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Abstract

The Open-Domain Question Answering
(ODQA) task involves retrieving and subse-
quently generating answers from fine-grained
relevant passages within a database. Current
systems leverage Pretrained Language Models
(PLMs) to model the relationship between
questions and passages. However, the diversity
in surface form expressions can hinder the
model’s ability to capture accurate correlations,
especially within complex contexts. Therefore,
we utilize Abstract Meaning Representation
(AMR) graphs to assist the model in under-
standing complex semantic information. We
introduce a method known as Graph-as-Token
(GST) to incorporate AMRs into PLMs.
Results from Natural Questions (NQ) and
TriviaQA (TQ) demonstrate that our GST
method can significantly improve performance,
resulting in up to 2.44/3.17 Exact Match
score improvements on NQ/TQ respectively.
Furthermore, our method enhances robustness
and outperforms alternative Graph Neural
Network (GNN) methods for integrating
AMRs. To the best of our knowledge, we are
the first to employ semantic graphs in ODQA.
1

1 Introduction

Question Answering (QA) is a significant task in
Natural Language Processing (NLP) (Rajpurkar
et al., 2016). Open-domain QA (ODQA) (Chen
et al., 2017), particularly, requires models to output
a singular answer in response to a given question
using a set of passages that can total in the millions.
ODQA presents two technical challenges: the first
is retrieving (Karpukhin et al., 2020) and rerank-
ing (Fajcik et al., 2021) relevant passages from the

∗ Done during the internship at Amazon AWS AI.
† The correponding author.

1 We release our code and data at
https://github.com/wangcunxiang/Graph-aS-Tokens

dataset, and the second is generating an answer for
the question using the selected passages. In this
work, we focus on the reranking and reading pro-
cesses, which necessitate fine-grained interaction
between the question and passages.

Existing work attempts to address these chal-
lenges using Pretrained Language Models (PLMs)
(Glass et al., 2022). However, the diverse sur-
face form expressions often make it challenging
for the model to capture accurate correlations, es-
pecially when the context is lengthy and complex.
We present an example from our experiments in
Figure 1. In response to the question, the reranker
incorrectly ranks a confusing passage first, and the
reader generates the answer “2015–16”. The er-
ror arises from the PLMs’ inability to effectively
handle the complex semantic structure. Despite

“MVP”, “Stephen Curry” and “won the award”
appearing together, they are not semantically re-
lated. In contrast, in the AMR graph, it is clear that

“Stephen Curry” wins over “international players”,
not the “MVP”, which helps the model avoid the
mistake. The baseline model may fail to associate
"Most Valuable Player" in the passage with "MVP"
in the question, which may be why the baseline
does not rank it in the Top10. To address this is-
sue, we adopt structured semantics (i.e., Abstract
Meaning Representation (Banarescu et al., 2013)
graphs shown on the right of Figure 1) to enhance
Open-Domain QA.

While previous work has integrated graphs into
neural models for NLP tasks, adding additional
neural architectures to PLMs can be non-trivial,
as training a graph network without compromis-
ing the original architecture of PLMs can be chal-
lenging (Ribeiro et al., 2021). Converting AMR
graphs directly into text sequences and append-
ing them can be natural, but leads to excessively
long sequences, exceeding the maximum process-
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Question: When did Stephen 
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Golden Answer: 2014–15

Stephen Curry… In 2014-15, Curry 
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Figure 1: An example from our experiments. The top-middle square contains the question and the gold standard
answer. The middle section shows a confusing passage with an incorrect answer generated by the baseline model and
ranked first by the baseline reranker. The bottom-middle section presents a passage with the gold standard answer,
which is ranked within the top ten by our reranker but not by the baseline. Important information is highlighted.

ing length of the transformer. To integrate AMR
into PLMs without altering the transformer archi-
tecture and at a manageable cost, we treat nodes
and edges of AMR Graphs aS Tokens (GST) in
PLMs. This is achieved by projecting the embed-
dings of each node/edge, which consist of multiple
tokens, into a single token embedding and append-
ing them to the textual sequence embeddings. This
allows for integration into PLMs without altering
the main model architecture. This method does not
need to integrate a Graph Neural Network into the
transformer architecture of PLMs, which is com-
monly used in integrating graph information into
PLMs Yu et al. (2022); Ju et al. (2022). The GST
method is inspired by Kim et al. (2022) in the graph
learning domain, who uses token embeddings to
represent nodes and edges for the transformer ar-
chitecture in graph learning tasks. However, their
method is not tailored for NLP tasks, does not con-
sider the textual sequence embeddings, and only
handles a certain types of nodes/edges, whereas we
address unlimited types of nodes/edges consisting
of various tokens.

