiveness of
our approaches.
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2 Related Work

Multilingual Pre-trained Language Models To
date, transformer-based large-scale PLMs have be-
come the standard in natural language processing
and generation (Devlin et al., 2018; Liu et al., 2019;
Lan et al., 2020; Sun et al., 2020). Currently, more
and more communities are working to bring PLMs
into the actual world of various languages (xPLMs),
and several efforts have been proposed such as
XLM-Roberta (Conneau et al., 2019) (short for
XLM-R), info-XLM (Chi et al., 2021a), CLISM
(Chen et al., 2022). These works are pre-trained
on a large multilingual corpus with token-level
or sentence-level pre-training tasks. Despite their
promising performances in multiple down-stream
tasks, they all don’t explicitly consider structural
knowledge in the parallel corpus.

Contrastive Learning As a result of its poten-
tial to improve upon existing methods for learn-
ing effective representations, contrastive learning
(Hadsell et al., 2006) has gained popularity in re-
cent years. It works by grouping representations
that are semantically close together (positives) in
an embedding space and then pushing apart oth-
ers (negatives) that are not neighbors. Contrastive
learning objective has been particularly successful
in different contexts of natural language process-
ing (Gao et al., 2021; Wu et al., 2020). More-
over, several efforts (Chen et al., 2021a, 2022; Gao
et al., 2021; Chen et al., 2021b; You et al., 2021;
You et al.; Chen et al., 2023b,a) are well-designed
for cross-lingual language understanding. For in-
stance, Liang et al. (2022) proposed multi-level
contrastive learning towards cross-lingual spoken
language understanding. Chen et al. (2022) em-
ployed contrastive learning to learn noise-invariant
representation from multilingual corpora for down-
stream tasks. Different from previous works, we
utilize contrastive learning to learn the alignments
of the structural words (Tang et al., 2023; Li et al.,
2022b), leading to a more comprehensive and ac-
curate understanding on the cross-lingual sentence.

Momentum Contrast Recently, several works
(Yang et al., 2021; Wu et al., 2022) have explored
momentum contrast in natural language understand-
ing tasks, such as sentence representation and pas-
sage retrieval. Specifically, Yang et al. (2021) pro-
pose xMoCo to learn a dual-encoder for query-
passage matching via two pairs of fast/slow en-
coders. Although we share a similar topic on mo-

mentum contrast, our research questions, applica-
tion areas, and methods differ. xMoco are designed
for query-matching tasks while our proposed CL-
MoCo is tailored for cross-lingual representation
learning. Moreover, Yang et al. (2021) employs
two different encoders for query and passage, sep-
arately. However, we share parameters of the two
fast encoders in our training. At last, we focus on
the representation learning of cross-lingual transfer,
but they only take monolingual into consideration.

Recent works Recently, several works (Schus-
ter et al., 2019; Pan et al., 2021; Chi et al., 2021b;
Ouyang et al., 2021) also focus on word alignment
for multilingual tasks. For clarity, we list some
key differences: All of them align each token in
the parallel corpus in an "all-to-all" fashion, but
we only consider structural words like S-V-O via
contrastive learning. The motivations are: (1) In
our pilot analysis and experiments, we have two
different settings in the proposed SCP: a. training
the model with only structural words; b. training
the model with all tokens in the sentences. Experi-
mentally, we observe that they achieve comparable
performances on MRC tasks but the latter achieves
slightly worse results on NER tasks. This is due
to the fact that aligning some words with no pre-
cise meaning like stopwords may have visible side
effects on token-level tasks like NER. (2) Futher-
more, the latter could result in more computation
cost than the current method. (3) From a human
perspective, structural words are the backbone of
each sentence, and a solid grasp of them is suffi-
cient to strengthen the management of the majority
of situations.

3 Methodology

In this section, we first illustrate our proposed
Structural Contrastive Pretraining (SCP) in detail.
Then we introduce how to incorporate our method
with momentum contrast. Due to the fact that our
proposed methods are flexible and can be built on
top of any xPLMs, we leverage E to represent a se-
ries of pre-trained language models, where E could
be the Efast in Section 3.2. We aim at enhancing
E’s ability to capture consistency between parallel
structural representations via SCP. The overview
of our approach is illustrated in Figure 2.

