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Abstract
Adapters have emerged as a modular and
parameter-efficient approach to (zero-shot)
cross-lingual transfer. The established MAD-
X framework employs separate language and
task adapters which can be arbitrarily combined
to perform the transfer of any task to any tar-
get language. Subsequently, BAD-X, an ex-
tension of the MAD-X framework, achieves
improved transfer at the cost of MAD-X’s mod-
ularity by creating ‘bilingual’ adapters specific
to the source-target language pair. In this work,
we aim to take the best of both worlds by (i)
fine-tuning task adapters adapted to the target
language(s) (so-called ‘target language-ready’
(TLR) adapters) to maintain high transfer per-
formance, but (ii) without sacrificing the highly
modular design of MAD-X. The main idea of
‘target language-ready’ adapters is to resolve
the training-vs-inference discrepancy of MAD-
X: the task adapter ‘sees’ the target language
adapter for the very first time during inference,
and thus might not be fully compatible with
it. We address this mismatch by exposing the
task adapter to the target language adapter dur-
ing training, and empirically validate several
variants of the idea: in the simplest form, we
alternate between using the source and target
language adapters during task adapter train-
ing, which can be generalized to cycling over
any set of language adapters. We evaluate dif-
ferent TLR-based transfer configurations with
varying degrees of generality across a suite of
standard cross-lingual benchmarks, and find
that the most general (and thus most modular)
configuration consistently outperforms MAD-
X and BAD-X on most tasks and languages.

1 Introduction and Motivation

Recent progress in multilingual NLP has mainly
been driven by massively multilingual Transformer
models (MMTs) such as mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), and mT5
(Xue et al., 2021), which have been trained on the
unlabeled data of 100+ languages. Their shared

multilingual representation spaces enable zero-shot
cross-lingual transfer (Pires et al., 2019; K et al.,
2020), that is, performing tasks with a reasonable
degree of accuracy in languages that entirely lack
training data for those tasks.

Zero-shot cross-lingual transfer is typically per-
formed by fine-tuning the pretrained MMT on task-
specific data in a high-resource source language
(i.e., typically English), and then applying it di-
rectly to make task predictions in the target lan-
guage. In the standard setup, the model’s knowl-
edge about the target language is acquired solely
during the pretraining stage (Artetxe et al., 2020).
In order to improve the transfer performance, task
fine-tuning can be preceded with fine-tuning on
unlabeled data in the target language (Ponti et al.,
2020; Pfeiffer et al., 2020b). Nonetheless, the per-
formance on the target languages in such scenar-
ios is lower than that on the source language, and
the difference is known as the cross-lingual trans-
fer gap (Hu et al., 2020). Crucially, the transfer
gap tends to increase for the languages where such
transfer is needed the most (Joshi et al., 2020):
i.e., for low-resource target languages, and lan-
guages typologically more distant from the source
language (e.g., English) (Lauscher et al., 2020).

Adapters (Rebuffi et al., 2017; Houlsby et al.,
2019) have emerged as a prominent approach for
aiding zero-shot cross-lingual transfer (Pfeiffer
et al., 2020b; Üstün et al., 2022a; Ansell et al.,
2021; Parović et al., 2022). They offer several ben-
efits: (i) providing additional representation capac-
ity for target languages; (ii) much more parameter-
efficient fine-tuning compared to full-model fine-
tuning, as they allow the large MMT’s parameters
to remain unmodified, and thus preserve the multi-
lingual knowledge the MMT has acquired during
pretraining. They also (iii) provide modularity in
learning and storing different facets of knowledge
(Pfeiffer et al., 2020a): this property enables them
to be combined in favorable ways to achieve better
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performance, and previously fine-tuned modules
(e.g., language adapters) to be reused across differ-
ent applications.

The established adapter-based cross-lingual
transfer framework MAD-X (Pfeiffer et al., 2020b)
trains separate language adapters (LAs) and task
adapters (TAs) which can then be arbitrarily com-
bined for the transfer of any task to any language.
Despite having a highly modular design, stemming
primarily from dedicated per-language and per-task
adapters, MAD-X’s TAs lack ‘adaptivity’ to the tar-
get language(s) of interest: i.e., its TAs are fully
target language-agnostic. More precisely, during
task fine-tuning, the MAD-X TA is exposed only to
the source language LA, and ‘sees’ the target lan-
guage TA and examples from that language for the
first time only at inference. This deficiency might
result in incompatibility between the TA and the
target LA, which would emerge only at inference.

BAD-X (Parović et al., 2022) trades off MAD-X’s
high degree of modularity by introducing ‘bilin-
gual’ language adapters specialized for transfer
between the source-target language pair.1 While
such transfer direction specialization results in a
better performance, the decrease in modularity re-
sults in much larger computational requirements:
BAD-X requires fine-tuning a dedicated bilingual
LA for every language pair of interest followed up
by fine-tuning a dedicated TA again for each pair.

Prior work has not explored whether this spe-
cialization (i.e., exposing the target language at
training time) can be done successfully solely at
the level of TAs whilst preserving modularity at the
LA level. Such specialization in the most straight-
forward bilingual setup still requires fine-tuning a
dedicated TA for each target language of interest.
However, this is already a more pragmatic setup
than BAD-X since TAs are much less computation-
ally expensive to train than LAs. Moreover, as
we show in this work, it is possible to also extend
TA fine-tuning to more target languages, moving
from bilingual specialization to the more universal
multilingual ‘exposure’ and towards multilingual
language-universal TAs.

In this work, we aim to create a modular design
inspired by MAD-X while seeking to reap the bene-
fits of the exposure to one or more target languages.
To this end, we thus introduce target language-
ready (TLR) task adapters designed to excel at a

1Similarly, such bilingual adapters have been used in mul-
tilingual NMT research to boost translation between particular
language pairs (Bapna and Firat, 2019; Philip et al., 2020).

particular target language or at a larger set of tar-
get languages. In the simplest bilingual variant,
TLR TAs are trained by alternating between source
and target LAs, while the more general version al-
lows cycling over any set of LAs. Creating TLR
TAs does not require any expensive retraining or
alternative training of LAs.