Specifically, we select BART and FiD as base-
lines for the reranking and reading tasks, respec-
tively. To integrate AMR information, we initially
embed each question-passage pair into text embed-
dings. Next, we parse the pair into a single AMR
graph using AMRBART (Bai et al., 2022a). We
then employ the GST method to embed the graph
nodes and graph edges into graph token embed-
dings and concatenate them with the text embed-
dings. Lastly, we feed the concatenated text-graph

embeddings as the input embeddings to a BART-
based (Lewis et al., 2020a) reranker to rerank or
a FiD-based (Izacard and Grave, 2020b) reader to
generate answers.

We validate the effectiveness of our GST ap-
proach using two datasets – Natural Question
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017). Results indicate that AMR enhances
the models’ ability to understand complex seman-
tics and improves robustness. BART-GST-reranker
and FiD-GST outperform BART-reranker and FiD
on the reranking and reading tasks, respectively,
achieving up to 5.9 in Top5 scores, 3.4 in Top10
score improvements, and a 2.44 increase in Exact
Match on NQ. When the test questions are para-
phrased, models equipped with GST prove more
robust than the baselines. Additionally, GST out-
performs alternative GNN methods, such as Graph-
transformer and Relational Graph Convolution Net-
work (RGCN) (Schlichtkrull et al., 2018), for inte-
grating AMR.

To the best of our knowledge, we are the first to
incorporate semantic graphs into ODQA, thereby
achieving better results than the baselines.

2 Related Work

Open-domain QA. Open-Domain Question An-
swering (ODQA) (Chen et al., 2017) aims to
answer one factual question given a large-scale
text database, such as Wikipedia. It consists of
two steps. The first is dense passage retrieval
(Karpukhin et al., 2020) , which retrieves a cer-
tain number of passages that match the question. In
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this process, a reranking step can be used to filter
out the most matching passages (Fajcik et al., 2021;
Glass et al., 2022). The second is reading, which
finds answer by reading most matching passages
(Izacard and Grave, 2020b; Lewis et al., 2020b).
We focus on the reranking and reading, and inte-
grate AMR into those models.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism for representing
the semantics of a text as a rooted, directed graph.
In this graph, where nodes represent basic semantic
units such as entities and predicates, and edges rep-
resent the relationships between them. Compared
with free-form natural language, AMR graphs are
more semantically stable as sentences with same se-
mantics but different expressions can be expressed
as the same AMR graph (Bai et al., 2021; Naseem
et al., 2021). In addition, AMR graphs are believed
to have more structure semantic information than
pure text (Naseem et al., 2021).

Previous work has implemented AMR graphs
into neural network models. For example, (Bai
et al., 2021) adopts Graph-transformer (Yun et al.,
2019) to integrate AMRs into the transformer ar-
chitecture for the dialogue understanding and gen-
eration. AMR-DA (Shou et al., 2022) uses AMRs
as an data augmentation approach which first feeds
the text into AMRs and regenerates the text from
the AMRs. Bai et al. (2022b) uses AMR graphs
with rich semantic information to redesign the pre-
training tasks which results in improvement on
downstream dialogue understanding tasks. How-
ever, none of them is used for Open-domain QA
or applied with the GST technique. which does
not need to implement extra architectures in the
PLMs, avoiding the incompatibility of different
model architectures.

Integrating Structures into PLMs for ODQA
Some work also tries to integrate structure informa-
tion into PLMs for ODQA. For example, GRAPE
(Ju et al., 2022) insert a Relation-aware Graph Neu-
ral Network into the T5 encoders of FiD to encode
knowledge graphs to enhance the output embed-
dings of encoders; KG-FiD (Yu et al., 2022) uses
the knowledge graph to link different but corre-
lated passages, reranks them before and during the
reading, and only feeds the output embeddings of
most correlated passages into the decoder. How-
ever, existing work concentrates on the knowledge
graph as the source of structure information and no

previous work has considered AMRs for ODQA.

LLMs in Open-Domain Question Answering
(ODQA) Research has been conducted that uti-
lizes pre-trained language models (PLMs) to di-
rectly answer open-domain questions without re-
trieval (Yu et al., 2023; Wang et al., 2021; Ye et al.,
2021; Rosset et al., 2021). The results, however,
have traditionally not been as effective as those
achieved by the combined application of DPR and
FiD. It was not until the emergence of ChatGPT
that direct answer generation via internal parame-
ters appeared to be a promising approach.

In a study conducted by Wang et al. (2023), the
performances of Large Language Models (LLMs),
such as ChatGPT (versions 3.5 and 4), GPT-3.5,
and Bing Chat, were manually evaluated and com-
pared with that of DPR+FiD across NQ and TQ test
sets. The findings demonstrated that FiD surpassed
ChatGPT-3.5 and GPT-3.5 on the NQ test set and
outperformed GPT-3.5 on the TQ test set, affirming
the relevance and effectiveness of the DPR+FiD
approach even in the era of LLMs.