3.1 Structural Contrastive Pretraining
Definition To bridge the misalignment between
structural words from different languages, we for-
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Figure 2: Overview of our proposed method. Two pairs of fast/slow encoders are used in the proposed CL-MoCo.
Es

fast and Es
slow encode the sentences in source language. Et

fast and Et
slow are designed for target languages.

mulate a new pre-training task named Structural
Contrastive Pretraining (SCP) from the unlabeled
data. In this part, we introduce how to collect the
structural words in the inputs. Given a source lan-
guage input sentence ss and its target language
counterpart st, we start by using current online
name entity recognition tools (e.g., Spacy) to select
structural words in the source language, includ-
ing the subject, verb, object, and entities in the
sentence1. As some extracted words are illogical
due to the performance limitations of commercially
available NER tools, these uninformative words
could result in sub-optimizing the model during
pre-training. Hence, we follow (Chen et al., 2022)
to filter out some uninformative spans:

• Any spans that include solely stop words will
be eliminated.

• Selected structural words should not include
any punctuation.

• The maximum sequence length of an entity is
limited to 6.

As the translation of the same phrase may vary
when it is entered independently or combined with
a full sentence, we utilize an off-the-shelf align-
ment tool, GIZA++ (Pei et al., 2020) to align the

1If the extracted words of one sentence are none, we would
remove it

corresponding ones of the selected structural words
in the target language. As a result, we can get struc-
tural words Ws = {ws1,ws2, ...,wsk} in ss and their
counterparts Wt = {wt1,wt2, ...,wtk} in st. Notice
that the length of k could be more than 4 when
there are multiple entities in the sentence.

Pre-training It is essential to obtain the repre-
sentations of each word from Ws and Wt in SCP.
Before going further, we first formulate the input
sequences as:

Xs = {[CLS]ss[SEP]} (1)

Xt = {[CLS]st[SEP]} (2)

where [CLS] and [SEP] denote the special be-
ginning and separated tokens. Xs and Xt refer to
the input sequences in source and target languages,
respectively.

Then we can pass Xs and Xt into the E , produc-
ing contextualized representations of each token in
the sequences:

Hs = E(Xs) Ht = E(Xt) (3)

where Hs ∈ Rl×d,Ht ∈ Rl×d, l and d represent
the max sequence length and hidden size, sepa-
rately. Subsequently, for each word wsi ∈ Ws, where
i ∈ [1,k], we obtain its representationHs

i fromHs.
Similarly, we can get its positive pair representa-
tion Ht

i from Ht. Notice that we can not directly
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employHs
i andHt

i in our SCP because wsi and wti
may produce multiple sub-tokens after tokenization.
Therefore, we apply extra aggregation function F
onHs

i andHt
i to obtain the final representations:

rsi = F(Hs
i ) rti = F(Ht

i) (4)

where F refers to the average pooling of the begin-
ning and ending tokens representations ofHs

i and
Ht

i. r
s
i and rti belong to R1×d. Intuitively, (rsi , r

t
i)

are regarded as positive pairs in SCP.

3.2 Cross-lingual Momentum Contrast

In this part, we first introduce how to apply mo-
mentum contrast on our method in a straight way.
Then we illustrate our proposed CL-MoCo.

MoCo As opposed to merely collecting from
mini-batch negatives, we use the momentum con-
trast approach to increase the number of negatives
by maintaining a queue of constant size. In par-
ticular, the queued embeddings are gradually re-
placed. When the current mini-batch’s sentence
embeddings are queued, the "oldest" ones in the
queue are eliminated if the queue is full. Intu-
itively, when directly applying momentum contrast
on cross-lingual training, we can employ a pair of
encoders Efast and Eslow. In one training step,
Efast encodes ss into Hs and Eslow maps st into
Ht. We employs momentum update on the en-
coder Eslow, thereby turning Eslow into a sluggish
moving-average duplicate of the encoder Efast, to
lessen the discrepancy. Formally, we update the
Eslow in the following way:

Eslow ←− λEfast + (1− λ)Eslow (5)

where λ determines how quickly the slow en-
coder updates parameters and is normally set to
a small positive value. After pre-training, only
Efast (Efast is equal to E) is saved for fine-tuning
and Eslow will be discarded.

With the enqueued sentence embeddings, our
optimized objective of (rsi , rti) is formulated as Li:

−log
exp(Ψ(rsi , r

t
i)/τ)∑N

j=1(exp(Ψ(rsi , r
t
j)/τ) +

∑M
m=1 exp(Ψ(rsi , rm)/τ)

(6)

where N and M are the size of the mini-batch and
the queue, respectively. rm denotes a sentence
embedding in the momentum-updated queue, and
τ represents the temperature. Moreover, Ψ refers
to the cosine similarity function.

