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Abstract

We study the problem of cross-lingual transfer
learning for event detection (ED) where mod-
els trained on a source language are expected
to perform well on data for a new target lan-
guage. Among a few recent works for this
problem, the main approaches involve repre-
sentation matching (e.g., adversarial training)
that aims to eliminate language-specific fea-
tures from the representations to achieve the
language-invariant representations. However,
due to the mix of language-specific features
with event-discriminative context, representa-
tion matching methods might also remove im-
portant features for event prediction, thus hin-
dering the performance for ED. To address
this issue, we introduce a novel approach for
cross-lingual ED where representations are aug-
mented with additional context (i.e., not elim-
inating) to bridge the gap between languages
while enriching the contextual information to
facilitate ED. At the core of our method in-
volves a retrieval model that retrieves relevant
sentences in the target language for an input
sentence to compute augmentation representa-
tions. Experiments on three languages demon-
strate the state-of-the-art performance of our
model for cross-lingual ED.

1 Introduction

As one of the core tasks in Information Extrac-
tion (IE), the goal of Event Detection (ED) is to
identify and classify the word(s) that most clearly
evoke events in text (called event triggers). For
instance, in the sentence “He was fired from the
corporation yesterday.”, an ED system needs to pre-
dict “fired” as an event trigger of the type Attack.
Due to its applications, ED has been well studied
over the last decade, featuring deep learning as the
most recent approach with state-of-the-art perfor-
mance (Nguyen and Grishman, 2015; Chen et al.,
2015; Nguyen et al., 2016; Liu et al., 2017; Lu and
Nguyen, 2018; Lin et al., 2020).

However, despite intensive studies, most prior
work has focused on monolingual learning settings
for ED where models are trained and evaluated on
labeled data of the same languages (Nguyen and
Grishman, 2018; Wadden et al., 2019; Lai et al.,
2020; Yang et al., 2019; Ngo et al., 2020; Liu et al.,
2020; Nguyen et al., 2021a). As such, to extend cur-
rent ED models to another language, monolingual
learning will require new annotated data to train
the models, which can be very expensive to obtain
for different languages. To this end, there has been
a growing interest in cross-lingual transfer learning
for ED where models trained on a source language
are directly applied to data of a new target language
(M’hamdi et al., 2019). In this way, labeled data
from high-resource languages (e.g., English) can
be leveraged to develop effective ED models for
other languages (e.g., low-resource ones). In this
work, we focus on zero-shot cross-lingual transfer
learning for ED to avoid the need for labeled data in
the target languages, thus enabling fast adaptation
of ED models to multiple languages.

A key strategy for cross-lingual transfer learning
is to align input text representations for the source
and target languages to facilitate cross-lingual ex-
traction of events. As such, prior work on cross-
lingual ED has explored multilingual word embed-
dings (e.g., MUSE) (Joulin et al., 2018; Liu et al.,
2019) or recent multilingual pre-trained language
models (e.g., mBERT) (M’hamdi et al., 2019)
to represent source- and target-language texts in
the same space. Recently, state-of-the-art cross-
lingual ED methods have leveraged unlabeled data
in the target language with representation match-
ing frameworks to further align text representations
for the source and target languages (Nguyen et al.,
2021b). Given two sentences in the source and
target languages, these methods aim to encode the
two sentences to obtain representation vectors for
language-universal objects, e.g., sentences, event
types, universal dependency relations or parts of
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speech (Nguyen et al., 2021b). Afterward, the rep-
resentations of the same language-universal objects
(computed with the source or language data) are
regulated to be similar to each other to improve the
alignment between the source and target languages
for cross-lingual ED (e.g., with adversarial training
to fool the language discriminators).

