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Abstract

Knowledge base question answering (KBQA)
is a challenging task that aims to retrieve cor-
rect answers from large-scale knowledge bases.
Existing attempts primarily focus on entity rep-
resentation and final answer reasoning, which
results in limited supervision for this task.
Moreover, the relations, which empirically de-
termine the reasoning path selection, are not
fully considered in recent advancements. In
this study, we propose a novel framework, RE-
KBQA, that utilizes relations in the knowledge
base to enhance entity representation and intro-
duce additional supervision. We explore guid-
ance from relations in three aspects, including
(1) distinguishing similar entities by employ-
ing a variational graph auto-encoder to learn
relation importance; (2) exploring extra super-
vision by predicting relation distributions as
soft labels with a multi-task scheme; (3) design-
ing a relation-guided re-ranking algorithm for
post-processing. Experimental results on two
benchmark datasets demonstrate the effective-
ness and superiority of our framework, improv-
ing the F1 score by 5.8% from 40.5 to 46.3 on
CWQ and 5.7% from 62.8 to 68.5 on WebQSP,
better or on par with state-of-the-art methods.

1 Introduction

Given a question expressed in natural language,
knowledge base question answering (KBQA) aims
to find the correct answers from a large-scale
knowledge base (KB), such as Freebase (Bollacker
et al., 2008), Wikipedia (Vrandečić and Krötzsch,
2014), DBpeidia (Auer et al., 2007), etc. For ex-
ample, the question “Who is Emma Stone’s father?”
can be answered by the fact of “(Jeff Stone, per-
son.parents, Emma Stone)”. The deployment of
KBQA can significantly enhance a system’s knowl-
edge, improving performance for applications such
as dialogue systems and search engines.

†Corresponding author.

Question: What language do people from the country that contains 
Nord-Est Department speak?
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Figure 1: An example of KBQA process. The reasoning
begins with the red node and passes through similar
entities, which are defined as entities that have similar
relations as shown in the upper right box. Besides, key
reasoning relations whose tokens (xi) hold overlap be-
tween given questions (ti) are important for reasoning.

Early attempts on KBQA (Min et al., 2013;
Zhang et al., 2018; Xu et al., 2019) mostly focus on
transferring given questions into structured logic
forms, which are strictly constrained by the con-
sistent structure of parsed query and KB. To over-
come the limitation of the incompleteness of KB,
many approaches (Xiong et al., 2019; Deng et al.,
2019; Lan et al., 2021) have been developed that
aim to map questions and their related KB enti-
ties and relations into embeddings, and define the
reasoning process as a similarity retrieval problem,
which is called IR-based method. Additionally,
some studies (Gao et al., 2022; Liu et al., 2023; Ge
et al., 2022) have attempted to learn relation embed-
dings and then incorporate surrounding relations to
represent entities, which successfully reduces the
number of parameters needed for the model.

However, most of these works (Han et al., 2021)
primarily focus on final answer reasoning and the
representation of entities, while few explore the
full utilization of relations in KB. Additionally, for
answer reasoning, the supervision signal provided
is also only from entities, while we believe that the
relations also play an important role in determining
the reasoning path and the answer choosing.
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We propose a new framework, called Relation-
Enhanced KBQA (RE-KBQA), to investigate the
potential use of relations in KBQA by utilizing
an embedding-fused framework. The proposed
framework aims to study the role of relations in
KBQA in the following three aspects:

Relations for entity representation. We find
that similar entities with similar surrounding re-
lations (e.g., the three green circles in the upper
right of Figure 1) play an important role in rea-
soning. To distinguish them, we introduce QA-
VGAE, a question-answering-oriented variational
graph auto-encoder, which learns relation weights
through global structure features and represents
entities by integrating surrounding relations.

Relations for extra supervision. Multi-hop rea-
soning is often hindered by weak supervision, as
models can only receive feedback from final an-
swers (He et al., 2021). To overcome this limita-
tion, we propose a multi-task scheme by predict-
ing the relation distribution of the final answers
as additional guidance, using the same reasoning
architecture and mostly shared parameters. As il-
lustrated in Figure 1, the proposed scheme requires
the prediction of both the answer "Haitian Creole"
and its surrounding relation distribution.

Relations for post-processing. We propose a
stem-extraction re-ranking (SERR) algorithm to
modify the confidence of candidates, motivated by
the fact that relations parsed from given questions
are empirically associated with strong reasoning
paths. As depicted in the bottom of Figure 1, re-
lations that overlap with a given question will be
marked as key reasoning relations, and their con-
fidence will be increased empirically. This allows
for re-ranking and correction of the final answers.

In general, our contributions can be summarized
as follows. (1) We propose a novel method named
Relation Enhanced KBQA (RE-KBQA) by first
presenting QA-VGAE for enhanced relation em-
bedding. (2) We are the first to devise a multi-task
scheme to implicitly exploit more supervised sig-
nals. (3) We design a simple yet effective post-
processing algorithm to correct the final answers,
which can be applied to any IR-based method. (4)
Lastly, we conduct extensive experiments on two
challenging benchmarks, WebQSP and CWQ to
show the superiority of our RE-KBQA over other
competitive methods. Our code and datasets are
publicly available on Github1.