CL-MoCo In the above method, target language
sentences are only encoded by the slow encoder,
which is not directly affected by the gradients
from the loss. Moreover, the fast encoder only
encodes the source languages in pre-training, mak-
ing it insensitive to the input sequences in other
low-resource languages. These two problems
could make the encoder sub-optimized and unable
to learn reasonable cross-lingual representations.
Therefore, we propose CL-MoCo to alleviate the
above issues. In particular, CL-MoCo employs
two sets of fast/slow encoders: Es

fast and Es
slow

for source languages and Et
fast and Et

slow for tar-
get languages. In addition, two separate queues
Qs and Qt are used to store previous encoded sen-
tence embeddings in source and target languages,
respectively. The vectors encoded by Es

slow and
Et

slow will be pushed into Qs and Qt, separately. In
CL-MoCo, we jointly optimize the two sets of en-
coders to learn effective source-to-target language
and target-to-source language representations, and
Eq.5 can be extended as:

Es
slow ←− λEs

fast + (1− λ)Es
slow (7)

Et
slow ←− λEt

fast + (1− λ)Et
slow (8)

Hence, the optimized objective of positive pair
(rsi , r

t
i) in source-to-target language can be formu-

lated as Li(rsi , rti):

−log
exp(Ψ(rsi , r

t
i)/τ)∑N

j=1(exp(Ψ(rsi , r
t
j)/τ) +

∑M
qs∈Qs exp(Ψ(rsi , rqs )/τ)

(9)

Similarly, our CL-MoCo works in both ways,
and the objective in target-to-source language
Li(rti, rsi ) is:

−log
exp(Ψ(rti, r

s
i )/τ)∑N

j=1(exp(Ψ(rti, r
s
j )/τ) +

∑M
qt∈Qt exp(Ψ(rti, rqt )/τ)

(10)

For all selected structural words in ss and st, the
overall objective of our SCP can be summarized
as:

Lscp =
k∑

i=1

((Li(rsi , rti) + (Li(rti, rsi ))/2 (11)

where k is the number of structural words in the
input sentence. We share the parameters of two
fast encoders and two slow encoders, because of
the following facts: 1) We focus on cross-lingual
understanding tasks rather than passage retrieval,
which mostly only needs one encoder; 2) Two sep-
arated fast and slow encoders could result in more
computation and training time.
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<en,es> <en,ar> <en,de> <en,nl> <en,hi> Total

1M 0.8M 0.8M 0.7M 0.6M 3.9M

Table 1: Total parallel sentences used in pre-training.

3.3 Pre-training Strategy
Following the line of (Liu et al., 2019; Chi et al.,
2021a), we also pre-train E with the mask language
modeling (MLM) task. Concretely, we train the
model in multi-task manner. The total objective in
our pre-training can be defined as:

L = Lscp + Lmlm (12)

4 Experiment

In this section, we first introduce how we collect
the pre-training data for the proposed SCP. Then we
illustrate experiment settings for pre-training and
fine-tuning. At last, we present our experimental
results on various corss-lingual datasets, including
baseline introduction and main results.

4.1 Pre-training Data
As aforementioned, our proposed task SCP requires
parallel corpus. We choose MT dataset (Conneau
and Lample, 2019) to construct our pre-training
data. In contrast to earlier research (Chi et al.,
2021a) that used billion-level corpora across about
one hundred languages to generate training corpus,
we only use six languages from the MT dataset, in-
cluding English(en), Spanish(es), Arabic(ar), Ger-
man(de), Holland(nl), and Vietamese(vi), demon-
strating that our approach also makes significant
gains in languages where we do not have data.
Given the promising performance of off-the-shelf
NER techniques (e.g., Spacy) in English, we
choose English as our source language, with the re-
maining five languages serving as target languages
in turn. As a result, we get 3.9 million pre-training
parallel sentences after using the rules in Section
3.1. The amount of distribution for each language
is reported in Table 1.