As such, to achieve representation similarity be-
tween languages, previous representation match-
ing methods for ED will need to filter informa-
tion/features that are specific to each language in
the representations (Nguyen et al., 2021b). How-
ever, as the representations for each language
are computed from input sentences, the language-
specific information might involve/mix with impor-
tant contextual structures, which are necessary to
reveal event types in the representations. Conse-
quently, removing language-specific information
might also eliminate important discriminative con-
text features, thus limiting the performance for ED
models. To address this issue, our work explores
a novel approach for alignment of language repre-
sentations for cross-lingual ED that avoids direct
similarity regularization and removal of important
context information from the representation vec-
tors. Instead, our approach seeks to add relevant
context information into original input represen-
tations for the source and target language texts to
make them closer for effective cross-lingual ED. In
particular, starting with the representation vectors
S and T to perform ED in the source and target
languages (respectively), we aim to induce addi-
tional context representations A(S) and A(T ) that
will be added into S and T (i.e., leading to the aug-
mented representations S +A(S) and T +A(T ))
to achieve greater similarity between representa-
tions for the source and target languages. One the
one hand, the additional representations A(S) and
A(T ) will be obtained over sentences in the tar-
get language to bias the prediction representations
toward the target space and enhance representa-
tion alignment for cross-lingual ED. On the other
hand, we will leverage external sentences with rele-
vant/related contexts to the original representations
S and T to compute the augmented representations
A(S) and A(T ). As such, with enriched context
information, we expect that the augmented repre-
sentations S +A(S) and T +A(T ) will facilitate
the prediction of event types to boost performance
for cross-lingual ED. Note that this representation
augmentation with relevant context is not possible

in previous cross-lingual transfer learning methods
for ED, thus highlighting the advantage of our pro-
posed approach for cross-lingual ED in this work.

To implement the representation augmentation
idea for cross-lingual ED, we introduce a “retrieve-
then-classify” framework with two major steps. In
the first step of retrieval, given an input sentence,
our model first retrieves relevant/related sentences
from an unlabeled dataset (e.g., focusing on sen-
tences with similar event types). Next, the retrieved
sentences will be encoded and their representations
will be injected into the representation for the input
sentence to perform ED. In our method, the unla-
beled dataset will be taken from the target language
(for input sentences from both the source and target
languages) to shift the augmented representations
to the target language space, thus implicitly bridg-
ing the gap between representations for different
languages for ED. In addition, to better customize
the context retrieval for our cross-lingual ED task,
the retrieval model will be jointly trained with the
ED model in an end-to-end fashion to encourage
their interactions/feedback for better overall per-
formance. Our framework also introduces a novel
regularization mechanism to promote the shared
awareness of relevant context sentences for an in-
put sentence between retrieval and ED models to
further improve the induced representations for
cross-lingual ED. Finally, we conduct extensive
experiments on the multilingual ACE 2005 dataset
for ED (with three languages: English, Chinese,
and Arabic), demonstrating the state-of-the-art per-
formance of the proposed method over different
language pairs for cross-lingual transfer learning
of ED. To our knowledge, this is the first work on
retrieval-based models for cross-lingual ED.

2 Model

We follow prior work (M’hamdi et al., 2019) to for-
malize the cross-lingual transfer learning (CLTL)
task for ED as a sequence labeling problem. Given
an input sentence W = w1, w2, . . . , wn with n
words, we need to assign a label yi for each word
wi ∈ W using the BIO annotation schema to cap-
ture event triggers and their types in W . In CLTL,
the input sentence W belongs to the source lan-
guage in the training time while sentences in the
new target language are leveraged for evaluation
in test time. Similar to recent methods on CLTL
for ED (Nguyen et al., 2021b), our model assumes
an unlabeled dataset U = {U1, U2, . . . , Um} that

2158



contains m sentences in the target language (Ut is
the t-th sentence in U ).

Given the input sentence W , the first step in
our model involves retrieving a set of relevant sen-
tences R in the unlabeled dataset U (i.e., R ⊂ U )
to provide augmented context information for W
for cross-lingual ED. Note that the unlabeled set
U will be used to retrieve sentences for input texts
in both training and testing phases. The represen-
tations for the retrieved sentences in R will later
be integrated into the representation vectors for the
words in W to perform sequence labeling for ED.
The benefit of this representation augmentation ap-
proach is twofold. First, as the representations
for the retrieved sentences R are computed over
the target language sentences, during the training
time with the source-language input sentence W ,
the representation augmentation will shift the rep-
resentations for the words wi ∈ W closer to the
target language space. This helps to bridge the
gap between the source- and target-language rep-
resentation spaces that enables the training of ED
models over source-language data to better general-
ize to data in the target language (i.e., cross-lingual
generalization). Second, during the test time with
the target language, incorporating context informa-
tion from the retrieved relevant sentences R will
enrich/strengthen the representations for the words
in the original input sentence W , thus facilitating
the predictions of labels to boost performance for
cross-lingual ED. Our following sections will de-
scribe the retrieval and ED models in our method.