1github.com/yongcaoplus/RE-KBQA

2 Related Work

Knowledge Base Question Answering. Most
existing research on KBQA can be categorized into
two groups: a). Semantic Parsing (SP)-based meth-
ods (Abdelaziz et al., 2021; We et al., 2021; Cui
et al., 2022), which transfer questions into logical
form, e.g., SPARQL queries, by entity extraction,
KB grounding, and structured query generation.
b). Information Retrieval (IR)-based method (Ding
et al., 2019; Chen et al., 2019; Wang et al., 2021;
Feng et al., 2021; Zhang et al., 2022b), which ap-
plies retrieve-and-rank mechanism to reason and
score all candidates of the subgraph with advance-
ments in representation learning and ranking al-
gorithms. Apart from the above approaches, re-
cent studies (Xiong et al., 2019; Deng et al., 2019;
Lan et al., 2021) also propose several alterations
over the reasoning process, such as extra corpus
exploration (Xiong et al., 2019), better semantic
representation (Zhu et al., 2020; Ge et al., 2021),
dynamic representation (Han et al., 2021), and in-
termediate supervised signals mining (Qiu et al.,
2020; He et al., 2021). Aiming to tackle limited
corpus, some works are devoted to utilizing exter-
nal resources, such as using pre-trained language
models (Unik-QA) (Oguz et al., 2022), retrieving
similar documents (CBR-KBQA) (Das et al., 2021),
extra corpus (KQA-Pro) (Cao et al., 2022), etc.

Multi-task Learning for KBQA. Multitask
learning can boost the generalization capability
on a primary task by learning additional auxiliary
tasks (Liu et al., 2019) and sharing the learned
parameters among tasks (Hwang et al., 2021; Xu
et al., 2021). Many recent works have shown im-
pressive results with the help of multi-task learn-
ing in many weak supervised tasks such as visual
question answering (Liang et al., 2020; Rajani and
Mooney, 2018), sequence labeling (Rei, 2017; Yu
et al., 2021), text classification (Liu et al., 2017;
Yu et al., 2019) and semantic parsing (Hershcovich
et al., 2018). In KBQA, auxiliary information is of-
ten introduced in the form of artificial “tasks” rely-
ing on the same data as the main task (Hershcovich
et al., 2018; Ansari et al., 2019; Gu et al., 2021),
rather than independent tasks. This assists the rea-
soning process and proves to be more effective for
the main task. To the best of our knowledge, we
are the first to propose a multi-task to assist KBQA
by using mostly shared parameters among tasks,
for a balance of effectiveness and efficiency.
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Figure 2: Framework of our proposed approach RE-KBQA. Given a question expressed in natural language, we first
employ question embedding to encode semantic vectors. Then, we employ QA-VGAE enhanced representation
module to learn candidate vectors V (t)

c , aiming to identify similar entities and key reasoning paths while reasoning.
At last, a multi-task learning module is proposed to promote training procedure.

3 Problem Formulation

Knowledge Base (KB). A knowledge base usu-
ally consists of a huge amount of triples: G =
{⟨e, r, e′⟩|(e, e′) ∈ ξ, r ∈ R}, where ⟨e, r, e′⟩ de-
notes a triple with head entity e, relation r and
tail entity e′. ξ and R mean the sets of all entities
and relations, respectively. To apply the triples to
downstream task, the entities and relations should
be firstly embedded as d-dimensional vectors: V =
{⟨Ve, Vr, Ve′⟩|(Ve, Ve′) ∈ Vξ, Vr ∈ VR}.

Knowledge Base Question Answering (KBQA).
Our dataset is formed as question-answer pairs.
Let Q represents the set of given questions and
each question q is composed of separated to-
kens, where Q = {q ∈ Q|q = x1, x2, ..., xn}.
Let A (⊆ ξ) represents the correct answers of
Q. Thus, the dataset is formulated as D =
{(Q,A)|(q1, a1), (q2, a2), ..., (qm, am)}. To re-
duce the complexity of reasoning process, we ex-
tract question-related head entities eh from q and
generate an associated subgraph gsub (∈ Gsub)
within multi-hops walking from eh. Thus, the goal
of KBQA is transformed to reason the candidates c
(⊆ ξ) of the highest confidence from gsub, which
can be formalized as:

c = argmax
θ,ϕ

rϕ(fθ(q, gsub)), (1)

where fθ(·) and rϕ(·) denote the representation and
reasoning network, respectively.

4 Our Approach

As discussed in Section 1, we consider three as-
pects to further boost the performance of KBQA,
including (i) the enhancement of the representation

capability, especially for similar entities; (ii) a strat-
egy of mining more supervision signals to guide the
training; and (iii) a reasoning path correction algo-
rithm to adjust the ranking results. Below, we shall
elaborate on our network architecture (RE-KBQA)
with our solutions to the above issues.