3 Method

We introduce the Retrieval and Reading of Open-
Domain QA and their baselines in Section 3.1,
AMR graph generation in Section 3.2 and our
method Graph-aS-Token (GST) in Section 3.3.

3.1 Baseline
Retrieval. The retrieval model aims to retrieve
N1 passages from M reference passages (N1 <<
M ) given the question q. Only fast algorithms,
such as BM25 and DPR (Karpukhin et al., 2020),
can be used to retrieve from the large-scale
database, and complex but accurate PLMs can-
not be directly adopted. So, retrieval algorithm
is often not very accurate. One commonly used
method is applying a reranking process to fine-
grain the retrieval results, and we can use PLMs
to encode the correlations, which is usually more
accurate. Formally, reranking requires model to
sort out the most correlated N2 passages with q
from N1 passages (N2 < N1). For each passage p
in the retrieved passage PN1 , we concatenate the
q p together and embed them into text sequence
embeddings Xqp ∈ RL×H , where L is the max
token length of the question and passage pair and
H is the dimension.

We use a pretrained language model to encode
each Xqp and a classification head to calculate a
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Figure 2: The structure of our Graph-aS-Token method. The input consists of the text and the AMR graph of one
passage; The output is a united embedding.

correlation score between q and p:

sqp = PLM(Xqp) (1)

where PLM denotes the pretrained language
model and the commonly used Multi-Layer Per-
ceptron (MLP) is used as as the classification head.

We use the cross entropy as the loss function,

L =
1

Nq

∑

q

[
1

Npos +Nneg

∑

p

lqp]

=
1

Nq ∗ (Npos +Nneg)

∑

q

∑

p

−

[(yqp ∗ log(sqp) + (1− yqp) ∗ log(1− sqp))],
(2)

where Npos and Nneg are the numbers of positive
and negative passages for training one question,
respectively. To identify positive/negative label of
each passage to the question, we follow Karpukhin
et al. (2020), checking whether at least one answer
appears in the passage.

We choose the N2 passages which have reranked
among Top-N2 for the reading process.

Reading. The reader needs to generate an an-
swer a given the question q and N2 passages. In
this work, we choose the Fusion-in-Decoder (FiD)
model (Izacard and Grave, 2020b) as the baseline
reader model. The FiD model uses N2 separate
T5 encoders (Raffel et al., 2020) to encode N2 pas-
sages and concatenate the encoder hidden states to
feed in one T5 decoder to generate answer.

Similar to reranking, we embed the question q
and each passage p to text sequence embeddings

Xqp ∈ RL×dH , where L is the max token length
of the question and passage pair and dH is the
dimension. Next, we feed the embeddings in the
FiD model to generate the answer

a = FiD([Xqp1 , . . . ,Xqpi
,XqpN2

]) (3)

where a is a text sequence.

3.2 AMR
We concatenate each question q and passage p,
parse the result sequence into an AMR graph
Gqp = {V,E}, where V,E are nodes and edges,
respectively. Each edge is equipped with types,
so e = {(u, r, v)} where u, r, v represent the head
node, relation and the tail node, respectively.

3.3 Graph aS Token (GST)
As shown in Figure 2, we project each node n
or edge e in one AMR graph G into node em-
bedding xn or edge embedding xe. We adopt
two types of methods to project each node and
edge embeddings to one token embedding, which
are MLP projection and Attention projection. Af-
ter the projection, we append the node embed-
dings XN = [xn

1 , . . . ,x
n
nn

] and edge embeddings
XE = [xe

1, . . . ,x
e
ne
] to the corresponding text se-

quence embeddings XT = [xt
1, . . . ,x

t
nt
]. So, the

result sequence embedding is in the following no-
tation:

X = [XT,XN,XE] (4)

Initialization We explain how we initialize em-
beddings of nodes and edges here.
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As each node n and relation r contain plu-
ral tokens (example of node ‘ordinal-entity’ is
shown the left and bottom of Figure 2), n =
[t1, .., tn] and r = [t1, . . . , tr], and each edge
e contains two nodes and one relation, we have
e = [[t1, .., tu], [t1, . . . , tr], [t1, .., tv]].

For edges and nodes, we first embed their inter-
nal tokens into token embedding.

For edges, we have

xe1 =[[xu
1 , . . . ,x

u
nu

],

[xr
1, . . . ,x

r
nr
],

[xv
1, . . . ,x

v
nv
]]

(5)

For nodes, we have

xn1 = [xn
1 , . . . ,x

n
n] (6)

MLP Projection The process is illustrated in the
MLP Projection part of Figure 2. As each AMR
node can have more than one tokens, we first aver-
age its token embeddings. For example, for a head
node u, xu = AV E([xu

1 , . . . ,x
u
nu

]) ∈ RdH . The
same is done for the relation.