2.1 Relevant Context Retrieval

To retrieve relevant sentences for W in U for ED,
our intuition is to identify sentences in U that ex-
press the same event types using similar context
patterns as in W . We expect that such relevant
sentences can strengthen the necessary context to
predict event triggers in W , and improve the target-
language orientation of the representations to boost
cross-lingual performance. To this end, our re-
trieval model first aims to compute a representation
vector for W and each sentence Ut ∈ U to capture
their event contexts. For W , we append the special
token [CLS] to the beginning and send it into a
multilingual pre-trained language model to learn
representations for each token. In particular, we
leverage miniLM (Wang et al., 2020), a multilin-
gual language model distilled from the pre-trained
model XLM-RoBERTa (large version) (Conneau

et al., 2020), to obtain representation vectors for
the words in W in our retrieval component. Com-
pared to XLM-RoBERTa with 24 transformer lay-
ers and 1024 hidden dimensions, the multilingual
miniLM version only includes 6 transformer lay-
ers with 384 hidden dimensions that can make our
retrieval component more efficient for represen-
tation computation. As such, the representation
vector for [CLS] in the last layer of miniLM will
be used as the representation vector W for W . Sim-
ilarly, we also compute the representation vector
U t for each sentence Ut in the unlabeled set U with
miniLM. Here, we employ two separate versions of
the pre-trained miniLM model to encode the input
sentence W and the unlabeled sentences U in the
target language (called miniLMW and miniLMU

respectively), thus enabling the flexibility to cap-
ture context information for each type of data, i.e.,
W = miniLMW (W ) and U t = miniLMU (Ut).

Given the representation vectors W and U t,
we compute a similarity score between W and
each unlabeled sentence Ut ∈ U using the cosine
similarity: sim(W,U t) = W · U t/||W ||||U t||.
Afterward, we select the top K sentences in U
that have the highest similarities sim with W to
serve as the retrieved set R of relevant sentences:
R = {R1, R2, . . . , RK} (i.e., Rk is the k-th sen-
tence in R ⊂ U and K is a hyper-parameter).

Warm-up Training: The computed representation
vectors W and U t so far are generic and not cus-
tomized for our goals of same event types and sim-
ilar context. To this end, we propose to fine-tune
the language models miniLMW and miniLMU to
adapt their encoding mechanisms to the retrieval
problem for ED using contrastive learning (Khosla
et al., 2020). Given a sentence W in the train-
ing dataset L of the source language, let TW be
the set of event types that are presented in W .
We focus on the sentences W with at least one
event in this contrastive learning process (e.g.,
|TW | > 0). As such, to obtain a positive exam-
ple, we identify another sentence P ∈ L that in-
volves at least one event type in TW (i.e., contain-
ing the same event types). For negative examples,
we leverage a set of sentences N(W ) in L that
do not express any event type in TW . In the im-
plementation, we compute N(W ) for each sen-
tence using the other sentences in the same mini-
batch. As such, our contrastive loss to fine-tune the
miniLM models for event retrieval is formed via:
Lconst = − log exp(sim(W,P ))∑

N∈N(W ) exp(sim(W,N))
where
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W = miniLMW (W ), P = miniLMU (P ), and
N = miniLMU (N). Note that this contrastive
training process is only used as a warm-up step to
prepare our retrieval model event types and context
in our task; we will later jointly train the retrieval
model with the ED model to leverage the training
signals for ED to improve the retrieval model.

2.2 Event Detection Model

To solve the cross-lingual ED problem for the in-
put sentence W , our model aims to perform se-
quence labeling over W conditioning on the re-
trieved relevant sentence R ⊂ U . For conve-
nience, let Rk be the representation vector for
Rk ∈ R induced from miniLMU . The similar-
ity score between W and Rk is thus sim(W,Rk).
Also, let Rk = rk,1, rk,2, . . . , rk,Ik be the sequence
of words for Rk (i.e., Ik is the length of Rk and
rk,j is the j-th word in Rk).