4.1 Architecture Overview
Inspired by the neighborhood aggregation strat-
egy, we employ Neural State Machine (NSM) (He
et al., 2021) as our backbone model, where en-
tities are denoted by surrounding relations. We
assume that the topic entities and the related sub-
graph are already achieved by preprocessing; see
Section 5.2 for the details. Figure 2 shows the
main pipeline of our RE-KBQA. Specifically, given
a question q, we first employ a question embed-
ding module to encode it into semantic vector.
Here, for a fair comparison with NSM baseline,
we follow (He et al., 2021) to adopt Glove (Pen-
nington et al., 2014) to encode q into embeddings
{V j

q }nj=1 = Glove(x1, x2, ..., xn), which is then
mapped to hidden states by LSTM:

{h′, {hj}nj=1} = LSTM(V 1
q , V

2
q , ..., V

n
q ), (2)

where we set h′ as the last hidden state of LSTM
to denote question vector and {hj}nj=1 denotes the
vector of tokens. After obtaining h′ and {hj}nj=1,
then we can calculate :

q(t) = ψ(s(t−1), h′), (3)

where ψ(·) denotes multi-layer percetron function.
Then, the semantic vector s(t) at the t-th reasoning
step of question q is obtained by:

s(t) =
n∑

j=1

p(ψ(q(t), hj)) · hj , (4)
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where p(·) denotes score function, and s(0) (∈
R(|d|)) is initialized randomly.

Next, a QA-VGAE enhanced representation mod-
ule is designed to represent KB elements under the
guidance of s(t). Then, unlike previous works that
directly predict final answer via a score function,
we introduce a multi-task learning-fused reasoning
module to further predict an auxiliary signal (i.e.,
relation distribution). Note that, though we adopt
NSM framework to conduct KBQA task, we con-
centrate on the representation capability enhance-
ment by identifying similar entities, as well as the
multi-task learning via supervision signal mining.
At last, to avoid ignoring strong reasoning paths,
we further propose a stem-extraction re-ranking
algorithm to post-process the predictions of our
network. Below, we will present the details of
three of our proposed contributed modules.

4.2 QA-VGAE Enhanced Representation

Similar entities are defined as entities that are
connected mostly by the same edges, and only a
small portion of edges are different. For exam-
ple, as shown in Figure 1, the three nodes marked
by dashed circles share almost the same edges,
and only the node of “Haiti” holds the relation of
“Person.Spoken_language” that is quite important
for answering the question. Hence, distinguish-
ing similar entities and identifying key reasoning
paths are essential for embedding-fused informa-
tion retrieval-based methods. Traditional methods
like TransE (Bordes et al., 2013) can grasp local
information from independent triples within a KB,
but fail to capture the inter-relations between adja-
cent triple facts. Consequently, they tend to have
difficulties in distinguishing similar entities.

To alleviate the above problem, we introduce
Question Answering-oriented Variational Graph
Auto-Encoder (QA-VGAE) module, as is shown
in Figure 3, by assigning different weights to rea-
soning relations, where the weights are learned by
VGAE (Kipf and Welling, 2016). Note that, com-
pared with traditional methods like TransE (Bor-
des et al., 2013), TransR (Lin et al., 2015), and
ComplEx (Trouillon et al., 2016), VGAE achieves
superior performance in link prediction task. We
thus adopt VGAE in our module to learn weights.
The key insight of this module is to fully learn
global structure features by executing graph recon-
struction task and constraining the representation
as normal distribution, thus promoting the relation

Figure 3: Illustration of training QA-VGAE, including
a total of three steps. We adopt two-layers GCN as
encoder formalized as GCNσ and GCNµ.

representation to be more discriminating. Finally,
by similarity evaluation of the learned representa-
tion, we can obtain the prior probability of relation
(PPR) matrix, whose elements denote the condi-
tional probability of relations.

In detail, we first transfer the KB from ⟨e, r, e′⟩
(entity-oriented) to ⟨r, e, r′⟩ (relation-oriented). In
this way, we can then learn PPR matrix via
a link prediction task by unsupervised learning.
Specifically, given the connection degrees X (∈
R|nr|×|nr|) of a relation and the adjacency A (∈
R|nr|×|nr|) between relation nodes, where nr de-
notes the number of relations, we adopt two-layers
GCN to learn the mean σ and variance µ of the rela-
tion importance distribution, and further compound
the relation representation Z as :

Z = GCNµ(X,A)⊕GCNσ(X,A), (5)

where ⊕ is compound function. Then, PPR matrix
Pr is obtained by distribution similarity evaluation:

Pr = Softmax
(
Z · Z⊤), (6)

where Pr ∈ R|nr|×|nr|. Please refer to Ap-
pendix A.1 for loss function LP of QA-VGAE.
Next, we denote KB elements as d-dim vec-
tors, Vξ(∈R|ne|×|d|) as entity vectors and VR(∈
R|nr|×|d|) as relation vectors, where ne is the num-
ber of enities. We denote candidate vectors VC as:

VC =WC · Pr · VR, (7)

where WC ∈ R|nc|×|nr| denotes the surrounding
relation matrix of entities and nc denotes number
of candidates.
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Then, to integrate semantic vectors s(t) of given
question and the history vector, we update Vc as:

V̂ (t)
c = σ([V (t−1)

c ; s(t) ⊙Wr ⊙ Vc]), (8)

where V (t)
c (∈ VC) is candidate vector at time step

t, σ(·) is the linear layer, [; ] is the concatenation
operation, ⊙ is element-wise multiplication, and
Wr (∈ R|d|) is the matrix of learnable parameter.