4.2 Evaluation
We evaluate XLM-SCP on three cross-lingual
tasks: cross-lingual machine reading comprehen-
sion (xMRC), cross-lingual name entity recog-
nition (xNER) and cross-lingual Part-of-Speech
(xPOS). Concretely, we conduct experiments on
five datasets: MLQA (Lewis et al., 2020), XQUAD
(Artetxe et al., 2019b), CoNLL (Sang, 2002) and

WikiAnn (Pan et al., 2017) and UPDOS (Zeman
et al., 2019). We introduce each dataset and test
languages in Appendix A.1.

We use a zero-shot configuration to fine-tune
our model for all datasets, which means that we
just use the English training set to optimize the
model, and then test the final model on other target
languages. Besides, we also test the cross-lingual
transfer ability of XLM-SCP on these datasets, that
is, we also validate the model performances on
some target languages that are not included in our
pre-training data.

We employ two evaluation measures for the
xMRC task: Exact Match (EM) and span-level F1
score, which are commonly used for MRC model
accuracy evaluation. The span overlap between
the ground-truth answer and the model predictions
is measured by span-level F1. If the forecast is
precisely the same as the ground truth, the exact
match (EM) score is 1, otherwise 0. In the case
of the xNER challenge, we employ entity-level F1
scores to evaluate our model, which demands that
the boundary and type between the prediction and
the ground-truth entity be exactly matched. Sim-
ilarly, we also use F1 score to validate the model
performances in UPDOS.

4.3 Training Details

Model Structure To show the generalization of
our approach, we initialize our model from two
commonly used xPLMs encoders: XLM-R and
Info-XLM. The resulting model is named XLM-
SCP in our experiments. We use the base version
checkpoints of the above two models from Hugging
Face Transformers2. Our XLM-SCP contains 12
transformer layers, and the vector dimension size
is set to 768.

Pre-training Details Our training codes are
based on PyTorch 1.11 and Transformers 4.10.0.
Along the line of the research (Devlin et al., 2018),
we randomly mask 15% tokens of the input se-
quence3 to implement MLM. In pre-training, we
optimize our model using the Adam optimizer and
a batch size of 128 for a total of 4 epochs. More-
over, learning rate is set to 1e-6 with 1.5K warmup
steps. The max input sequence length is set to 128.
Experimentally, τ in Eq.10 is set to 0.05 and the
queue size of Qs and Qt are both 20k. And λ is

2https://github.com/huggingface/transformers
3The structural words in SCP will not be masked to avoid

missing labels.
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Model xMRC xNER xPOS Average
MLQA XQUAD CoNLL WikiAnn UPDOS

M-BERT 57.80/42.40 69.63/53.72 78.20 62.21 70.31 67.63
XLM 61.70/44.20 70.93/53.18 79.00 61.22 70.12 68.58

XLM-R 63.24/45.88 73.54/57.55 78.48 61.35 74.21 70.16
XLM-SCP* 65.14/47.20 75.35/59.20 80.35 63.39 75.20 71.89

Info-XLM 65.25/47.63 75.79/59.50 79.52 63.01 74.71 71.66
XLM-SCP♡ 67.01/48.90 76.93/60.75 80.94 64.77 75.60 73.05

Table 2: Average evaluation results on five datasets. The results of our model are averaged over 5 runs. * denotes the
model build upon of XLM-R. ♡ refers to model based on Info-XLM. The results of each language are represented in
the Appendix B. We highlight the highest numbers among models with the same xPLM encoder. Here, we average
the F1 scores on these datasets.

set to 0.99. We pre-train our model using 8×V100-
32G GPUs for about one day. Fine-tuning details
can be seen in Appendix A.2.

4.4 Results

Baselines We compare our model with the fol-
lowing xPLM-based baselines: (1) M-BERT (De-
vlin et al., 2018) pre-trained with MLM and NSP
tasks on Wikipedia data over 104 languages; (2)
XLM (Conneau and Lample, 2019) is jointly opti-
mized with MLM and TLM tasks in 100 languages
during pre-training; (3) XLM-R (Conneau et al.,
2019), a multilingual version of Roberta which
is pre-trained with MLM in large-scale CC-100
dataset; (4) Info-XLM (Chi et al., 2021a), another
popular and effective xPLM which initializes from
XLM-R with the proposed pre-training task XLCO
in 94 languages.

xMRC Results Table 2 compares our method
to that of typical systems on five datasets. On
two xMRC datasets, our models outperform these
baselines by an interesting amount. For instance,
ours built on XLM-R achieves 65.14%/47.20%
(vs. 63.24%/45.88%) in terms of F1/EM score
on MLQA. Similarly, we also obtain 1.81%/1.65%
gains on XQUAD dataset. We can also draw an-
other interesting conclusion: When compared to
Info-XLM, which is both built on top of XLM-R
and continues to be pre-trained on 130 million data
across 94 languages, our model initialized from
XLM-R performs comparably. Nevertheless, XLM-
SCP only needs 3.9 million parallel corpora from
six languages, demonstrating the efficacy of our
proposed approaches (3.9M≪130M).