To this end, our ED model first feeds W
(prepended with [CLS]) into the multilingual pre-
trained language model XLM-RoBERTa (base ver-
sion) (Conneau et al., 2020), called XLMR, to
obtain representations for the words wi ∈ W .
In particular, using the hidden vectors in the
last transformer layer of XLMR, we leverage
the average of the hidden vectors for the sub-
tokens of wi ∈ W to compute the representa-
tion vector hi for wi, denoted by h1, h2, . . . , hn =
XLMR(w1, w2, . . . , wn). In a typical sequence la-
beling model, the representation hi can be sent into
a feed-forward network to produce a distribution
over possible BIO tags for wi for ED. In our model,
to augment the representation hi for wi with the re-
trieved sentence context in R for cross-lingual ED,
we further seek to incorporate context representa-
tions for the words rk,j in the sentences Rk ∈ R to
improve hi for cross-lingual prediction. As such,
we also feed each sentence Rk into the multilin-
gual model XLMR to generate the representation
vectors rk,j for the words rk,j ∈ Rk, following
the same procedure for hi: rk,1, rk,2, . . . , rk,Ik =
XLMR(rk,1, rk,2, . . . , rk,Ik).

In the next step, using the attention mechanism,
we quantify the contribution of each representa-
tion vector rk,j for the augmentation of wi for
W with the attention weight ai,k,j . In particu-
lar, our motivation for ai,k,j is that the attention
weight of rk,j for wi needs to capture their con-
text similarity within their corresponding sentences
Rk and W . In addition, the attention weight ai,k,j

should also condition on the retrieval similarity
between the corresponding retrieved sentence Rk

and the input sentence W (i.e., sim(W,Rk)). The
rationale is that the words in a retrieved sentence
Rk with higher retrieval similarity score with W
should be more preferable than the words in other
sentences in R for the context augmentation of
wi (i.e., a retrieval bias). To this end, the at-
tention weight ai,k,j of rk,j for wi is computed
via: ai,k,j =

bi,k,j
∑K

k′=1

∑Ik′
j′=1

bi,k′,j′
where bi,k,j =

exp(wiArk,j +αsim(W,Rk)). Here, α is a trade-
off parameter between context and retrieval simi-
larities and A is the learnable matrix. Afterward,
the augmentation context representation ai from
retrieved sentences R for wi is obtained via the
weighted sum: ai =

∑K
k=1

∑Ik
j=1 ai,k,jrk,j .

Finally, the representation vector for event pre-
diction for wi is computed by: vi = wi + ai. vi
is then fed into a two-layer feed-forward network
FF to compute a score vector to capture the possi-
bilities for wi to receive the possible BIO labels for
ED: pi = FF (vi). Next, the score vectors pi are
sent into a Conditional Random Field (CRF) layer
to encode the tag dependencies and compute the
conditional probability P (·|W,R) for the possible
label sequences for W . The negative log-likelihood
for the golden label sequence Y ∗ is then used to
train the model: Lseq = − logP (Y ∗|W,R).

In the test time, given an input sentence W in
the target language, we also compute the augmen-
tation representations ai for the words in W using
the same unlabeled set U . Viterbi decoding with
P (·|W,R) is then employed to predict the label
sequence for W for ED. As such, the augmentation
representations ai are computed over the same unla-
beled set U of the target language for both training
and testing phases, thus shifting the prediction rep-
resentations vi toward the target language space to
achieve better cross-lingual alignment for ED.

Joint Training: The inclusion of the retrieval
similarity score sim(W,Rk)) (computed from
miniLMW and miniLMU ) in the attention weight
ai,k,j for the ED model implies that the training sig-
nals for ED in Lseq are also back-propagated to the
retrieval model, thus better adapting the retrieval
model to our problem of similar event context re-
trieval. However, this back-propagation also entails
updating the miniLMW and miniLMU models in
the retrieval component after each mini-batch in the
training process. As such, the retrieval model will
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also need to recompute the representations U t for
each unlabeled sentence Ut ∈ U after each train-
ing step, which can be very expensive and slow
down the training. To this end, instead of updat-
ing the retrieval model after each training step, in
the implementation, we only update miniLMW and
miniLMU after every Q training steps/mini-batches
(Q is a hyper-parameter). In this way, although we
cannot leverage the latest updates for the retrieval
component, our model can maintain the synchro-
nization between miniLMW and miniLMU , reduce
training time significantly, and still retrieve relevant
sentences from U for cross-lingual ED.