4.3 Multi-task Learning-Fused Reasoning

The purpose of this module is to conduct answer
reasoning from candidate vector V̂ (t)

c . To this
end, we jointly combine the reasoning paths implic-
itly among candidates by utilizing the Transformer
(Vaswani et al., 2017), formalized as:

V (t)
c = Transformer

([
V̂ (t)
c1 ; V̂ (t)

c2 ; ...; V̂ (t)
cl

])
,

(9)
where {V̂ (t)

ci }li=1 denotes all the candidate vectors.
However, like most existing works (Deng et al.,

2019; Lange and Riedmiller, 2010), learning from
the final answers as the feedback tends to make the
model hard to train, due to the limited supervision.
How to introduce extra supervision signals into
network model is still an open question. In our
method, we introduce a new multi-task to learn the
distribution of candidates’ surrounding relations,
namely surrounding relations reasoning. The key
idea is to leverage relations around final answer as
extra supervisions to promote the performance, and
also modify reasoning paths implicitly.

Specifically, motivated by weakly-supervised
learning methods, we assume the reasoning pro-
cess starts from topic entity’s surrounding relations
S
(0)
R (initialized along with subgraph generation),

and during reasoning, we can easily obtain next
surrounding relations’ distribution by:

S
(t)
R = σ

([
(s(t) · V ⊤(t)

R ;S
(t−1)
R

])
, (10)

where S(t)
R denotes the surrounding relations of

candidates at step t and V ⊤(t)
R is the transpose of

VR at step t. Note that, introducing the multi-task
will not increase the complexity of our method
obviously, since the number of relations is far fewer
than that of entities in most cases, and the multi-
task shares most parameters with the main task.

In this way, there are two optimization goals
of KBQA task, i.e., correct answer retrieving and

Figure 4: Illustration of SERR algorithm, where stem
match mechanism is introduced between KB relations
and given questions. If key reasoning relations exist, the
rank of candidates will be increased.

surrounding relations prediction. We predict the
final answers’ possibilities by:

p(t)c = Softmax
(
V (t)
c ·W (t)

c

)
, (11)

where p(t)c is the confidence of predicted answers.
Also, the relation distribution confidence p(t)r is:

p(t)r = Softmax
(
S
(t)
R ·W (t)

r

)
, (12)

where W (t)
c and W (t)

r are learnable parameters.
Then, the answer retriving loss Lc and the rela-

tion prediction loss Lr can be calculated by:

Lc =KL(p(t)c , p(∗)c )

Lr =KL(p(t)r , p(∗)r ),
(13)

where pc(∗) and pr(∗) denote the ground truths, KL
is the KL divergence. Thus, the final total loss is:

L = λLc + (1− λ)Lr, (14)

where λ denotes a hyper-parameter.

4.4 Stem-Extraction Re-Ranking

A limitation of embedding-fused KBQA methods is
that the reasoning path is uncontrollable as the com-
plete reasoning path is a blackbox in information
retrieval-based methods. For example, in the ques-
tion “What is the Milwaukee Brewers mascot?",
the strongly related path “education.mascot" may
be missed due to limited representation capability.
However, this weakness can be easily addressed
by semantic parsing-based methods by analyzing
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the semantic similarity of key elements of ques-
tions and relations and constraining the reasoning
path. Inspired by this observation, we propose a
stem-extraction re-ranking (SERR) algorithm for
post-processing. The key idea is to stem-match and
re-rank the candidates after obtaining candidates
and their confidence from our network.

In detail, we design three operators to execute
the re-ranking as shown in Algorithm 1: stemmer
F(·), modifier M(·), and re-ranker R(·). These
operators are used to extract stems from relations
or given questions, modify candidates’ confidence,
and then re-rank the candidates. As shown in Fig-
ure 4, given question and candidate predictions, we
first use F(·) to process all the relations of free-
base relations and questions. Then, we generate a
relation candidates pool by matching the stem pool
of the question with the relation stems. This allows
us to compare the subgraph of the given question
with pseudo-facts produced by given topic entities
and candidates, respectively. Finally, according to
the comparison, M(·) and R(·) are employed to
conduct the re-ranking process.

It is worth noting that, in our work, we directly
use stem extraction method rather than similar-
ity calculation to re-rank. The insight behind this
choice is that, it is unnecessary to consider seman-
tic features again, since we have already injected
the question semantic information into our encoded
semantic vector s(t), which means that the model
is already equipped with semantic clustering capa-
bility. And obviously, stem extraction costs fewer
computation resources, as proved in Appendix A.2.
Also, our SERR can be migrated to other models
as a plug-in and independent module.

5 Experiments and Results

5.1 Datasets

We conduct experiments on two popular bench-
mark datasets, including WebQuestionSP (Yih
et al., 2015) and ComplexWebQuestions (Talmor
and Berant, 2018). Specifically, WebQuestionSP
(abbr. WebQSP) is composed of simple questions
that can be answered within two hops reasoning,
which is constructed based on Freebase (Bollacker
et al., 2008). In contrast, ComplexWebQuestions
(abbr. CWQ) is larger and more complicated,
where the answers require multi-hop reasoning over
several KB facts. The detailed statistics of the two
datasets are summarized in Table 1.

Algorithm 1 Stem Extraction Re-Ranking
Input: natural language question Q, candidates C,
confidence pC , relation set R.
Output: updated candidates C′ and confidence p′C .