Then, we concatenate the two node embeddings
and one relation embedding together as the edge
embedding,

xe2 = [xu,xr,xv] ∈ R3dH (7)

Next, we use a R3dH×dH MLP layer to project
the xe2 ∈ RdH into xe ∈ RdH , and the final edge
embedding

xe = MLP (xe2)

= MLP ([xu,xr,xv])
(8)

Similarly, we average the node tokens em-
beddings first xn1 = AV E([xn

1 , . . . ,x
n
n]). To

reuse the MLP layer, we copy the node em-
bedding two times and concatenate, so, xn2 =
[xn1,xn1,xn1] ∈ R3dH . Last, We adopt an MLP
layer to obtain final node embedding

xn = MLP (xn2) ∈ RdH (9)

We have also tried to assign separate MLP layers
to nodes and edges, but preliminary experiments
show that it does not improve the results.

Attention Projection We use one-layer self-
attention to project nodes and edges into embed-
dings, which is shown in the Attn Projection part
in Figure 2. The edge embedding is calculated

xe = AttE([x
u
1 , . . . ,x

u
nu

,

xr
1, . . . ,x

r
nr
,xv

1, . . . ,x
v
nv
])

(10)

Similarly, the node embedding is calculated

xn = AttN ([xn
1 , . . . ,x

n
n), (11)

where AttE and AttN both denote one self-
attention layer for edges and nodes, respectively.
We take the first token (additional token) embed-
ding from the self-attention output as the final em-
bedding.

We only modify the input embeddings from
X = XT to X = [XT,XN,XE]. The rest details
of models, such as the transformer architecture and
the training paradigm, are kept the same with the
baselines. Our model can directly use the PLMs to
encode AMR graphs, without incompatibility be-
tween GNN’s parameters and PLMs’ parameters.

4 Experiments

4.1 Data

We choose two representative Open-Domain QA
datasets, namely Natural Questions (NQ) and Triv-
iaQA (TQ), for experiments. Data details are in
presented in Appendix Table 9.

Since retrieval results have a large impact on the
performance of downstream reranking and reading,
we follow Izacard and Grave (2020b) and (Yu et al.,
2022) to fix retrieval results for each experiment to
make the reranking and reading results comparable
for different models. In particular, we use the DPR
model initialized with parameters in Izacard and
Grave (2020a) 2 to retrieve 100 passages for each
question. Then we rerank them into 10 passages,
which means N1 = 100, N2 = 10.

We generate the amr graphs using AMR-
BART (Bai et al., 2022a) (the AMRBART-large-
finetuned-AMR3.0-AMRParsing checkpoint) 3.

4.2 Models Details

We choose the BART model as the reranker base-
line and the FiD model (implemented on T5
model(Raffel et al., 2020)) as the reader baseline,
and adopt the GST method on them. For each
model in this work, we use its Large checkpoint,
such as BART-large and FiD-large, for reranking
and reading, respectively. In the reranking pro-
cess, we evaluate the model using the dev set per

2https://dl.fbaipublicfiles.com/FiD/
pretrained_models/nq_retriever.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_
models/tqa_retriever.tar.gz

3https://huggingface.co/xfbai/AMRBART-large-
finetuned-AMR3.0-AMRParsing
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Reranker + Reader \ Dataset
Natural Questions TriviaQA

Reranking Reading Reranking Reading
Top5 Top10 EM Top5 Top10 EM

w/o reranker + FiD-reader
73.7/74.6 79.5/80.3

49.47/50.66
78.0/78.1 81.5/81.8

69.02/69.50
w/o reranker + FiD-GST-A 50.12/51.11 70.17/70.39
w/o reranker + FiD-GST-M 50.06/50.97 69.98/70.10

BART-reranker + FiD-reader
78.7/78.6 83.0/83.3

50.33/51.33
83.2/83.2 85.2/85.1

71.16/71.33
BART-reranker + FiD-GST-A 50.80/52.38 71.93/72.05
BART-reranker + FiD-GST-M 50.76/52.24 72.12/72.24

BART-GST-A + FiD-reader 79.3/79.3 83.3/83.3 50.68/52.18 83.5/83.3 85.3/85.3 71.54/71.71
BART-GST-A + FiD-GST-A 51.05/52.80 72.63/72.67

BART-GST-M + FiD-reader 79.6/80.0 83.3/83.7 51.11/52.13 83.1/82.9 85.0/85.1 71.47/71.62
BART-GST-M + FiD-GST-M 51.40/53.10 72.58/72.61

Table 1: Reranking and reading results on the dev/test set of NQ and TQ. In each cell, the left is on the dev while
the right is on the test. For the BART/FiD with GST-M/A in the first column, they are equipped AMR graphs with
the GST method, -M indicates the MLP projection while -A is the attention projection.