2.3 Similarity Regularization

In our model, the retrieved sentences Rk ∈ R are
expected to be relevant/similar to the input sen-
tence W according to the retrieval model with
miniMLW and miniMLU . As such, to achieve
a consistency between the retrieval model and
the ED model, we argue that the retrieved sen-
tences Rk should also be similar to W accord-
ing to the ED model with the XLMR model for
sentence encoding. Consequently, we propose to
explicitly encourage the the similarities between
the representations for Rk and W as computed
by the XLMR model for ED, serving as a regular-
ization to improve representation learning in our
model. In particular, when W and Rk ∈ R are
encoded by XLMR for the ED model, we also
use the hidden vectors for the [CLS] token in the
last transformer layer of XLMR represent these
sentences, leading to the representation vectors
W

XLMR and Rk
XLMR for W and Rk respectively.

Afterward, we enforce the XLMR-based similarity
between W and Rk by minimizing the negative
cosine similarity between W

XLMR and Rk
XLMR:

Lreg = −∑K
k=1 sim(W

XLMR
, Rk

XLMR
). The

overall loss function to train our model is thus:
L = Lseq + λLreg (λ is a trade-off parameter).

During the training time, as W and Rk belong
to the source and target languages respectively, the
minimization of Lreg also serves to align the rep-
resentations for the source and target languages,
thus similar to the representation matching frame-
works in prior work for cross-lingual ED (Nguyen
et al., 2021b). However, a key difference is that
previous representation matching methods tend to
match randomly chosen sentences in the source and
target languages that might involve different event
contexts. To align the source- and target-language

representations, such previous methods might thus
learn to exclude those event contexts from the repre-
sentations, causing poorer discriminative features
for ED. In contrast, our cross-lingual similarity
regularization with Lreg is performed over the sen-
tences W and Rk with similar event context (due to
the retrieval component). As such, our model might
be able to learn to only eliminate language-specific
features that do not overlap with the common event
context features. The event context information is
thus preserved to best perform cross-lingual ED.

3 Experiments

Datasets and Hyper-parameters: We evaluate
our cross-lingual retrieval-based model for ED
(called CLRED) on the multilingual dataset ACE
2005 (Walker et al., 2006), following previous
work (M’hamdi et al., 2019; Nguyen et al., 2021b).
ACE 2005 provides event trigger annotations for
33 event types in documents of three languages:
English (EN), Chinese (ZH) and Arabic (AR). To
achieve a fair comparison, we use the exact data
split and preprocessing provided by previous work
(Nguyen et al., 2021b). The data split includes
training, development, and test data for each of the
three languages. To perform cross-lingual transfer
learning evaluation, we will consider six possible
pairs of languages chosen from English, Chinese,
and Arabic. For each language pair, we train the
models on the training data of one language (i.e.,
the source language) and evaluate the models on
the test data of the other language (i.e., the target
language). Similar to previous work (Nguyen et al.,
2021b), the unlabeled dataset U in our experiments
is obtained from the training data of the target lan-
guage where the labels are completely removed.

To tune the hyper-parameters for our model, we
use the performance over the development data of
the source languages. In particular, the selected
hyper-parameters from our tuning process involve:
1e-5 for the learning rate with the AdamW opti-
mizer, 16 for the mini-batch size, 300 dimensions
for the hidden layers of the feed-forward network
FF , K = 2 for the number of retrieved sentences
in R, Q = 30 for the number of steps to update
miniLMW and miniLMU , α = 1 for the trade-off
parameter between context and retrieval similar-
ities in the attention weights, and λ = 0.1 for
the trade-off parameter in the overall loss func-
tion. Finally, we utilize the base version of XLM-
RoBERTa (Conneau et al., 2020) with 768 dimen-

2161



sions for the hidden vectors for our ED model.
Baselines: We consider two groups of baselines for
our cross-lingual model CLRED. The first group
concerns previous methods that only leverage train-
ing data in the source language for learning (i.e., no
unlabeled data in the target language). The state-
of-the-art model in this group involves the BERT-
CRF model in (M’hamdi et al., 2019) that applies a
CRF layer on top of multilingual BERT (mBERT)
(Devlin et al., 2019). To make it fair, we also re-
port the performance of XLMR-CRF that replaces
mBERT1 in BERT-CRF with our XLM-RoBERTa
model. Note that XLRM-CRF is equivalant to our
CLRED model when the retrieval component and
augmentation context are excluded.