1: <* Step 1: Build Relation Trie Ps *>
2: ∅ → Ps

3: for all r in R do
4: index i, stem s = F(r)
5: Ps.update(⟨i, s⟩)
6: end for
7: for all {q, c, pc} in {Q, C, pC} do
8: <* Step 2: Extract Stem of Q*>
9: tokenize q→ Pq

10: F(Pq) → Pe
stem

11: <* Step 3: Re-Ranking c and pc*>
12: rc = match(Pe

stem,Ps)
13: generate P = ⟨e,Ps(rc), e

′⟩
14: generate P ′ = ⟨e,Ps(rc)⟩ ∪ ⟨e′,Ps(rc)⟩
15: for all p in P ∪ P ′ do
16: if p in gsub and p in P then
17: M(pc, h1)
18: end if
19: if p in gsub and p in P ′ then
20: M(pc, h2)
21: end if
22: end for
23: c′ = R(c) and p′c = R(pc)
24: end for

Dataset Train Valid Test Entities Relations

WebQSP 2,848 250 1,639 259,862 6,105
CWQ 27,639 3,519 3,531 598,564 6,649

Table 1: Statistics of WebQSP and CWQ datasets. Note
that, Entities and Relations denote all the entities and
relations covered in the subgraph respectively.

5.2 Experimental Setting

Basic setting. To make a fair comparison with
other methods, we follow existing works (Sun et al.,
2019, 2018; He et al., 2021) to process datasets, in-
cluding candidates generation by PageRank-Nibble
algorithm and subgraph construction within three-
hops by retrieving from topic entities. We set the
learning rate as 8e−4 and decay it linearly through-
out iterations on both datasets. We set the number
of training epoch on WebQSP and CWQ as 200
and 100, respectively. For better reproducibility,
we give all the parameter settings in Appendix A.3.

Baselines. We compare our method with multiple
representative methods, including semantic pars-

2124



Models
WebQSP CWQ

Hits@1 F1 Hits@1 F1

SP-Based Method
SPARQA* (Sun et al., 2020) - - 31.6 -
QGG* (Lan and Jiang, 2020) - 74.0 44.1 40.4
GNN-KBQA* (Hou et al., 2022) 68.5 68.9 - -

IR-Based Method
KV-Mem† (Miller et al., 2016) 46.6 34.5 18.4 15.7
EmbKGQA† (Saxena et al. 2020) 66.6 - 32.0 -
GraftNet† (Sun et al., 2018) 66.4 60.4 36.8 32.7
PullNet* (Sun et al. 2019) 68.1 - 45.9 -
ReTraCk∗ (Chen et al., 2021) 71.6 71.0 - -
NSM† (He et al., 2021) 68.5 62.8 46.3 42.4
BiNSM* (He et al., 2021) 74.3 67.4 48.8 44.0
SR-KBQA* (Zhang et al., 2022a) 69.5 64.1 50.2 47.1
RNG-KBQA* (Ye et al., 2022) - 75.6 - -

Ours
RE-KBQA

b
68.7 62.8 46.8 40.5

RE-KBQA 74.6 68.5 50.3 46.3

Table 2: Performance comparison over state-of-the-art
IR-based approaches on WebQSP and CWQ datasets,
where bold fonts denote the best scores, * denotes scores
from original paper and † are from Zhang et al. (2022a).

ing (SP)-based methods and information retrieval
(IR)-based methods. SPARQA (Sun et al., 2020)
and QGG (Lan and Jiang, 2020) belong to the for-
mer category, which focuses on generating optimal
query structures. Besides, KV-Mem (Miller et al.,
2016), EmbedKGQA (Saxena et al., 2020), Graft-
Net (Sun et al., 2018), PullNet (Sun et al., 2019),
ReTraCk (Chen et al., 2021) and BiNSM (He et al.,
2021) are all IR-based methods, which are also the
focus of our comparison.

Evaluation metrics. To fully evaluate KBQA
performance, we should compare both the retrieved
and ranked candidates with correct answers. To
this end, we employ the commonly-used F1 score
and Hit@1. F1 score measures whether the re-
trieved candidates are correct, while Hit@1 eval-
uates whether the ranked candidate of the highest
confidence is in answer sets.

5.3 Comparison with Others
We first compare our RE-KBQA against the afore-
mentioned baselines on two datasets and the re-
sults are reported in Table 2. Note that, RE-
KBQAb indicates our backbone network without
three modules, i.e., QA-VGAE, multi-task learn-
ing and SERR. Clearly, even using our backbone
network, it already outperforms most baselines on
two datasets, which is benefited from the seman-
tic guidance of given questions and the reasoning
mechanisms. Further, as shown in the bottom row,
our full pipeline achieves the highest values on both

Different cases
WebQSP CWQ

Hits@1 F1 Hits@1 F1

RE-KBQAb 68.7 62.8 46.8 40.5

with QA-VGAE
73.4 67.7 48.2 45.0
4.7 ↑ 4.9 ↑ 1.4 ↑ 4.5 ↑

with AxLr
72.4 68.4 47.7 42.5
3.7 ↑ 5.6 ↑ 0.9 ↑ 2.0 ↑

with SERR
72.0 65.5 47.3 41.5
3.3 ↑ 2.7 ↑ 0.5 ↑ 1.0 ↑

RE-KBQA
74.6 68.5 50.3 46.3
5.9 ↑ 5.7 ↑ 3.5 ↑ 5.8 ↑

Table 3: Comparing our full pipeline (bottom row) with
various cases in the ablation study. The cells with differ-
ent background colors reveal the improvement over our
backbone network RE-KBQAb.

datasets over both evaluation metrics.
Particularly, compared with the results produced

by RE-KBQAb, our full method improves more on
CWQ dataset, which has increased by 3.5 and 5.8
in terms of Hit@1 and F1, showing that our contri-
butions can indeed boost the multi-hop reasoning
process. Besides, RE-KBQA also obtains good
results on simple questions (i.e., WebQSP dataset),
especially a 5.7 increase in F1 score, which reveals
that the model can recall more effective candidates.