Rearnker \ Dataset Natural Questions TriviaQA
MRR MH@10 MRR MH@10

w/o reranker 20.2/18.0 37.9/34.6 12.1/12.3 25.5/25.9

BART-reranker 25.7/23.3 49.3/45.8 16.9/17.0 37.7/38.0

BART-GST-A 28.1/24.7 52.7/48.2 17.7/17.8 39.3/39.9

BART-GST-M 28.4/25.0 53.2/48.7 17.5/17.6 39.1/39.5

Table 2: Overall reranking results on NQ and TQ. In
each cell, the left is dev and the right is test.

epoch, and use Top10 as the pivot metric to select
the best-performed checkpoint for the test. For the
reading, we evaluate the model per 10000 steps,
and use Exact Match as the pivot metric. For train-
ing rerankers, we set number of positive passages
as 1 and number of negative passages as 7. We run
experiments on 2 Tesla A100 80G GPUs.

4.3 Metric

Following Glass et al. (2022) and Izacard and
Grave (2020b), we use Top-N to indicate the rerank-
ing performance and Exact Match for the reading
performance.

However, TopN is unsuitable for indicating
the overall reranking performance for all positive
passages, so we also adopt two metrics, namely
Mean Reciprocal Rank (MRR) and Mean Hits@10
(MHits@10). The MRR score is the Mean Re-
ciprocal Rank of all positive passages. Higher
scores indicate that the positive passages are ranked
higher overall. The MHits@10 indicates the per-
centage of positive passages are ranked in Top10.
Higher scores indicate that more positive passages
are ranked in Top10. Their formulations are in

Appendix Section A.5. Note that, only when the
retrieved data is exactly the same, the MRR and
MHits@10 metrics are comparable.

4.4 Preliminary Experiments

We present the reranking performance of four base-
line PLMs, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark
et al., 2020) and BART (Lewis et al., 2020a) on the
NQ and TQ in Appendix Table 8. BART outper-
forms other three models in every metric on both
NQ and TQ. So, we choose it as the reranker base-
line and apply our Graph-aS-Token method to it in
following reranking experiments.

4.5 Main Results

The Main results are presented in Table 1. Our
method can effectively boost the performance on
both reranking and reading.

Reading. As shown in the reading columns of Ta-
ble 1, our method can boost the FiD performance,
no matter whether there is reranker and whether the
reranker is with AMR or not. Without reranking,
FiD-GST-A achieves 51.11/70.39 EM on NQ/TQ
test , which are 0.45/0.89 EM higher over the base-
line FiD; With reranking, ‘BART-GST-M + FiD-
GST-M ’ achieves 53.10/72.61 EM on NQ/TQ test,
1.77/1.27 EM better than ‘BART-reranker + FiD’.
With the same reranker, FiD-GST is better than
the baseline FiD, for example, ‘BART-reranker +
FiD-GST-A’ achieves 52.38/72.05 on NQ/TQ test,
which is 1.05/0.72 higher than the 51.33/71.33 of
‘BART-reranker + FiD’.

Overall, our GST models have achieved up to
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Orig Test New Test Drop

BART-reranker 78.6/83.3
23.3/45.8

76.2/81.8
21.5/43.6

-2.6/-1.5
-1.8/-2.2

BART-GST-A 79.3/83.3
24.7/48.2

77.4/82.0
23.2/46.1

-1.9/-1.3
-1.4/-2.1

BART-GST-M 80.0/83.7
25.0/48.7

78.0/82.4
23.4/46.3

-2.0/-1.3
-1.6/-2.4

A: Robustness of rerankers. Each cell contains
Top5/Top10/MRR/MHits@10 as the metrics.

Orig Test New Test Drop

FiD-reader 50.66 46.76 -3.90

FiD-GST-A 51.11 47.84 -3.27

FiD-GST-M 50.97 47.76 -3.21
B: Robustness of readers. Exact Match as the Metric.
To avoid the influence of different reranking results,

we use the same DPR results to train and eval.

Table 3: Robustness on rerankers and readers. We con-
duct experiments on NQ. Orig Test is the original test
questions while New Test means the paraphased test
questions. Drop is the difference from the original test
to the paraphrased test, the smaller absolute number
indicates better robustness.