The second group of baselines additionally uses
the unlabeled dataset U in the target language to
train cross-lingual models for ED. A state-of-the-
art model in this group features the BERT-CRF-
CCCAR model in (Nguyen et al., 2021b) that uti-
lizes unlabeled data to match representations for
universal word categories and event types com-
puted from BERT-CRF. In the experiments, we also
provide the performance of XLMR-CRF-CCCAR
that is similar to BERT-CRF-CCCAR, but replaces
BERT with XLM-RoBERTa. To make it compat-
ible, we obtain the original code and implementa-
tion for BERT-CRF-CCCAR from (Nguyen et al.,
2021b) to perform the replacement and evaluation.

In addition, we explore the language adversar-
ial training (LAT) method to leverage unlabeled
target data to induce language-universal represen-
tations for cross-lingual ED. In LAT, a base model
for cross-lingual ED is also either BERT-CRF or
XLMR-CRF. Further, a language discriminator is
introduced to classify whether a representation vec-
tor is computed over a sentence in the source or
target language (Chen et al., 2019; Huang et al.,
2019; Keung et al., 2019). We follow the same
implementation of LAT for cross-lingual ED in
(Nguyen et al., 2021b) that jointly trains the lan-
guage discriminator with the sequence labeling
model for ED. The Gradient Reversal Layer (GRL)
(Ganin and Lempitsky, 2015) is employed to fool
the discriminator and eliminate language-specific
features from the representations. To this end, we
report the performance of LAT for both BERT-CRF
and XLMR-CRF, leading to BERT-CRF-LAT and
XLMR-CRF-LAT in our experiments.

Motivated by prior work on cross-lingual learn-

1We also use the base version of mBERT in this work.

ing (Pfeiffer et al., 2020), we also evaluate the
language model fine-tuning (LMFT) method where
a multilingual pre-trained model is first fine-tuned
on the unlabeled data U of the target language us-
ing mask language modeling (Devlin et al., 2019).
The fine-tuned model is then directly employed as
the encoder in the base sequence labeling model
(e.g., XLMR-CRF) with CRF for cross-lingual ED.
Considering both mBERT and XLM-RoBERTa,
we also have two versions for this LMFT method,
i.e., BERT-CRF-LMFT and XLMR-CRF-LMFT.
Here, the huggingface library is utilized to fine-
tune mBERT and XLM-RoBERTa on unlabeled
target data for 100, 000 steps.

Finally, we report the performance of the recent
model OACLED (Guzman et al., 2022) that has the
best reported performance for cross-lingual ED so
far. OACLED is also based on the idea of LAT;
however, it introduces a a new component to lever-
age optimal transport and XLMR to perform data
selection for the language discriminator.

Comparison: Table 1 presents the cross-lingual
performance for six different language pairs.

The first observation is that the XLMR-based
models are significantly better than their corre-
sponding BERT-based models across most lan-
guage pairs and models (e.g., *-CRF and *-CRF-
CCCAR). This demonstrates the advantages of
the multilingual language model XLM-RoBERTa
over multilingual BERT for cross-lingual ED. Sec-
ond, comparing the models with and without unla-
beled target-language data, we find that the *-CRF-
CCCAR and OACLED models substantially out-
perform the *-CRF models regardless of the multi-
lingual pre-trained models over different language
pairs. The *-CRF-LAT and *-CRF-LMFT mod-
els are also better than the *-CRF models in most
situations (except for some language pairs). As
such, it highlights the benefits of using unlabeled
data in the target language to improve the language-
universal representations and cross-lingual perfor-
mance for ED if introduced appropriately. Most
importantly, Table 1 shows that the proposed model
CLRED achieves significantly better performance
than all the baseline methods (with p < 0.01)
across different language pairs. The state-of-the-art
performance of CLRED thus clearly demonstrates
the advantages of our new retrieval-based approach
with representation augmentation for cross-lingual
transfer learning for ED.