We run experiments with a plethora of standard
benchmarks focused on zero-shot cross-lingual
transfer and low-resource languages, covering 1)
NER on MasakhaNER; 2) dependency parsing
(DP) on Universal Dependencies; 3) natural lan-
guage inference (NLI) on AmericasNLI and XNLI;
4) QA on XQuAD and TyDiQA-GoldP. Our results
show that TLR TAs outperform MAD-X and BAD-X

on all tasks on average, and offer consistent gains
across a large majority of the individual target lan-
guages. Importantly, the most general TLR TA,
which is shared between all target languages and
thus positively impacts modularity and reusability,
shows the strongest performance across the major-
ity of tasks and target languages. Fine-tuning the
TA in such multilingual setups also acts as a multi-
lingual regularization (Ansell et al., 2021): while
the TA gets exposed to different target languages
(i.e., maintaining its TLR property), at the same
time it does not overfit to a single target language
as it is forced to adapt to more languages, and thus
learns more universal cross-language features. Our
code and models are publicly available at: https:
//github.com/parovicm/tlr-adapters.

2 Methodology

2.1 Background

Adapters. Following MAD-X and BAD-X, in this
work we focus on the most common adapter ar-
chitecture, serial adapters (Houlsby et al., 2019;
Pfeiffer et al., 2021a), but we remind the reader
that other adapter options are available (He et al.,
2022) and might be used in the context of cross-
lingual transfer. Serial adapters are lightweight bot-
tleneck modules inserted within each Transformer
layer. The architecture of an adapter at each layer
consists of a down-projection, a non-linearity and
an up-projection followed by a residual connec-
tion. Let the down-projection at layer l be a ma-
trix Dl ∈ Rh×d and the up-projection be a matrix
Ul ∈ Rd×h where h is the hidden size of the Trans-
former and d is the hidden size of the adapter. If
we denote the hidden state and the residual at layer
l as hl and rl respectively, the adapter computation
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of layer l is then given by:

Al(hl, rl) = Ul(ReLU(Dl(hl))) + rl, (1)

with ReLU as the activation function.

MAD-X and BAD-X Frameworks. MAD-X trains
dedicated LAs and TAs (Pfeiffer et al., 2020b). LAs
are trained using unlabeled Wikipedia data with a
masked language modeling (MLM) objective. TAs
are trained using task-specific data in the source
language. Given a source language Ls and a target
language Lt, MAD-X trains LAs for both Ls and
Lt. The TA is trained while stacked on top of the
Ls LA, which is frozen. To make predictions on
Lt, the Ls LA is swapped with the Lt LA.

Unlike MAD-X, which is based on monolin-
gual adapters, BAD-X trains bilingual LAs (Parović
et al., 2022). A bilingual LA is trained on the un-
labeled data of both Ls and Lt and the TA is then
trained on task-specific data in Ls, stacked on top
of the bilingual LA. To perform inference on the
task in Lt, the same configuration is kept since the
bilingual LA ‘knows’ both Ls and Lt.

2.2 Target Language-Ready Task Adapters
Instead of sacrificing the LAs’ modularity as in
BAD-X, it might be more effective to keep MAD-
X’s language-specific LAs and opt to prepare only
the TAs to excel at a particular target language Lt,
or a set of target languages of interest. Assuming
LAs are available for the source language Ls and K
target languages Lt,i, i = 1, . . . ,K, we cycle over
all K + 1 LAs during TA training, resulting in the
so-called multilingual TLR TA. This general idea is
illustrated in Figure 1. The bilingual variant with a
TLR TA trained by alternating between the source
and target LA is a special case of the multilingual
variant where K = 1, while the original MAD-X

setup is obtained by setting K = 0.2

This procedure exposes a single target language
(bilingual TLR TA) or multiple target languages
(multilingual TLR TA) to the TA as soon as its fine-
tuning phase, making it better equipped (i.e., ready)
for the inference phase, where the TA is combined
with the single Lt LA.

TLR Variants. While BILINGUAL TA fine-tuning
follows naturally from BAD-X, and it seems suit-
able for transfer between a fixed pair of Ls and

2It is also possible to train a TA directly without relying
on any LA at all. However, previous research (Ansell et al.,
2021) has empirically validated that this ‘TA-only’ variant
is consistently outperformed by MAD-X; hence, we do not
discuss nor compare to ‘TA-only’ in this work.

Multi-Head Attention 

Add & Norm

FFN

Add & Norm

NLI TA

Add & Norm

Choose LA: step % (K + 1)

0: English LA

1: Target 1 LA

K: Target K LA

Figure 1: A general multilingual task adapter (TA) tar-
get language-ready (TLR) module at one MMT layer,
showing the language adapters (LAs) for English as the
source language and K target languages along with the
NLI TA. The TA is trained by cycling over the K + 1
LAs associated with the K + 1 languages. For a given
step number, only the LA step % (K + 1) is switched
on and the forward pass goes through that LA. Setting
K = 0 results in the original MAD-X setup, where only
the source LA is switched on, while a bilingual TLR
variant is given by K = 1. Setting K = 1 and remov-
ing the English LA formulates the TARGET-only TLR
variant. See §2.2 for the descriptions of all the variants.
The same adapter configuration(s), but with different
parameters, are added at each MMT layer.

Lt, it might be better to train the TA only on top
of the Lt LA. Such TARGET-only TLR TAs could
be particularly effective for higher-resource lan-
guages whose LAs have been trained on sufficient
corpora, to the extent that pairing them with Ls is
detrimental. This could be especially detectable for
higher-resource Lt-s that are also distant from Ls

or lack adequate vocabulary overlap with it.

TARGET and BILINGUAL TLR TAs require train-
ing of dedicated TAs for every Lt of interest, which
makes them computationally less efficient than
MAD-X, and they introduce more parameters over-
all. Using MULTILINGUAL TLR TAs mitigates
this overhead. We consider two variants of MUL-
TILINGUAL TAs. First, the so-called TASK-MULTI

TLR variant operates over the source language
and the set of all target languages available for
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the task under consideration (e.g., all languages
represented in the MasakhaNER dataset). Sec-
ond, the ALL-MULTI TLR variant combines the
source language with all target languages across
datasets of multiple tasks (e.g., all languages repre-
sented in MasakhaNER, all languages represented
in AmericasNLI, etc.); see §3 later. These variants
increase modularity and parameter efficiency and
are as modular and parameter-efficient as MAD-X

per each task: a single TA is required to handle
transfer to any target language. At the same time,
unlike MAD-X, they are offered some exposure to
the representations arising from the multiple target
languages they will be used for. Handling multi-
ple LAs at fine-tuning might make the TAs more
robust overall: multilinguality might act as a regu-
larization forcing the TA to focus on more universal
cross-language features (Ansell et al., 2021).