2.44 EM (53.10 vs 50.66) on NQ test and 3.17
(72.67 vs 69.50) on TQ test.

Reranking Shown in the reranking columns
of Table 1, BART-GST-M can achieve 80.0/83.7
scores in Top5/Top10, which improve 5.4/3.4 on
NQ-test compared to DPR and 1.4/0.4 compared to
BART-reranker. BART-GST-M achieves 79.3/83.3
scores in Top5/Top10, which outperform DPR by
4.7/3.0 on NQ-test, showing that our GST method
is effective.

We present results of the MRR and MHits@10
metrics in Table 2. Our GST method can help
positive passages rank higher in Top10. In
NQ, BART-GST-M has 7.0/14.1 advantages on
MRR/MHits@10 over DPR while 1.7/2.9 advan-
tages over BART-reranker; In TQ, BART-GST-A
has 5.5/14.0 advantages on MRR/MHits@10 over
DPR and 0.8/1.9 advantages on MRR, MHits@10
over BART-reranker.

The overall reranking results can also explain the
reason why even when the Top10 results are similar
and readers are the same, the reranked passages by
BART-GST can lead to better reading performance.
For example, in NQ test, the reading performance
of ‘BART-GST-M + FiD’ is 0.80 better than ‘BART-
reranker + FiD’.

NQ dev NQ test TQ dev TQ test

FiD-10 49.47 50.66 69.02 69.50

FiD-100 51.60 52.88 71.61 71.88

FiD-10
w/ BART-reranker 50.33 51.33 71.16 71.33

FiD-GST-A-10
w/ BART-GST-A reranker 51.03 52.80 72.63 72.67

FiD-GST-M-10
w/ BART-GST-M reranker 51.30 53.10 72.58 72.61

Table 4: Reading experiments of with and without
reranking. The first two row are trained/evaluated with
DPR data while the rest are with reranked data.

4.6 Analysis

Robustness. To evaluate the robustness of the
baseline and our models, we paraphrase the test
questions of NQ and TQ, evaluate paraphrased
test questions and the original ones with the same
model checkpoint. We use a widely-used para-
phraser, namely Parrot Paraphraser (Damodaran,
2021) to paraphrase test questions. The results are
shown in Table 3.

The performance drops in reranking and read-
ing of our GST models are lower than the
baseline model, despite that our models have
better performance. For reranking, the drop
of our BART-GST-A is -1.9/-1.3/-1.4/-2.1 for
Top5/Top10/MRR/MHits@10, which is lower than
the baseline’s -2.6/-1.5/-1.8/-2.2. For reading, the
-3.21 EM drop of FiD-GST-M is also smaller than
the -3.90 of baseline FiD. It shows that our GST
method can not only improve performance but also
improve robustness, which can prove that adding
structural information can help models avoid the
erroneous influence of sentence transformation.

Comparison with FiD-100. We also compare
the reranking+reading paradigm with the directly-
reading paradigm. For the latter, the FiD reader
is directly trained and evaluated on 100 retrieved
passages without reranking. The results are shown
in Table 4.

Without our GST method, the reranking+reading
paradigm (FiD-10 w/ BART reranker) is worse than
FiD-100 without reranking, which is 71.33 to 71.78
on the test. However, with our GST method, the
reranking+reading paradigm outperforms FiD-100.
For example, FiD-GST-M-10 w/ BART-GST-M
reranker has better performance on NQ test than
FiD-100, which is 53.10 vs 52.88, and FiD-GST-
A-10 w/ BART-GST-A reranker vs FiD-100 on TQ
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Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M
(superior AMRs) 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

BART-GST-M
(inferior AMRs) 79.5/79.3 83.5/83.1 28.4/24.7 52.9/47.8

In reranking.

Exact Match

FiD-reader 48.47/50.66

FiD-GST-A
(superior AMRs) 50.12/51.11

FiD-GST-A
(inferior AMRs) 49.95/50.83

In reading.

Table 5: Influence of superior AMR graphs which gener-
ated by a larger model, and inferior AMR graphs which
generated by a smaller model.

Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

BART-GST-M
only nodes 78.5/78.9 82.9/83.1 27.6/24.2 51.8/47.3

BART-GST-M
only edges 78.6/79.3 83.0/83.3 27.9/24.7 52.4/47.4

Table 6: Ablation to nodes and edges to our GST meth-
ods on NQ. We choose BART-GST-M because it better
performs on NQ.

test is 72.67 vs 71.78.
To our knowledge, we are the first make FiD-10

beat FiD-100.

Influence of AMR Quality. We explore how
AMR graphs quality influence the performance of
our models in this section, by using the AMRBART-
base-finetuned-AMR3.0-AMRParsing, 4 which is
a smaller version. We compare the reranking per-
formance of BART-GST with either superior or
inferior graphs on NQ and TQ. We use the each
kind of graphs to train its own reranking models.
The results are shown in Table 5.