Ablation Study: Compared to the base model
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Model Langauge Pairs
Source EN EN ZH ZH AR AR
Target ZH AR EN AR EN ZH

BERT-CRF 68.5 30.9 37.5 20.1 40.1 58.8
BERT-CRF-LAT 70.0 33.5 41.2 20.3 37.2 55.6
BERT-CRF-LMFT 69.4 33.4 42.9 20.0 36.5 56.3
BERT-CRF-CCCAR 72.1 42.7 45.8 20.7 40.7 59.8
XLMR-CRF 70.5 43.5 41.7 32.8 45.4 61.8
XLMR-CRF-LAT 70.2 43.4 42.3 33.2 45.2 60.9
XLMR-CRF-LMFT 71.1 43.7 42.1 32.9 45.9 62.1
XLMR-CRF-CCCAR 74.4 44.1 49.5 34.3 46.3 62.9
OACLED 74.6 44.9 45.8 35.1 48.0 63.1
CLRED (ours) 76.6 46.4 50.8 39.2 49.2 67.3

Table 1: Performance (F1 scores) on test data for ED in six cross-lingual settings. Each column corresponds to one
language pair where source languages are shown above target languages. The proposed model is significantly better
than other models with p < 0.01.

# Model
Langauge Pairs

EN EN ZH ZH AR AR
ZH AR EN AR EN ZH

1 CLRED (full) 76.6 46.4 50.8 39.2 48.2 67.3
2 No retrieval 70.5 43.5 41.7 32.8 45.4 61.8
3 No sim(W,Rk) in ai,k,j 72.9 43.7 46.8 37.5 45.9 65.4
4 Not update miniLM∗ 74.0 44.6 47.4 37.8 45.6 64.3
5 Not update miniLMW 72.5 45.3 46.3 36.6 45.3 61.5
6 Not update miniLMU 73.5 45.7 47.7 38.0 46.2 66.3
7 No warm up 75.5 44.4 46.9 32.9 47.4 63.6
8 No Lreg 74.1 45.3 48.4 38.3 47.8 66.7
9 With unlabeled source 74.4 43.8 45.5 38.5 46.7 66.2

Table 2: Ablation study.

XLMR-CRF, the key distinction in our model in-
volves the retrieval model. Table 2 studies the
performance of the ablated/varied versions of the
retrieval model in CLRED over the test sets of dif-
ferent language pairs. In particular, line 2 “No
retrieval” completely removes the retrieval com-
ponent from CLRED (i.e., XLMR-CRF with no
augmentation representation ai). As the perfor-
mance is significantly reduced, it demonstrates
the benefit of the retrieval model for our CLRED
model. In line 3 with “No sim(W,Rk) in ai,k,j”,
we do not include the retrieval similarity between
the retrieved and input sentences in the atten-
tion weights ai,k,j for augmentation representation.
This model also implies that the retrieval and ED
models are disconnected and the retrieval compo-
nents miniLMW and minLMU are freeze during
the training process for the ED model. As such,
the poorer performance of “No sim(W,Rk) in
ai,k,j” in Table 2 clearly confirms the importance of
sim(W,Rk) in the attention weights for CLRED.

Next, as we update the two retrieval models
miniLMW and minLMU after every Q steps in the

joint training, lines 4, 5, and 6 explore the variants
where we fix the two models (line 4) or only up-
date one of them (lines 5 and 6) during the training
of ED. As can be seen, the degraded performance
in lines 4, 5, and 6 highlight the necessity to up-
date and synchronize miniLMW and minLMU to
achieve the best performance for CLRED. In ad-
dition, line 7 “No warm up” and line 8 “No Lreg”
demonstrate the benefits of our warm up step and
XLMR-computed similarity regularization (respec-
tively) for the retrieval model as removing any of
them will lead to significant performance drops.
Finally, in line 9, instead of using unlabeled data
in the target language, the retrieval component re-
trieves relevant sentences from unlabeled data of
the source language that is obtained by removing
labels from the training data of the source language
(i.e., excluding the input sentence W ) for our cross-
lingual learning setting. As can be seen, unlabeled
data in the source language cannot guarantee the
best cross-lingual performance for ED, thus testify-
ing to the importance of using unlabeled sentences
in the target language for cross-lingual ED.
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Figure 1: T-SNE visualizations for prediction representations of the words from English (i.e., source) and Chinese
(i.e., target) data. Circles and triangles represent English and Chinese examples respectively while colors indicate
event types.