3 Experimental Setup

Evaluation Tasks and Languages. We compre-
hensively evaluate our TLR adapter framework on a
suite of standard cross-lingual transfer benchmarks.
They span four different task families (NER, DP,
NLI and QA), with a total of six different datasets
and 35 different target languages, covering a ty-
pologically and geographically diverse language
sample of both low- and high-resource languages.

For NER, we use the MasakhaNER dataset (Ade-
lani et al., 2021) which contains 10 low-resource
languages from the African continent.3 For DP,
we use Universal Dependencies 2.7 (Zeman et al.,
2020) and inherit the set of 10 typologically di-
verse low-resource target languages from BAD-X

(Parović et al., 2022). For NLI, we rely on the
AmericasNLI dataset (Ebrahimi et al., 2022), con-
taining 10 low-resource languages from the Amer-
icas, as well as a subset of languages from XNLI
(Conneau et al., 2018). Finally, for QA we use
subsets of languages from XQuAD (Artetxe et al.,
2020) and TyDiQA-GoldP (Clark et al., 2020). The
subsets for XNLI, XQuAD and TyDiQA-GoldP
were selected to combine (i) low-resource lan-
guages (Joshi et al., 2020), with (ii) higher-resource
languages for which dedicated (i.e., ‘MAD-X’) LAs
were readily available. The full overview of all
tasks, datasets, and languages with their language
codes is provided in Table 5 in Appendix A.

3We exclude Amharic from our experiments as it uses a
script not supported by mBERT, resulting in 9 NER target
languages.

NER DP NLI QA

Batch Size 8 8 32 16
Epochs 10 10 5 15
Learning Rate 5 · 10−5 5 · 10−5 2 · 10−5 10−4

Eval Freq. (steps) 250 250 625 625
Eval Metric F1 LAS Acc F1

Table 1: Hyperparameters for different tasks.

Underlying MMT. We report results on all tasks
with mBERT, pretrained on Wikipedias of 104 lan-
guages (Devlin et al., 2019). mBERT has been
suggested by prior work as a better-performing
MMT for truly low-resource languages (Pfeiffer
et al., 2021b; Ansell et al., 2021). To validate the
robustness of our TLR adapters, we also use XLM-
R (Conneau et al., 2020) for a subset of tasks.

Language Adapters. We train LAs for the mini-
mum of 100 epochs or 100,000 steps with a batch
size of 8, a learning rate of 5 · 10−5 and a max-
imum sequence length of 256.4 We evaluate the
LAs every 1,000 steps for low-resource languages
and every 5,000 steps for high-resource ones, and
choose the LA that yields the lowest perplexity,
evaluated on the 5% of the held-out monolingual
data (1% for high-resource languages). For the
BAD-X baseline, we directly use the bilingual LAs
from (Parović et al., 2022). Following Pfeiffer et al.
(2020b), the adapter reduction factor (i.e., the ra-
tio between MMT’s hidden size and the adapter’s
bottleneck size) is 2 for all LAs. For the MAD-X

LAs, we use the efficient Pfeiffer adapter configura-
tion (Pfeiffer et al., 2020a) with invertible adapters,
whereas BAD-X LAs do not include them.

Task Adapters. We fine-tune TAs by stacking
them on top of the corresponding LAs (see Fig-
ure 1). During their fine-tuning, the MMT’s pa-
rameters and all the LAs’ parameters are frozen.
The adapter reduction factor for all TAs is 16 as
in prior work (Pfeiffer et al., 2020b) (i.e., d = 48),
and, like the LAs, they use the Pfeiffer configura-
tion. The hyperparameters across different tasks,
also borrowed from prior work, are listed in Ta-
ble 1. In addition, we use early stopping of 4 when
training the QA TA (i.e., we stop training when the
F1 score does not increase for the four consecutive
evaluation cycles). We use the English SQuADv1.1
training data (Rajpurkar et al., 2016) for TyDiQA-
GoldP since (i) it is much larger than TyDiQA’s

4For some low-resource languages with small corpora 100
epochs leads to under-training, so the minimum number of
training steps is set to 30,000.
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Figure 2: The average scores of MAD-X, TARGET,
BILINGUAL, TASK-MULTI and ALL-MULTI variants
on NER (F1), DP (LAS), AmericasNLI (acc), XNLI
(acc), XQuAD (F1) and TyDiQA (F1) datasets.

native training set, and (ii) we observed higher per-
formance on target languages in our preliminary
experiments than with TyDiQA’s training data.

Transfer Setup: Details. In all our transfer ex-
periments, the source language Ls is fixed to En-
glish, and we evaluate different variants described
in §2.2. For the MAD-X baseline, we rely on its
‘MAD-X v2.0’ variant, which drops the adapters in
the last layer of the Transformer, which has been
found to improve transfer performance across the
board (Pfeiffer et al., 2021b). For the TASK-MULTI

TLR variant, along with using the English LA, we
fine-tune TAs using the LAs of all our evaluation
languages in that particular dataset. For instance,
for DP this spans 10 languages, while for NLI, we
fine-tune a separate TASK-MULTI TLR with the
10 languages from AmericasNLI, and another one
for the XNLI languages. For the ALL-MULTI TLR
variant, in addition to English LA, we cycle over
the LAs of all our evaluation languages from all
the tasks and datasets.

4 Results and Discussion

Main Results. The main results with mBERT for
all tasks and all languages are shown in Table 2,
with the averages concisely provided in Figure 2.
Additional results with XLM-R are available in Ap-
pendix B. As a general trend, we observe that all
proposed TLR variants outperform MAD-X on the
majority of the target languages across all tasks.
Besides reaching higher averages on all tasks, the
best per-task variants from the TLR framework sur-
pass MAD-X on: 9/9 (NER), 10/10 (DP), 10/10
(AmericasNLI), 6/6 (XNLI), 4/4 (XQuAD) and 5/5

(TyDiQA) target languages. We also demonstrate
that gains are achieved over the much less mod-
ular BAD-X on two tasks (DP, AmericasNLI) for
which we had readily available BAD-X LAs. In
sum, the comprehensive set of results from Table 2
confirms the effectiveness and versatility of TLR
adapters across a range of (typologically diverse)
target languages and datasets.