As shown in Table 2, we can observe that the
SP-based methods (i.e., SPARQA and QGG) show
a good performance in WebQSP, but perform worse
in complicated questions, which reveals that SP-
based methods are still weak in multi-hop reason-
ing. Similarly, traditional embedding methods, i.e.,
KV-Mem, EmbedKGQA, and GraftNet, also per-
form better in simple questions than in complex
ones. Though PullNet and BiNSM show good
multi-hop reasoning capacity, the extra corpora
analysis and bi-directional reasoning mechanism in-
evitably increase the complexity of these networks.

Apart from above methods, some attempts are
conducted on utilizing additional resources for task
enhancement recently. As shown in Table 2 ref-
erence, CBR-KBQA relies on expensive large-
scale extra human annotations and Roberta pre-
trained model (PLM), Unik-QA tries to retrieve
one-hundred extra context passages for relations
in KB and T5-base (PLM), and KQA-Pro uses a
large-scale dataset for pre-training with the help of
explicit reasoning path annotation. While promis-
ing performance has been achieved through these
methods, expensive human annotation costs and
model efficiency also need to be concerned.
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5.4 Network Component Analysis

To evaluate the effectiveness of each major compo-
nent in our method, we conducted a comprehensive
ablation study. In detail, similar to Section 5.3,
we remove all three components and denote the
backbone network as RE-KBQAb. Then, we add
QA-VGAE (Section 4.2), multi-task learning (Sec-
tion 4.3), and SERR (Section 4.4) back on RE-
KBQAb, respectively. In this way, we constructed
totally four network models and re-trained each
model separately using the same settings of our
RE-KBQA model. Table 3 shows the results. By
comparing different cases with the bottom-most
row (our full pipeline), we can see that each com-
ponent contributes to improving the performance
on both datasets. More ablation experiments can
be found in Appendix. Below, we shall discuss the
effect of each module separately.

Effect of QA-VGAE. From the results of Ta-
ble 3, we can observe that the improvements of
using QA-VGAE are more remarkable than us-
ing the other two modules, demonstrating that the
QA-VGAE is more helpful to boost the reason-
ing process for both simple and complex questions.
Besides quantitative comparison, we also tried to
reveal its effect in a visual manner. Here, we adopt
T-SNE to visualize the relation vectors. Figure
5 shows a typical embedding distribution before
and after QA-VGAE training. For a clear visu-
alization, we randomly select some relations re-
lated to a case “What is the capital of Austria?”.
The orange nodes represent relations close to “lo-
cation”, such as “location.country.capital”, “lo-
cation.country.first_level_divisions”, etc., and the
blue nodes denote the relations that are not cov-
ered by the question subgraph, which we call far
relations. Obviously, after using QA-VGAE, the
related relations (orange nodes in (b)) tend to get
closer and the other nodes get farther.

Effect of multi-task learning. As shown in
Table 3, the multi-learning module shows better
performance in simple questions (see WebQSP
dataset), since the relation distribution is denser
than candidates distribution, thus causing the pre-
diction to be more complicated along with the in-
crease of reasoning steps. To fully explore the
effect of this module, we study different loss fu-
sion weights and the results are shown in Figure
6, where a larger λ (range from 0.1 to 1.0, and we
discard the setting of 0.0 for its bad performance)

Figure 5: Relation vector visualization in the case of
“What is the capital of Austria?” via T-SNE. Orange
nodes indicate relations close to “location” and blue
nodes indicate far relations.

Figure 6: Analysis of using different loss fusion weights
among two benchmark test sets in multi-task learning.

denotes a more weighted loss of main task. Clearly,
only designing the primary task or auxiliary task
is not optimal for KBQA, and the best setting of λ
is 0.1 and 0.5 for the two datasets. An interesting
observation is that the best Hit@1 is obtained with
lower lambda while the best F1 score is obtained
with higher lambda in each dataset. We claim that
it is caused by the different goals of Hit@1 and
F1 metrics, that is, Hit@1 shows whether the top
one candidate is found while F1 score evaluates
whether most candidates are found.

Effect of SERR. This module is lightweight
(see Appendix A.2 for inference time) yet effec-
tive, especially for simple questions; see Table
3. Intuitively, the stem extraction for key paths
is quite effective for questions that rely on direct-
connected facts. In contrast, stem extraction for
complex questions relies more on the startpoint
and endpoint. Figure 7(a) further shows an exam-
ple result of SERR module, which proves that it
can effectively identify close connected facts of a
given question and re-rank the candidates.