Model WikiAnn XQUAD MLQA

XLM-R 60.41 73.24/57.01 64.89/44.99
XLM-SCP 61.91 74.56/58.50 66.24/46.57

Table 3: Model performances under zero-shot cross-
lingual transfer. In the experiments, We initialize XLM-
SCP from XLM-R.

xNER Results As shown in Table 2, when
compared with XLM-R, our XLM-SCP yields
1.87%/2.04% F1 score improvements on the
CoNLL and WikiAnn datasets, separately. Im-
portantly, when compared to Info-XLM on top of
XLM-R, ours still outperform on xNER tasks. In
other words, our approach has demonstrated its full
potential using less than 4% of the corpus. More-
over, XLM-SCP initialized from Info-XLM also
outperforms on these two datasets: 80.92% (vs.
79.52%) and 64.69% (vs. 63.01%).

xPOS Results We further test our model on
xPOS tasks across 37 languages. Results from
Table 2 show our model also obtains consistent
gains of about 1% score on UPDOS dataset. Using
Info-XLM as the basic encoder, ours can achieve
the best results 75.60%. Overall, our experimental
results on three tasks demonstrate the efficacy and
generalizability of our proposed approach.

Zero-shot Cross-lingual Transfer Results We
further test out the method under the setting of
zero-shot cross-lingual transfer in other unseen
targeted languages in pre-training such as Arabic
(ar), Afrikaans (af). Concretely, we conduct ex-
periments to validate the resulting model’s perfor-
mances on the selected test sets in other languages
from WikiAnn, XQUAD and MLQA that are not
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Algorithms WikiAnn XQUAD

XLM-SCP 63.39 75.35/59.20
w/o SCP 62.11 74.02/58.01
w/o CL-MoCo 62.65 74.50/58.46
w/o MLM 62.58 74.44/58.11

Table 4: Ablation study of pre-training schemes on
WikiAnn and XQUAD datasets. In the experiments, We
initialize XLM-SCP from XLM-R.

included during pre-training. From Table 3, we
can observe that XLM-SCP also achieves about
1.5% improvements on three datasets under the
zero-shot cross-lingual transfer setting. In general,
the results in Table 2 and Table 3 prove that our
approach not only improves the performance in the
languages that included in our SCP pre-training but
also has better transferability capabilities in other
low-resource languages.

5 Analysis

Aside from the high performances achieved by our
proposed approaches, we are still concerned about
the following questions: Q1: What are the effects
of each key component in our XLM-SCP? Q2: Is
CL-MoCo really superior to MoCo in cross-lingual
understanding tasks? Q3: Does the size of the
queue in CL-MoCo affect the performance of our
model? Q4: What are the model performances
with different τ in Eq.10? (Seen in Appendix C,
Figure 5) Q5: Within the chosen objects, verbs,
objects, and entities in structural words, which part
has the biggest effect on our XLM-SCP’s perfor-
mance? (Seen in Appendix C, Table 10) In this
section, we conduct extensive experiments to an-
swer the above questions.

Answer to Q1: Experiments are carried out to
confirm the independent contributions of each com-
ponent in our proposed pre-training scheme. Table
4 shows the model performances by removing each
key component on WikiAnn and XQUAD. From
the table, we can see that SCP plays the most im-
portant role in our architecture. Removing SCP
decreases the model performances from 63.39% to
61.35% on WikiAnn. Meanwhile, we can see that
our pre-training system as a whole is effective since
each part, including MLM and CL-MoCo, helps
the model perform better. Notice that removing
CL-MoCo means we only construct negative pairs
from in-batch negatives.