Breakdown of Results across Tasks and TLR
Variants. On NER and DP we observe very simi-
lar trends in results. Importantly, the most modu-
lar ALL-MULTI variant offers the highest perfor-
mance overall: e.g., it reaches the average F1 score
of 69.86% in the NER task, while outperforming
MAD-X by 1.9% on average and on all 9 target
languages. Pronounced gains with that variant are
also indicated in the DP task. The TARGET and
BILINGUAL variants also yield gains across the
majority of languages, with BILINGUAL being the
stronger of the two. However, their overall utility
in comparison to ALL-MULTI is lower, given their
lower performance coupled with lower modularity.

On AmericasNLI, all TLR variants display con-
siderable gains over MAD-X, achieving 5-6%
higher average accuracy. They outperform MAD-X

on all 10 target languages, except the TASK-MULTI

variant with only a slight drop on AYM. The best
variant is once again the most modular ALL-MULTI

variant, which is better than the baselines and all
the other variants on 6/10 target languages.

On XNLI, which involves some higher-resource
languages such as AR, HI and ZH, all TLR variants
reach higher average accuracy than MAD-X. The
gains peak around 5-6% on average; however, this
is due mainly to SW where MAD-X completely fails,
achieving the accuracy of random choice. Nonethe-
less, the TLR variants attain better scores on all
other languages as well (the only exception is ALL-
MULTI on AR). Besides SW, TH also marks a large
boost of up to 11.2% with the BILINGUAL variant,
while the other languages attain more modest gains
of up to 2%. We remark that the BILINGUAL vari-
ant now obtains the highest average accuracy: we
speculate that this could be a consequence of target
languages now being on the higher-resource end
compared to MasakhaNER and AmericasNLI.

Our final task family, QA, proves yet again the
benefits of transfer with TLR adapters. On XQuAD
and TyDiQA-GoldP, the best TLR variant is now
the TARGET adapter. This might be partially due to
a good representation of high-resource languages
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Method HAU IBO KIN LUG LUO PCM SWA WOL YOR avg Better

MAD-X 81.30 70.27 62.53 64.70 48.20 72.94 74.20 65.56 71.95 67.96
TARGET 77.58 73.99 64.34 68.08 51.20 74.00 75.26 63.04 72.76 68.92 7/9
BILINGUAL 79.93 71.90 64.74 68.68 51.18 74.82 75.68 63.68 73.00 69.29 7/9
TASK-MULTI 81.83 72.76 65.03 66.95 50.69 75.35 76.59 65.87 72.26 69.70 9/9
ALL-MULTI 82.39 71.82 65.12 66.38 51.38 76.17 76.42 66.93 72.10 69.86 9/9
LEAVE-OUT-TASK 82.54 70.88 65.74 65.78 49.93 75.33 76.10 65.27 72.61 69.35 8/9
LEAVE-OUT-TARG 82.60 71.11 64.50 66.95 51.38 75.21 75.62 65.57 71.90 69.43 8/9

(a) NER: F1

Method AF BM EU KPV MR MT MYV TE UG WO avg Better

MAD-X 55.21 13.73 33.20 23.12 26.18 47.42 35.70 49.62 19.60 32.07 33.59
BAD-X 54.54 11.92 31.45 22.55 26.56 43.52 39.31 46.22 15.24 35.28 32.66
TARGET 56.91 13.62 34.55 21.96 28.05 45.63 38.47 51.80 17.22 39.41 34.76 6/10
BILINGUAL 56.86 14.25 33.56 22.84 27.71 48.46 38.67 53.56 19.74 39.82 35.55 9/10
TASK-MULTI 56.56 15.43 34.90 22.93 28.70 51.85 39.18 53.51 19.48 40.29 36.28 8/10
ALL-MULTI 57.11 15.46 35.32 23.76 28.35 53.68 39.71 53.83 20.32 41.34 36.89 10/10
LEAVE-OUT-TASK 56.99 16.40 33.88 25.27 28.28 55.03 39.96 54.11 21.52 40.41 37.19 10/10
LEAVE-OUT-TARG 56.97 15.87 35.67 25.47 27.82 53.93 39.68 52.54 20.95 40.65 36.95 10/10

(b) DP: LAS

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg Better

MAD-X 50.40 40.93 37.47 55.60 38.27 46.61 39.71 48.80 38.27 38.80 43.49
BAD-X 46.13 44.67 45.87 56.80 44.93 47.70 41.71 47.87 49.07 39.47 46.42
TARGET 50.53 47.20 44.13 58.00 43.73 50.54 41.04 55.87 46.13 45.47 48.26 10/10
BILINGUAL 51.73 46.80 43.07 58.53 46.13 48.51 43.32 55.47 46.00 44.40 48.40 10/10
TASK-MULTI 49.60 45.60 44.67 58.67 46.00 50.27 43.32 55.87 47.07 44.27 48.53 9/10
ALL-MULTI 51.33 47.20 47.20 60.00 46.00 48.10 45.59 58.40 48.00 46.13 49.80 10/10
LEAVE-OUT-TASK 54.40 42.80 44.40 58.13 42.40 47.56 41.44 56.80 42.80 43.73 47.45 10/10
LEAVE-OUT-TARG 51.07 44.27 47.33 59.47 44.53 47.43 43.98 56.53 46.53 42.93 48.41 10/10

(c) AmericasNLI: accuracy

Method AR HI SW TH UR ZH avg Better

MAD-X 62.75 56.75 33.33 43.75 56.41 63.57 52.76
TARGET 62.87 57.92 53.93 52.08 56.79 65.93 58.25 6/6
BILINGUAL 63.49 58.62 54.71 54.95 57.47 65.49 59.12 6/6
TASK-MULTI 64.07* 57.88 55.35 54.19 56.81 65.69 59.00 6/6
ALL-MULTI 61.98 57.80 54.15 53.25 57.05 65.75 58.33 5/6

(d) XNLI: accuracy

Method AR HI TH ZH avg Better

MAD-X 58.97/42.27 51.09/36.47 40.45/30.59 57.12/46.72 51.91/39.01
TARGET 60.40/43.95 54.91/40.59 44.95/36.22 58.73/48.24 54.75/42.25 4/4
BILINGUAL 60.44/44.29 54.18/40.42 42.68/33.95 57.95/48.32 53.81/41.75 4/4
TASK-MULTI 59.04/43.28 52.03/37.56 41.91/31.43 58.97/48.91 52.99/40.30 4/4
ALL-MULTI 58.67/42.44 54.79/41.42 44.67/35.97 58.57/48.99 54.17/42.20 3/4