5.5 Case Study

At last, we show a case result produced by our RE-
KBQA; see Figure 7(b). Given the question “What
are the movies that had Tupac in them and which
were filmed in New York City?”, our method first
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(a) Case analysis for SERR with the question of “What
Chamorro Time Zone countries have territories in Oceania?”.
To be clear, we just show top three representative paths here.

(b) Case analysis for RE-KBQA with proposed modules.

Figure 7: Case analysis of multi-hop reasoning process.

embedded the question into vectors and retrieve re-
lated subgraphs. Then, by utilizing the promotion
of our proposed QA-VGAE and multi-task learn-
ing, we can use the trained model and obtain the
candidates of “Murder Was the Case”, “Nothing but
Trouble”, etc, and thanks to the SERR algorithm,
our reasoning process can have a chance to re-rank
the candidates, thus boosting its performance. Fi-
nally, we output Juice and Above the Rim as the
correct answers. For similarity entity identification,
SERR in other methods as a plug-in and more case
results, please refer to Appendix A.2 and A.5.

6 Conclusion

In this paper, we proposed a novel framework,
namely RE-KBQA, with three novel modules for
knowledge base question answering, which are QA-
VGAE to explore the relation promotion for entity
representation, multi-task learning to exploit rela-
tions for more supervisions, and SERR to post-
process relations to re-rank candidates. Exten-
sive experiments validate the superior performance

of our method compared with state-of-the-art IR-
based approaches.

7 Limitations

While good performance has been achieved, there
are still limitations in our work. First, though QA-
VGAE extracts enhanced features and are fast to
train, it is an independent module from the main
framework. Second, as a post-processing step, the
performance of SERR module on simple question
is better than that of complex questions.

In the future, we would like to explore the pos-
sibility of fusing relation constraints into the rep-
resentation module directly and inject strong facts
identification mechanism as guidance signal of
multi-hop reasoning process, aiming to integrate
QA-VGAE and SERR into the main framework.
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A Appendix

A.1 QA-VGAE Training

In this section, we introduce the details of the QA-
VGAE training procedure and demonstrate its ef-
fectiveness.

Training Goal. We adopt encoder-decoder mod-
els to conduct relation reconstruction tasks. Given
the prepared adjacent matrix A, and feature matrix
X , we use a two-layer GCN as a distribution learn-
ing model to estimate its mean and variance. The
training loss function is formalized as:

LP = Eq(Z|X,A)[log p(A |Z)]−KL(q(X,A), p(Z))
(15)

where Z is calculated by Equation 5, KL is the
Kullback-Leibler divergence, q(·) and p(·) denotes
the encoder and decoder respectively, please refer
to Kipf and Welling (2016) for more details.

Settings. Specifically, A is defined as the matrix
of neighborhood relations between nodes, where
we set A(i, j) as 1 if there is a connection between
relation ri and rj , and 0 for no connection. X is the
feature matrix defined as the connectivity, which is
accumulated as the number of edges between two
nodes, aiming to show the importance of a relation.
We set an empirical thresh of each element in the
feature matrix to avoid extremely large values to
hurt the model’s training, such as the degrees of
“Common.type_of ” is quite huge, defined as:

X[i, j] =

{
τ , c ≥ τ,

c, c < τ.
(16)

where c is connectivity, τ is an emprical hyper-
parameter, and we set τ as 2000 in our work.

A.2 SERR Algorithm

Complexity Analysis. Definitely, applying se-
mantic similarity between relations and given ques-
tions is a more straightforward method to identify
strong relations. However, the process of such a
method is more complicated and time-consuming.
To prove the efficiency of our method, we con-
duct a comparison experiment to reflect the com-
plexity of the two methods. As is shown in Ta-
ble 4, the top two rows denote semantic similarity

method, and the last row denotes our method. Ob-
viously, our method is more lightweight without
extra pre-trained models and the dependence on
GPU resources. For comparison, we adopt Bert-
base-uncased model to conduct the semantic sim-
ilarity process in this experiment, which can be
downloaded in https://huggingface.co/
bert-base-uncased.

Module
WebQSP CWQ

Params Time GPU Params Time GPU

Cosine Distance 420.10 28.8
√

420.10 53.5
√

Euclidean Distance 420.10 30.5
√

420.10 55.5
√

Stem Extraction - 4.9 × - 18.3 ×

Table 4: Comparing SERR module with semantic sim-
ilarity method, i.e., cosine distance and euclidean dis-
tance in terms of model parameters and computing re-
sources. Time row denotes total handling time (minutes).
Params row denotes model size (MB)

Performance Analysis. Besides, to demonstrate
it can be plug-in and infer cases quickly, we fur-
ther validate its accuracy and inference time, as
is shown in Table 5, Note that, since SERR relies
on traditional stem extraction rather than semantic
understanding to identify the key paths, there is no
training period for SERR, and it can be applied to
any information-retrieval(IR)-based methods.

Finally, to demonstrate the plug-in attributes of
the SERR module, we integrate this module into
BiNSM network (He et al., 2021) and the results are
shown in Table 6. The results show that SERR can
indeed increase the Hit@1/F1 score from 74.3/67.4
to 74.8/68.0 in the WebQSP dataset, and from
48.8/44.0 to 49.5/45.3 in the CWQ dataset.