Our models still work with inferior AMR graphs
but the performance is not good as the superior ones
in both reranking and reading. This indicates that
when the quality of AMR graphs is higher, the GST
models can potentially achieve better performance.

Ablation to Nodes/Edges We ablate nodes and
edges in our models to explore whether nodes or

4https://huggingface.co/xfbai/AMRBART-base-
finetuned-AMR3.0-AMRParsing

Question: When did the smoking ban in public places start?

Golden Answer: 1995

Act in 1993 and started implementing 

the act in 1995. The act regulated 

smoking in public areas and 

prohibited tobacco sales to people 

under the age of 16....

Smoking ban ... the consequences of 

smoking that introduced a ban on 

smoking in all closed public areas… 

took effect on 1 June 2013. At first 

smoking ban abusers were not fined ...

Baseline ranker in 

Top10 psg;

Baseline reader 

answer: 1 June 2013

Our ranker 

in Top10 psg;

Our reader answer: 

1995

Question: Who did 

the Minnesota 

Vikings lose to in the 

Super Bowl?

Golden Answers: 

"Kansas City Chiefs"

… The Vikings went on to the NFC 

Championship for the opportunity to play 

in Super Bowl LII in their own stadium, 

only to lose 38–7 to the eventual Super 

Bowl champion Philadelphia Eagles …

… he was unable to lead the team to 

victory in the Super Bowl, as the Vikings

lost 23–7 to the Kansas City Chiefs …

A: A case for reranking, where the baseline ranker does not 

rank the positive psg into Top10 while our model does.

B: A case for reading, where the negative and positive psgs are 

both ranked into Top10. The baseline reader finds the wrong 

psg to answer while our model answer correctly.

Figure 3: Two cases from our experiments for rerank-
ing and reading, respectively. We highlight important
information over questions and passages.

edges contribute more to the results. We con-
duct reranking experiments on NQ. The results
are shown in Table 6. As can be seen, nodes are
edges are both useful for the GST method, where
‘BART-GST-M (only nodes)’ and ‘BART-GST-M
(only edges)’ both outperform the baseline BART-
reranker in MRR/MHits@10 on NQ test, which are
24.2/48.7 vs 24.7/47.4 vs 23.3/45.8, respectively.
However, ‘BART-GST-M (only edges)’ are better
than ‘BART-GST-M (only nodes)’ in four metrics
on NQ, partly due to the fact that edges also contain
nodes information.

Case Study We present two cases from our in
Figure 3. In the upper one, for the negative passage,
the baseline may consider “a ban on smoking in
all closed public areas” same as “the smoking ban
in public places”, which are actually different; For
the positive passage, the baseline may not take “act
regulated smoking in public area” as “the smoking
ban in public places” while our model does.

In the lower one, the baseline reader ignores
the competition is “ for the opportunity to play
in Super Bow” rather than “in the Super Bowl” ,
and because the number of similar passages with

“Philadelphia Eagle” are more than the positive
passage’s, the baseline reader finds the incorrect
passage which leads to the incorrect answer. In
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Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

RGCN-Stacking 78.6/78.2 82.3/83.0 26.1/23.1 49.5/46.0

Table 7: Comparison between the baseline, GST and
RGCN-Stacking in reranking on NQ.

contrast, our model focuses on the only positive
passage and answers the question correctly.

4.7 Alternative Graph Methods
We have also tried several methods to integrate
AMRs into PLMs, but their performance is worse
than our Graph-aS-Token method. Here we
take two representative examples, which are Re-
lational Graph Convolution Network (RGCN)
(Schlichtkrull et al., 2018) for the reranker and
Graph-transformer (Yun et al., 2019) for FiD. All
those methods require alignments between text to-
kens and graph nodes, for which only some nodes
can be successfully aligned.

Stacking RGCN above Transformer The
model architecture consists of a transformer en-
coder and a RGCN model where RGCN is stacked
on top of the transformer. After the vanilla forward
by transformer encoder, AMR graphs abstracted
from queries and passages in advance are con-
structed with node embeddings initialized from
transformer output. Then they are fed into the
RGCN model and the final output of the [CLS]
node is used for scoring.

For the text embeddings of one question-passage
pair, its encoder hidden states

H = Encoder(Xqp)

For one node n, its initial embedding

h0 = MeanPooling(Hstart:end)

where start and end are the start and end positions
of the text span aligned with the node.

The update of node embedding for each layer l
is

hl+1
i = σ(W l

0h
l
i +

∑

r∈R

∑

j∈Nr
i

1

ci,r
W l

rh
l
i)

ci,r = ∥N r
i ∥

where R is the set of edge types, N r
i stands for

the group of nodes which connect with node i in
relation r.

so the correlation score of q and p:

sqp = ClsHead(hL[CLS])

The results are presented in Table 7, which is
clear that the RGCN-stacking method is inferior to
the GST method. Some metrics, including Top5,
Top10 and MRR, of RGCN-stacking are worse than
the baseline, meaning the RGCN method is not
feasible for integrating AMRs into PLMs though it
looks like reasonable and practical.