Answer to Q2: We further conduct analysis to
verify the effectiveness of CL-MoCo vs. MoCo
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Figure 3: CL-MoCo vs. MoCo across four datasets,
and F1 score is used for evaluation. In the experiments,
We initialize XLM-SCP from XLM-R. The results are
averaged of five runs.
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Figure 4: Queue size sensitivity experiments across two
datasets, and F1 score is used for evaluation. In the
experiments, We initialize XLM-SCP from XLM-R.

on cross-lingual understanding tasks. We conduct
ablation experiments on three tasks across four
datasets and show the results in Figure 3. We can
find that our proposed CL-MoCo can achieve bet-
ter results on all these datasets when compared
with the original MoCo. The results further prove
CL-MoCo has a stronger ability to learn effective
cross-lingual representations.

Answer to Q3: The main assumption of CL-
MoCo is that the size of negative samples is impor-
tant in contrastive learning. Here we empirically
study this assumption in cross-lingual understand-
ing tasks via varying the queue size of keeping
negative pairs. As shown in Figure 4, we validate
XLM-SCP with M ∈ {5k, 10k, 20k, 30k, 40k} on
WikiAnn and MLQA datasets. We can draw the
conclusion that the model performs slightly better
as the queue size increases initially, especially for
xMRC tasks. Interestingly, the model achieves best
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results on WikiAnn when M is equal to 20k, and
its performances slightly decrease when M passes
20k. One possible explanation is that larger size
of the queue may introduce some "false negative
samples", which could have a more obvious side
effect on xNER tasks. In light of the fact that the
queue size has a negligible effect on training speed
and memory use, we have chosen a queue size of
20k for all downstream datasets.

6 Conclusion

In this paper, we observe that misalignment of
crucial structural words occurs in the parallel sen-
tences of current xPLMs. We propose a new pre-
training task called Structural Contrastive Pretrain-
ing (SCP) to alleviate this problem, enabling the
model to comprehend the cross-lingual represen-
tations more accurately. We further incorporate
momentum contrast into cross-lingual pre-training,
named CL-MoCo. In particular, CL-MoCo em-
ploys two sets of fast/slow encoders to jointly learn
the source-to-target language and target-to-source
language cross-lingual representations. Because of
this, the resulting model is better for cross-lingual
transfer. Extensive experiments and analysis across
various datasets show the effectiveness and gener-
alizability of our approach. As an extension of our
future work, we will apply our method to other nat-
ural language understanding tasks and find a proper
way to reduce data preprocessing costs.

Limitations

The main target of this paper is to utilize structural
knowledge for cross-lingual comprehension. We
present a new pre-training task named SCP in the
hope of bridging the misalignment of structural
words in the parallel corpus. More generally, we
expect the proposed method can facilitate the re-
search of cross-lingual understanding. Admittedly,
the main limitation of this work is that we rely on
off-the-shelf tools to extract and align words in
different languages, which would result in some
mistakes at some situations. For example, GIZA++
only achieves 80%-85% accuracy in aligning the
corresponding words in another language. Cur-
rently, no tech can achieve this goal in 100% ac-
curacy. As a result, some bias data in pre-training
calls for further research and consideration when
utilizing this work to build xPLMs.
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A Training details

A.1 Fine-tuning Dataset
Cross-Lingual Machine Reading Comprehen-
sion MLQA and XQUAD are two popular xMRC
benchmarks, which share the same training set
from SQUA and consists of different test sets in
low-resource languages. In this work, we evaluate
our methods on six languages: including English,
Arabic, German, Spanish, Hindi, Vietnamese.

Cross-lingual Name Entity Recognition
CoNLL and WikiAnn are commonly-used xNER
benchmarks. We evaluate CoNLL on four language
test sets: Spanish, Dutch, English, German. As
for the WikiAnn challenge, we evaluate the model
with 48 languages.

Cross-lingual Part-of-Speech Tagging UPDOS
is a typical dataset of POS in multilingual. Of note,
UPDOS contains 37 languages, which all of them
are used to test our model performances.

A.2 Fine-tuning details
We use the official codes from Hugging Face Exam-
ples4 to fine-tune and test our models. The detailed
hyper-parameter setups are presented in Table 5.

B Main Results

In this section, we present the model’s perfor-
mances on each language across five datasets.

xMRC Results Table 6 and Table 7 show the
model performances on MLQA and XQUAD
datasets.

xNER Results Table 8 shows the model perfor-
mances on WikiAnn dataset.

xMRC Results Table 9 represents the model per-
formances on UDPOS dataset.