(e) XQuAD: F1/EM

Method AR BN SW TE TH avg Better

MAD-X 51.10/34.42 56.21/42.48 55.04/42.49 46.56/34.53 47.41/32.91 51.26/37.37
TARGET 56.88/40.93 59.47/49.56 61.91/50.10 49.92/39.31 49.36/34.81 55.51/42.94 5/5
BILINGUAL 53.50/38.65 53.47/40.71 58.26/49.10 48.47/38.12 48.22/33.67 52.38/40.05 4/5
TASK-MULTI 49.33/34.42 50.92/39.82 58.34/48.70 49.30/39.76 45.93/33.67 50.76/39.27 2/5
ALL-MULTI 55.26/39.41 55.17/41.59 60.42/49.30 49.35/38.86 52.09/39.62 54.46/41.76 4/5

(f) TyDiQA: F1/EM

Table 2: Results of all methods and TLR variants on all tasks and target languages. The highest task score per each
language in bold, but excluding the two ablation subvariants of ALL-MULTI placed below the dashed horizontal
lines (LEAVE-OUT-TASK and LEAVE-OUT-TARG). Better refers to the number of target languages for which each
TLR variant scores higher than MAD-X. An asterisk (*) next to the best TLR variant indicates non-significant gains
over MAD-X, where the significance analysis has been conducted using Student’s t-test with p = 0.05.
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Method DP AmericasNLI

MAD-X 31.29 45.33
BAD-X 32.66 46.42
TARGET 35.15 48.24
BILINGUAL 34.41 48.47
TASK-MULTI 35.86 48.05
ALL-MULTI 36.47 48.49

Table 3: Robustness of TLR adapters. Average scores
on DP and AmericasNLI when MAD-X LAs are trained
with a different configuration and training setup. Per-
language scores are available in Appendix C.

Method NER AmericasNLI

MAD-X 68.27 44.66
TARGET 68.49 47.92
BILINGUAL 69.24 48.32
TASK-MULTI 69.47 48.55
ALL-MULTI 69.10 49.10
LEAVE-OUT-TASK 69.37 47.96
LEAVE-OUT-TARG 69.13 48.44

Table 4: Gains with TLR adapters over MAD-X persist
when scores are averages across 3 runs (i.e. 3 different
random seeds). Average scores reported, while per-
language scores are provided in Appendix D.

such as AR, HI, or ZH in mBERT and its subword
vocabulary. However, we observe gains with TAR-
GET also on lower-resource languages such as BN

and SW on TyDiQA, which might indicate that the
higher complexity of the QA task is at play in com-
parison to tasks such as NER and NLI.

Crucially, the most modular ALL-MULTI TLR
variant, which trains a single TA per each task,
yields very robust and strong performance across
all tasks (including the two QA tasks) and both on
high-resource and low-resource languages.

Towards Language-Universal Task Adapters?
Strictly speaking, if a new (K + 1)-th target lan-
guage is introduced to our proposed TLR frame-
work, it would be necessary to train the multilin-
gual TLR TA anew to expose it to the new target
language. In practice, massively multilingual TAs
could still be applied even to languages ‘unseen’
during TA fine-tuning (e.g., in the same way as the
original MAD-X framework does). This violates
the TLR assumption, as the TA sees the target lan-
guage only at inference. However, this setup might
empirically validate another desirable property of
our multilingual TLR framework from Figure 1:
exposing the TA at fine-tuning to a multitude of lan-
guages (and their corresponding LAs) might equip
the TA with improved transfer capability even to
unseen languages. Put simply, the TA will not
overfit to a single target language or a small set of

languages as it must learn to balance across a large
and diverse set of languages; see §2.

We thus run experiments on MasakhaNER, UD
DP, and AmericasNLI with two subvariants of the
most general ALL-MULTI variant. First, in the
LEAVE-OUT-TASK subvariant, we leave out all the
LAs for the languages from the corresponding task
dataset when fine-tuning the TA: e.g., for Americ-
asNLI, that subvariant covers the LAs of all the lan-
guages in all the datasets except those appearing in
AmericasNLI, so that all AmericasNLI languages
are effectively ‘unseen’ at fine-tuning. The second
subvariant, termed LEAVE-OUT-TARG, leaves out
only one language at a time from the corresponding
dataset: e.g., when evaluating on Guarani (GN) in
AmericasNLI, the only language ‘unseen’ by the
TA at fine-tuning is GN as the current inference
language.

The results, summarized in Tables 2(a)-(c), re-
veal that our MULTILINGUAL TA fine-tuning in-
deed increases transfer capability also for the ‘TA-
unseen’ languages, and leads towards language-
universal TAs. The scores with both subvariants
offer substantial gains over MAD-X for many lan-
guages unseen during fine-tuning and in all three
tasks. This confirms that (i) MAD-X TAs tend to
overfit to the source language and thus underper-
form in cross-lingual transfer, and (ii) such over-
fitting might get mitigated through our proposed
‘multilingual regularization’ of the TAs while keep-
ing the same modularity benefits. Additionally, the
results also confirm the versatility of the proposed
TLR framework, where strong transfer gains are
achieved with different sets of languages included
in multilingual TA fine-tuning: e.g., the scores with
the two LEAVE-OUT subvariants remain strong and
competitive with the full ALL-MULTI variant.

For the DP task we even observe slight gains
with the LEAVE-OUT-TASK variant over the origi-
nal ALL-MULTI variant which ‘sees’ all task lan-
guages. We speculate that this might partially occur
due to the phenomenon of ’the curse of multilin-
guality’ (Conneau et al., 2020) kicking in, now at
the level of the limited TA budget, but leave this
for further exploration in future work.

4.1 Further Analyses

Robustness to LA Training Configuration. To
demonstrate that our results hold even when LAs
are trained with the different hyper-parameters, we
adopt a training regime that makes MAD-X LAs
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Figure 3: Per-layer similarity scores of MAD-X and ALL-MULTI adapter’s representations between English and 4
languages from AmericasNLI (AYM, GN, HCH, QUY) and 4 languages from XNLI (AR, HI, SW, UR).

directly comparable with BAD-X as trained in pre-
vious work by Parović et al. (2022). The average
results with such LAs on DP and AmericasNLI are
presented in Table 3, demonstrating that the gains
with the proposed TLR variants hold irrespective
of the LA training setup.

Multiple Runs. Given the large number of experi-
mental runs in this work, most scores are reported
from single runs with fixed seeds. However, to val-
idate that our findings hold under different random
initializations of TAs, we also run MAD-X and all
TLR variants with three different random seeds on
a subset of tasks (MasakhaNER and AmericasNLI).
The main results are presented in Table 3, indicat-
ing that all the findings hold and are not due to a
single favorable seed.