Factor Webqsp CWQ

Accuracy (%) 63.2 75.5
Infer Time (s) 0.18 0.32

Table 5: Performance of SERR algorithm in terms of
accuracy score and inference time in two benchmark
datasets. The accuracy score is calculated among re-
called cases where close facts lie in its subgraph.

A.3 Hyper-parameter Setting.

In order to help reproduce RE-KBQA and its rea-
soning performance, as shown in Table 7, we list
the hyper-parameters of the best results on two
benchmark datasets. For the WebQSP dataset, the
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Different cases
WebQSP CWQ

Hits@1 F1 Hits@1 F1
BiNSM 74.3 67.4 48.8 44.0

with SERR
74.8 68.0 49.5 45.3
0.5 ↑ 0.6 ↑ 0.7 ↑ 1.3 ↑

Table 6: Integrating SERR module into BiNSM net-
work to demonstrate it can be a plug-in and independent
module for any IR-based methods. The cells with dif-
ferent background colors reveal the improvement over
our SERR module.

best results are obtained by using the initial learn-
ing rate of 0.0008, training batch size of 40, dropout
rate of 0.30, reasoning step of 3, and max epoch
size of 100. For the CWQ dataset, the best results
are obtained by using the initial learning rate of
0.0008, training batch size of 100, dropout rate of
0.30, reasoning step of 3, and max epoch size of
200. For more experiment details, please refer to
our code which will be published upon the publica-
tion of this work.

Parameter WebQSP CWQ

Learning rate 8e−4 8e−4

Batch size 40 100
Eps 0.95 0.95
Dropout 0.30 0.30
Num_step 3 3
Entity_dim 50 50
Word_dim 300 300
Num_epoch 200 100
Relations 6105 6649
Num_candidates 2000 2000

Table 7: The hyper-parameters of the best results on
WebQSP and CWQ dataset for the KBQA task.

A.4 More Ablation Study

Reasoning Network. One minor modification of
our work is that we adopt Transformer Encoder
as a reasoning network, of its self-attention mech-
anism and superior capability of encoding infor-
mation. As is shown in Table 8, compared with
the backbone model (Linear layer), LSTM can ac-
quire slight performance but with obviously longer
training time, and Transformer Encoder can obtain
promotion for KBQA task with tolerable extra train-
ing time. Therefore, different reasoning layers also
affect the performance, and adopting Transformer
Encoder can benefit a lot with three modules.

(a) Learning rate (×e−4) ablation study of WebQSP dataset.

(b) Performance comparison over different reasoning steps of
WebQSP dataset.

Figure 8: More ablation analysis of reasoning process
produced by RE-KBQA.

Training Settings. From Figure 8(a) and 8(b),
we further study that 5e−4 and 3 is the best hyper-
parameter setting for the learning rate and reason-
ing step. It is worth noting that, for embedding-
fused methods, the more reasoning steps are not
the determinant for network performance. We con-
duct our experiments on 2* V100 GPUs.

Models
WebQSP CWQ

Hits@1 F1 Train Hits@1 F1 Train

RE-KBQAb 68.7 62.8 4.3 46.8 40.5 21.1

LSTM 70.9 66.6 6.5 47.6 41.5 27.0
2.2 ↑ 3.8 ↑ 2.2 ↑ 0.8 ↑ 1.0 ↑ 5.9 ↑

Transformer 71.0 66.1 4.5 47.1 42.7 21.5
2.3 ↑ 3.3 ↑ 0.2 ↑ 0.3 ↑ 1.2 ↑ 0.4 ↑

Table 8: Hit@1, F1 score and training time comparison
of backbone model with different reasoning networks.
Train row denotes training time in hours. The cells with
different background colors reveal the extra training
time over our backbone network RE-KBQAb.

A.5 More Case Analysis

In this section, we deliver more case analysis on
simple questions, similarity entity identification,
and the intuitive reasoning process of our method.
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Figure 9: An example of one-hop reasoning process
produced by our method.

Simple questions. As shown in Figure 9, we
show a case of one-hop reasoning on the WebQSP
dataset, which proved that RE-KBQA performs
well in simple question answering, as the main net-
work can recall correct candidates and the SERR
module can effectively re-rank the candidates.

Similarity entity identification. To demonstrate
our method can indeed distinguish similar entities,
we choose a case that needs to reason across similar
entities as is shown in Figure10(a). While most of
the surrounding edges are the same among candi-
dates of the first step, our method can still select
the correct node as the final answer.

RE-KBQA reasoning process. Figure 10(b)
shows a three-hop reasoning case of our method, to
intuitively demonstrate that our method can effec-
tively conduct a multi-hop reasoning process. Note
that, the reasoning process of our method can be
illustrated as the status transfer of the relation V (t)

r

and candidate vectors V (t)
c from one distribution

into another, which is not strictly consistent along
the reasoning path, thus in some degree solve the
problem of knowledge base incompleteness.
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(a) Similar Entity Identification. (b) Reasoning process of RE-KBQA

Figure 10: Cases Analysis of similar entity and thorough process of RE-KBQA compared with backbone network.
Specifically, (a) is to demonstrate that our model can reason correct answers across similar entities that benefited
from QA-VGAE in case “What is the capital of Austria?”. (b) aims to show the full pipeline of our proposed
method in case “Which man is the leader of the country that uses Libya, Libya, Libya as its national anthem?”

.
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