Graph-transformer We apply the graph-
transformer architecture to FiD model for reading.
We follow the graph-transformer architecture in
Bai et al. (2021), whose main idea is using AMR
information to modify the self-attention scores
between text tokens. However, we find stucking
challenging for PLMs because the new-initialized
graph architectures are not compatible with
architectures of PLMs, lead to non-convergence
during training. Despite that, tricks such as
incrementally training and separate tuning can lead
to convergence, results are still below the baseline
model, let alone GST.

Flattening AMR Graphs We have also tried to
directly flatten AMR graphs into text sequences,
but the result sequences are always beyond the max-
imum processing length (1024) of the transformer.
So, we have to cut off some nodes and edges to fit
in the transformer, but the results show that it does
not work well and has only a very sight improve-
ment while the computational cost is tens times
over the baseline.

5 Conclusion

In this study, we successfully incorporated Ab-
stract Meaning Representation (AMR) into Open-
Domain Question Answering (ODQA) by innova-
tively employing a Graph-aS-Token (GST) method
to assimilate AMRs with pretrained language mod-
els. The reranking and reading experiments con-
ducted on the Natural Questions and TriviaQA
datasets have demonstrated that our novel approach
can notably enhance the performance and resilience
of Pretrained Language Models (PLMs) within the
realm of ODQA.
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Top5 Top10 MRR MH@10

w/o reranker 73.7/74.6 79.5/80.3 20.2/18.0 37.9/34.6

BERT 76.5/75.7 81.5/81.4 23.7/20.9 45.5/41.5

RoBERTa 77.1/76.6 82.3/82.3 24.7/21.5 47.7/43.3

ELECTRA 77.3/77.8 82.4/82.5 25.1/22.5 47.9/43.9

BART 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8
A: On the Natural Questions dataset.

Top5 Top10 MRR MH@10

w/o reranker 78.0/78.1 81.5/81.8 12.1/12.3 25.5/25.9

BERT 82.0/82.3 84.5/84.7 16.0/16.2 35.6/35.9

RoBERTa 82.8/82.9 85.0/85.0 16.8/16.8 37.2/37.4

ELECTRA 82.4/82.6 84.8/82.6 16.3/16.4 36.2/36.4

BART 83.2/83.1 85.2/85.1 16.9/17.0 37.7/38.0
B: On the TriviaQA dataset.

Table 8: Pre-experiments of four PLMs’ reranking per-
formance on NQ and TQ. In each cell, the left is on the
dev while the right is on the test. Among four PLMs,
BART performs best.

Train Set Dev Set Test Set

Natural Questions 79168 8757 3610

TriviaQA 78785 8837 11313

Table 9: Details of each dataset.

Context>”. Additionally, we link the nodes, which
are recognized as entities such as person name and
date and have same surfaces, with the “:same” re-
lation because it helps performance. For nodes in
one AMR graph, we remove their ‘-XX’, where X
is a 0-9 number.

A.3 Hyper-parameters

We set other model-related hyper-parameters in
Table 10.

A.4 Cost Increase

We conduct an experiment of the increase of time
and GPU memory cost on our GST compared with
the baseline. For inference, while keeping other
parameters as the same, the time costs of FiD-GST-
M, FiD-GST-A are 1.29x and 1.40x, respectively,
and the GPU memory costs are 1.11x and 1.40x,
respectively, compared with FiD, as shown in Table
11.

A.5 Metrics

MRR =
1

|Q|
∑

i∈Q
((

∑

j∈Pos

1

t(j)
)

1

numPos(i)
)

Reranking Reading

Leaning Rate 3e-5 1e-4

Training Epoch 10 5

Node MaxLength 145 145

Edge MaxLength 165 165

Text Maxlength 200 200

Eval Step/Epoch 10k steps 1 epoch

Table 10: Hyper-parameters Setting

Time cost GPU Memory Cost

FiD 1.00 1.00

FiD-GST-M 1.29 1.11

FiD-GST-M 1.40 1.40

Table 11: The results of time and GPU memory cost
comparing our GST method and the baseline. The ex-
periment is inference on the NQ test set. We take the
baseline FiD model cost as 1.00.

where Q is the evaluating dataset; t(j) is the rank
of passage j; Pos is the set of positive passages.

MHits@10 =
1

|Q|
∑

i∈Q
(

∑

j∈pos,t(j)<11

1

numPos(i)
)

where Q is the evaluating dataset; t(j) is the rank
of passage j; Pos is the set of positive passages.
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