Do TLR Adapters Improve Alignment Between
Source and Target Languages? In order to ex-
plain the consistent gains with TLR adapters over
MAD-X, we analyse whether TLR adapters pro-
duce better-aligned representations between source
and target languages than MAD-X. We execute ex-
periments on the NLI task, choosing 4 languages
from AmericasNLI (AYM, GN, HCH, QUY) and 4
languages from XNLI (AR, HI, SW, UR) datasets,
with English as a source language. The representa-
tions of English are obtained using MultiNLI data
and English LA is paired with 1) MAD-X TA for
the MAD-X baseline, and 2) ALL-MULTI TA for
the TLR representations. To obtain the representa-
tions in the target language, we use its validation
data and its LA paired with either MAD-X TA or
ALL-MULTI TA as before. The alignment scores
of both MAD-X and TLR methods are measured
as cosine similarity between English and target
representations of mBERT’s [CLS] token, using
500 examples in both languages. The results are

presented in Figure 3. We can observe that MAD-
X seems to have a much more significant drop in
alignment values in the last layer than the ALL-
MULTI adapter, which could explain the better per-
formance of the latter. In addition, on Americas-
NLI languages, where we observe sizable gains,
the ALL-MULTI adapter seems to achieve better
alignment across the middle layers of mBERT.

5 Related Work

Parameter-Efficient Fine-Tuning has emerged
from an effort to overcome the need for full model
fine-tuning, especially with the neural models be-
coming increasingly larger. Some approaches fine-
tune only a subset of model parameters while keep-
ing the rest unmodified (Ben Zaken et al., 2022;
Guo et al., 2021; Ansell et al., 2022). Other ap-
proaches keep the model’s parameters fixed and
introduce a fresh set of parameters that serves
for learning the desired task (Li and Liang, 2021;
Lester et al., 2021; Houlsby et al., 2019; Hu et al.,
2022), with the tendency towards decreasing the
number of newly introduced parameters while con-
currently maximizing or maintaining task perfor-
mance (Karimi Mahabadi et al., 2021a,b).

Adapters were introduced in computer vision re-
search (Rebuffi et al., 2017) before being brought
into NLP to perform parameter-efficient transfer
learning across tasks (Houlsby et al., 2019). Bapna
and Firat (2019) use adapters in NMT as an effi-
cient way of adapting the model to new languages
and domains because maintaining separate models
would quickly become infeasible as the number
of domains and languages increases. Wang et al.
(2021) propose factual and linguistic adapters to
infuse different types of knowledge into the model,
while overcoming the catastrophic forgetting that
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would otherwise occur.

Adapters for Cross-Lingual Transfer. MAD-
X Pfeiffer et al. (2020b) introduces LAs and TAs
for efficient transfer; they also propose invertible
adapters for adapting MMTs to unseen languages.
Subsequently, Pfeiffer et al. (2021b) introduce a
vocabulary adaptation method for MAD-X that can
adapt the model to low-resource languages and
even to unseen scripts, the latter of which was not
possible with MAD-X’s invertible adapters. In an-
other adapter-based cross-lingual transfer approach,
Vidoni et al. (2020) introduce orthogonal LAs and
TAs designed to store the knowledge orthogonal to
the knowledge already encoded within MMT. FAD-
X (Lee et al., 2022) explores whether the available
adapters can be composed to complement or com-
pletely replace the adapters for low-resource lan-
guages. This is done through fusing (Pfeiffer et al.,
2021a) TAs trained with LAs in different languages.
Our TLR adapters do not involve any fusion, but
rather benefit from a training procedure that oper-
ates by cycling over multiple LAs. Faisal and Anas-
tasopoulos (2022) use linguistic and phylogenetic
information to improve cross-lingual transfer by
leveraging closely related languages and learning
language family adapters similar to Chronopoulou
et al. (2022). This is accomplished by creating a
phylogeny-informed tree hierarchy over LAs.

UDapter (Üstün et al., 2020) and MAD-G
(Ansell et al., 2021) learn to generate LAs through
the contextual parameter generation method (Pla-
tanios et al., 2018). Both UDapter and MAD-G
enable the generation of the parameters from vec-
tors of typological features through sharing of lin-
guistic information, with the main difference be-
tween the two approaches being that MAD-G’s
LAs are task-agnostic, while UDapter generates
them jointly with a dependency parser’s parameters.
Hyper-X (Üstün et al., 2022b) generates weights
for adapters conditioned on both task and language
vectors, thus facilitating the zero-shot transfer to
unseen languages and task-language combinations.

Improving Cross-Lingual Transfer via Expos-
ing Target Languages. In an extensive transfer
case study focused on POS tagging, de Vries et al.
(2022) showed that both source and target language
(and other features such as language family, writ-
ing system, word order and lexical-phonetic dis-
tance) affect cross-lingual transfer performance.
XeroAlign (Gritta and Iacobacci, 2021) is a method
for task-specific alignment of sentence embeddings

(i.e. they encourage the alignment between source
task-data and its target translation by an auxiliary
loss), aiming to bring the target language perfor-
mance closer to that of a source language (i.e. to
close the cross-lingual transfer gap). Kulshreshtha
et al. (2020) analyze the effects of the existing meth-
ods for aligning multilingual contextualized embed-
dings and cross-lingual supervision, and propose a
novel alignment method. Yang et al. (2021) intro-
duce a new pretraining task to align static embed-
dings and multilingual contextual representations
by relying on bilingual word pairs during masking.
Inspired by this line of research, in this work we in-
vestigated how ‘exposing’ target languages as well
as conducting multilingual fine-tuning impacts the
knowledge stored in task adapters, and their ability
to boost adapter-based cross-lingual transfer.

6 Conclusion and Future Work

We have presented a novel general framework for
adapter-based cross-lingual task transfer, which
improves over previous established adapter-based
transfer frameworks such as MAD-X and BAD-X.
The main idea is to better equip task adapters
(TAs) to handle text instances in a variety of tar-
get languages. We have demonstrated that this can
be achieved via so-called target language-ready
(TLR) task adapters, where we expose the TA to
the target language as early as the fine-tuning stage.
As another major contribution, we have also pro-
posed a multilingual language-universal TLR TA
variant which offers the best trade-off between
transfer performance and modularity, learning a
single universal TA that can be applied over mul-
tiple target languages. Our experiments across 6
standard cross-lingual benchmarks spanning 4 dif-
ferent tasks and a wide spectrum of languages have
validated the considerable benefits of the proposed
framework and different transfer variants emerging
from it. Crucially, the most modular multilingual
TLR TA variant offers the strongest performance
overall, and it also generalizes well even to target
languages ‘unseen’ during TA fine-tuning.