C Analysis

Answer to Q4: Intuitively, it is essential to study
the sensitivity analysis of the temperature τ in our
SCP. Thereafter, we further conduct experiments
to verify the impact of different τ on our model
performances. We test out our XLM-SCP with
τ ∈ {0.01, 0.05, 0.1, 0.5} on XQUAD, MLQA and
WikiAnn datasets. From the Figure 5, we can ob-
serve that changing τ could cause the model to
improve and decrease. Concretely, ours achieve
best results when τ = 0.05.

4https://github.com/huggingface/transformers/examples
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Figure 5: Temperature sensitivity experiments across
three datasets, and F1 score is used for evaluation. In
the experiments, We initialize XLM-SCP from XLM-R.

Answer to Q5: We further conduct analysis to
find that which part of the chosen nouns, verbs, ob-
jects, and entities in structural words has the most
impact on how well our model works? Hence, we
remove each S-V-O and entity word in turn and test
out the model’s performances on xNER tasks and
xPOS tasks. As the Table 10 shows, each compo-
nent in the selected structural word has different
impact on our XLM-SCP. Interestingly, the model’s
performance drops significantly on the WikiAnn
dataset without entity while very somewhat on the
UDPOS dataset without entity. The possible rea-
son is that xNER tasks require the model has a
stronger ability of entity-level understanding while
xPOS tasks need more fine-grained understanding
on token-level.
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Parameter MLQA XQUAD WikiAnn CoNLL UPDOS

Batch size 32 32 32 16 16
Learning Rate 3e−5 3e−5 2e−5 2e−5 2e−5

Epoch 5 5 5 5 5
Warm Up 10% 10% 10% 10% 10%
Max Length 384 384 128 128 128

Table 5: Hyper-parameters setup during fine-tuning.

Models en ar de vi hi es Avg.

Ours(XLM-R) 79.74/65.93 53.80/35.12 61.59/45.65 67.98/47.00 60.97/42.11 66.35/45.01 65.14/47.20
Ours(Info-XLM) 80.84/67.95 53.84/35.35 60.90/45.14 66.57/46.70 60.86/44.48 66.70/45.88 67.01/48.90

Table 6: The performance of our models on MLQA datasets.

Models en es de ar hi vi Avg.

Ours(XLM-R) 78.82/63.91 74.63/60.41 74.34/59.92 67.57/49.23 68.11/50.67 72.72/50.82 75.35/59.20
Ours(Info-XLM) 79.65/67.30 76.12/60.05 73.21/60.89 70.31/52.98 69.10/51.33 72.42/50.34 76.93/60.75

Table 7: The performance of our models on XQUAD datasets.

Model ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur fa fr it pt

Ours 54.8 52.7 67.6 47.6 60.4 68.0 69.0 61.3 61.6 54.3 47.3 76.3 80.4 82.4 74.2 74.7 69.5 68.0 62.9 62.0 53.7 77.4 77.8 79.2

es bg ru ja ka ko th sw yo my zh kk tr et fi hu qu pl uk az It pa gu ro Avg.

75.1 77.7 62.4 19.4 66.6 48.7 2.2 66.2 48.7 56.5 69.1 40.6 75.0 71.2 75.6 77.8 59.2 78.2 77.6 62.9 72.4 52.3 57.8 76.3 62.8

Table 8: Results on WikiAnn named entity recognition.

Model af ar bg de el en es et eu fa fi fr he hi hu id it ja kk

XLM-SCP 88.0 68.5 89.6 88.8 86.5 95.8 88.8 86.3 67.7 69.6 85.8 87.5 67.9 68.7 82.7 72.6 89.5 28.9 76.0

Model ko mr nl pt ru ta te th tl tr ur vi yo zh It pl uk ro Avg.

XLM-SCP 52.3 81.6 89.3 88.2 89.5 62.3 83.2 48.0 89.2 74.3 60.3 58.2 25.4 39.6 84.4 85.4 85.4 84.8 75.20

Table 9: Results on part-of-speech tagging.
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Algorithms WikiAnn UPDOS

XLM-SCP 63.39 75.20
w/o subject 63.12 74.72
w/o verb 63.01 74.84
w/o object 63.08 74.82
w/o entity 62.88 75.01

Table 10: Ablation study of structural words on
WikiAnn and UDPOS datasets. In the experiments,
We initialize XLM-SCP from XLM-R.
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(e.g., GPU hours), and computing infrastructure used?
Section Experiments
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section Experiments

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section Experiments

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section Experiments

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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