In future work, we plan to further investigate
multilingual language-universal task adapters also
in multi-task and multi-domain setups, and extend
the focus from serial adapters to other adapter ar-
chitectures, such as parallel adapters (He et al.,
2022) and sparse subnetworks (Ansell et al., 2022;
Foroutan et al., 2022).
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Limitations

Our experiments are based on (arguably) the most
standard adapter architecture for adapter-based
cross-lingual transfer and beyond, which also fa-
cilitates comparisons to prior work in this area.
However, we again note that there are other emerg-
ing parameter-efficient modular methods, includ-
ing different adapter architectures (He et al., 2022),
that could be used with the same conceptual idea.
We leave further and wider explorations along this
direction for future work.

Our evaluation relies on the currently available
standard multilingual benchmarks, and in particu-
lar those targeted towards low-resource languages.
While the development of better models for under-
represented languages is possible mostly owing to
such benchmarks, it is also inherently constrained
by their quality and availability. Even though our
experiments have been conducted over 35 different
target languages and across several different tasks,
we mostly focus on generally consistent trends
across multiple languages. Delving deeper into
finer-grained qualitative and linguistically oriented
analyses over particular low-resource languages
would require access to native speakers of those
languages, and it is very challenging to conduct
such analyses for many languages in our language
sample.

Due to a large number of experiments across
many tasks and languages, we report all our results
based on a single run. Averages over multiple runs
conducted on a subset of languages and tasks con-
firm all the core findings; for simplicity, we even-
tually chose to report the results for all languages
and tasks in the same setup.

Finally, training language adapters is typically
computationally expensive; however, owing to the
modular design of our framework with respect to
language adapters, these are trained only once per
language and reused across different evaluations.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2021b. UNKs everywhere: Adapting
multilingual language models to new scripts. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10186–
10203, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jerin Philip, Alexandre Berard, Matthias Gallé, and
Laurent Besacier. 2020. Monolingual adapters for
zero-shot neural machine translation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4465–4470, Online. Association for Computational
Linguistics.

187

https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2020.findings-emnlp.83
https://doi.org/10.18653/v1/2020.findings-emnlp.83
https://doi.org/10.18653/v1/2020.findings-emnlp.83
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://aclanthology.org/2022.aacl-short.8
https://aclanthology.org/2022.aacl-short.8
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.naacl-main.130
https://doi.org/10.18653/v1/2022.naacl-main.130
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361


Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Gra-
ham Neubig, and Tom Mitchell. 2018. Contextual
parameter generation for universal neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 425–435, Brussels, Belgium. Association
for Computational Linguistics.

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska,
Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
XCOPA: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2362–2376, Online. As-
sociation for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural In-
formation Processing Systems, volume 30. Curran
Associates, Inc.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2022a. UDapter: Typology-based lan-
guage adapters for multilingual dependency parsing
and sequence labeling. Computational Linguistics,
48(3):555–592.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, Gertjan
van Noord, and Sebastian Ruder. 2022b. Hyper-x:
A unified hypernetwork for multi-task multilingual
transfer. arXiv preprint arXiv:2205.12148.

Marko Vidoni, Ivan Vulić, and Goran Glavaš.
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A Tasks and Languages

The full list of tasks, datasets and target languages
with their names and codes is given in Table 5.

B XLM-R Results

The results on AmericasNLI, XNLI and XQuAD
with XLM-R are shown in Table 6.

C MAD-X Adapters Trained with a
Different Setup

The results of MAD-X adapters trained in a different
setup (Parović et al., 2022) on DP and Americas-
NLI are given in Table 7. The results of these
adapters are directly comparable with the BAD-X

baseline, as they follow the same training setup and
their summary is given in Table 3.

D Per-Language Results with Multiple
Runs

Full results on MasakhaNER and AmericasNLI for
all target languages obtained as an average across
3 different random seeds are given in Table 8.
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Task Source Dataset Target Dataset Target Languages

Dependency Pars-
ing (DP)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

Afrikaans (AF)∗, Bambara (BM), Basque (EU)∗, Komi-Zyryan
(KPV), Marathi (MR)∗, Maltese (MT), Erzya (MYV), Telugu
(TE)∗, Uyghur (UG), Wolof (WO)

Named Entity
Recognition
(NER)

CoNLL 2003
(Tjong Kim Sang
and De Meulder,
2003)

MasakhaNER
(Adelani et al.,
2021)

Hausa (HAU), Igbo (IBO), Kinyarwanda (KIN), Luganda (LUG),
Luo (LUO), Nigerian-Pidgin (PCM), Swahili (SWA)∗, Wolof
(WOL), Yorùbá (YOR)∗

Natural Language
Inference (NLI)

MultiNLI
(Williams et al.,
2018)

AmericasNLI
(Ebrahimi et al.,
2022)

Aymara (AYM), Bribri (BZD), Asháninka (CNI), Guarani (GN),
Wixarika (HCH), Náhuatl (NAH), Otomí (OTO), Quechua (QUY),
Shipibo-Konibo (SHP), Rarámuri (TAR)

MultiNLI
(Williams et al.,
2018)

XNLI (Conneau
et al., 2018)

Arabic (AR)†, Hindi (HI)†, Swahili (SW)∗, Thai (TH)†, Urdu
(UR)∗, Chinese (ZH)†

Question Answer-
ing (QA)

SQuAD v1.1
(Rajpurkar et al.,
2016)

XQuAD (Artetxe
et al., 2020) Arabic (AR)†, Hindi (HI)†, Thai (TH)†, Chinese (ZH)†

SQuAD v1.1
(Rajpurkar et al.,
2016)

TyDiQA-GoldP
(Clark et al., 2020)

Arabic (AR)†, Bengali (BN)∗, Swahili (SW)∗, Telugu (TE)∗, Thai
(TH)†

Table 5: Details of the tasks, datasets, and languages involved in our cross-lingual transfer evaluation. ∗ denotes
low-resource languages seen during MMT pretraining; † denotes high-resource languages seen during MMT
pretraining; all other languages are low-resource and unseen. The source language is always English.

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg Better

MAD-X 54.40 40.40 46.80 58.13 40.80 48.92 44.39 55.47 50.67 42.53 48.25
TARGET 52.67 43.73 46.13 58.93 44.80 49.59 43.45 57.47 48.67 41.87 48.73 5/10
BILINGUAL 53.47 43.47 47.20 58.40 44.40 49.73 41.98 57.73 47.87 42.27 48.65 6/10
TASK-MULTI 53.20 43.73 47.47 56.67 42.27 49.59 42.51 58.67 48.93 43.73 48.68 6/10
ALL-MULTI 53.47 42.27 47.73 57.47 41.47 49.73 40.91 58.80 50.27 40.93 48.31 5/10

(a) AmericasNLI: accuracy

Method AR HI SW TH UR ZH avg Better

MAD-X 66.81 63.89 64.83 63.41 60.76 67.43 64.52
TARGET 67.19 66.37 63.99 67.05 61.84 70.40 66.14 5/6
BILINGUAL 66.67 66.07 64.37 66.67 61.68 70.04 65.92 4/6
TASK-MULTI 68.00 65.89 64.19 66.01 61.30 69.58 65.83 5/6
ALL-MULTI 67.84 66.11 64.89 65.67 61.82 69.34 65.95 6/6

(b) XNLI: accuracy

Method AR HI TH ZH avg Better

MAD-X 65.23/47.65 67.15/51.09 69.26/59.08 64.01/55.13 66.41/53.24
TARGET 65.63/48.40 69.49/53.78 69.38/58.57 64.09/54.71 67.15/53.87 4/4
BILINGUAL 65.85/48.91 68.27/52.86 70.31/60.50 64.57/55.55 67.25/54.45 4/4
TASK-MULTI 66.23/48.40 68.43/52.61 70.25/60.42 65.32/56.22 67.56/54.41 4/4
ALL-MULTI 65.98/49.24 68.24/51.60 67.15/56.55 63.07/52.94 66.11/52.58 2/4

(c) XQuAD: F1/EM

Table 6: XLM-R: Results of all methods and TLR variants on all target languages.
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Method AF BM EU KPV MR MT MYV TE UG WO avg Better

MAD-X 54.23 11.80 32.51 22.44 24.24 44.71 35.45 45.47 15.67 26.38 31.29
BAD-X 54.54 11.92 31.45 22.55 26.56 43.52 39.31 46.22 15.24 35.28 32.66
TARGET 55.07 11.96 33.31 20.82 28.05 48.83 41.75 52.34 18.60 40.75 35.15 9/10
BILINGUAL 54.75 11.86 33.21 22.09 26.60 48.74 38.82 49.86 16.89 41.27 34.41 9/10
TASK-MULTI 56.55 11.94 34.17 23.82 27.71 51.66 40.87 51.10 18.90 41.93 35.86 10/10
ALL-MULTI 56.28 12.91 35.04 24.11 28.28 53.02 41.85 51.43 18.47 43.31 36.47 10/10

(a) DP: LAS

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg Better

MAD-X 47.07 45.07 41.87 55.33 39.47 48.51 40.91 51.47 41.60 42.00 45.33
BAD-X 46.13 44.67 45.87 56.80 44.93 47.70 41.71 47.87 49.07 39.47 46.42
TARGET 48.80 44.80 44.13 58.27 43.73 51.90 41.84 57.47 46.40 45.07 48.24 9/10
BILINGUAL 49.87 44.13 45.87 60.40 43.47 50.27 41.98 58.00 46.53 44.13 48.47 9/10
TASK-MULTI 46.40 44.27 45.87 57.60 44.40 50.68 42.78 58.00 46.53 44.00 48.05 8/10
ALL-MULTI 46.00 44.00 46.40 61.07 46.53 49.32 44.12 55.33 46.67 45.47 48.49 8/10

(b) AmericasNLI: accuracy

Table 7: Results of all methods and TLR variants on DP and AmericasNLI across all target languages. All adapters
in these experiments have been trained using the hyperparameters from Parović et al. (2022). The highest task score
per each language is in bold. Better refers to the number of target languages for which each TLR variant scores
higher than MAD-X.

Method HAU IBO KIN LUG LUO PCM SWA WOL YOR avg Better

MAD-X 82.00 70.92 63.55 65.26 48.62 72.40 74.53 64.35 72.78 68.27
TARGET 78.32 71.70 63.35 67.52 50.88 73.99 75.46 62.55 72.68 68.49 5/9
BILINGUAL 80.68 71.56 63.92 68.11 50.49 74.78 76.43 64.39 72.80 69.24 8/9
TASK-MULTI 81.85 72.18 65.39 66.98 50.61 74.42 76.14 65.58 72.07 69.47 7/9
ALL-MULTI 81.49 71.32 64.86 66.26 50.68 74.42 75.70 65.52 71.66 69.10 7/9
LEAVE-OUT-TASK 82.30 70.79 65.61 67.50 50.81 74.24 75.69 65.32 72.08 69.37 7/9
LEAVE-OUT-TARG 82.41 70.66 65.35 67.38 50.95 73.90 75.52 64.86 71.18 69.13 7/9

(a) NER: F1

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg Better

MAD-X 51.55 41.24 39.47 56.62 40.09 45.98 40.82 49.29 40.71 40.84 44.66
TARGET 50.89 46.62 43.42 57.20 43.42 49.37 41.31 56.31 46.62 44.00 47.92 9/10
BILINGUAL 53.69 46.18 43.60 58.40 44.31 47.92 42.96 56.00 46.98 43.20 48.32 10/10
TASK-MULTI 51.11 45.38 44.80 58.49 45.51 49.05 42.96 56.31 47.65 44.22 48.55 9/10
ALL-MULTI 52.62 45.69 45.91 59.07 45.78 48.51 45.01 56.84 47.82 43.78 49.10 10/10
LEAVE-OUT-TASK 53.91 43.60 45.78 57.87 42.80 47.56 42.87 56.40 46.13 42.66 47.96 10/10
LEAVE-OUT-TARG 52.09 44.98 45.91 58.13 44.44 48.74 44.43 56.13 46.98 42.58 48.44 10/10

(b) AmericasNLI: accuracy

Table 8: Averages across 3 different random seeds of all methods and TLR variants on MasakhaNER and Americas-
NLI across all target languages. The highest task score per each language is in bold, but excluding the two ablation
subvariants of ALL-MULTI placed below the dashed horizontal lines (LEAVE-OUT-TASK and LEAVE-OUT-TARG).
Better refers to the number of target languages for which each TLR variant scores higher than MAD-X.
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