Speed Evaluation: Given the retrieval compo-
nent with representation computation for U with
miniLM, we evaluate the running time for our
model CLRED. Using the time for XLMR-CRF
as the baseline, Table 3 presents the training and in-
ference time for the full model CLRED (averaged
over six language pairs). For reference, we also
report the time for the variant of CLRED where the
retrieval model with miniLMW and miniLMU is
fixed during the training of the ED model. Overall,
the training time of our retrieval-based model is
double that for the base model XLMR-CRF; how-
ever, our inference time is only increased by 1.18
times. Note that in practice, the FAISS open-source
toolkit (Johnson et al., 2021) can be used to pre-
compute and index the representations for the sen-
tences in U . This will allow us to handle larger
unlabeled set U and achieve efficient vector search.

Model Training Inference
XLMR-CRF 1.00x 1.00x
CLRED with fixed retrieval 1.42x 1.18x
CLRED (full) 2.07x 1.18x

Table 3: Latency cost for our retrieval-based model
CLRED. All results are computed with a single Nvidia
V100 GPU.

Analysis: To better understand the operation of
CLRED, we analyze the examples in the test sets
for the target languages that can be correctly pre-
dicted by CLRED, but cannot be recognized by the
non-retrieval baseline XLMR-CRF. A key insight
from our analysis is that XLMR-CRF tends to in-
correctly recognize event types in the input texts of

the target languages due to the ambiguity of con-
text. CLRED can fix the errors in these cases as the
retrieval component is able to return relevant sen-
tences that contains the same correct event types
as the inputs. As such, the augmentation represen-
tation from the retrieved sentences can strengthen
the context information to produce correct type pre-
diction. For instance, consider the language pair
ZH→EN (i.e., Chinese is the source and English is
the target) with the sentence “Blasphemy is punish-
able by death under the Pakistan Penal Code.” in
the target language. XLMR-CRF incorrectly pre-
dicts “death” as an event trigger of type Life:Die
while CLRED can correctly identify “punishable”
as an event trigger of type Justice:Sentence. This
is understandable given that the two retrieved sen-
tences from CLRED involves: “Big "snake head"
Weng Jinshun sentenced to life imprisonment.” and
“Roman was sentenced to seven years in prison.”,
which clearly express Justice:Sentence events.

In addition, to illustrate the impact of aug-
mentation representation from the retrieved target-
language sentences for CLRED, Figure 1 presents
the t-SNE visualization for the representation vec-
tors that are computed by XLMR-CRF and CLRED
to predict event types for the words in the source-
and target-language test data. As can be seen,
the representations learned by XLMR-CRF for the
source language examples are quite separate from
those for the target language. In contrast, with
augmentation representation, CLRED can better
align representations for the source and target ex-
amples of the same event types, thus improving
cross-lingual performance for ED.

2164



4 Related Work

ED has been studied mostly for monolingual set-
tings, involving feature-based models (Liao and
Grishman, 2011; Li et al., 2013; Yang and Mitchell,
2016) and recent deep learning models (Nguyen
and Grishman, 2015; Chen et al., 2015; Nguyen
and Grishman, 2018; Man Duc Trong et al., 2020;
Zhang et al., 2019; Lin et al., 2020; Pouran
Ben Veyseh et al., 2021a,b). Cross-lingual trans-
fer learning for ED has gained more interests re-
cently where different resources are leveraged to
project the representations for different languages
into the same space, including bilingual dictionar-
ies/parallel corpora (Muis et al., 2018; Liu et al.,
2019) and multilingual language models (M’hamdi
et al., 2019; Ahmad et al., 2021; Majewska et al.,
2021). To further bridge the gap between the rep-
resentations for cross-lingual ED, (Nguyen et al.,
2021b) explores adversarial training with language
discriminators (Huang et al., 2019; Lange et al.,
2020; He et al., 2020; Guzman et al., 2022) and
representation matching of similar objects to re-
move language-specific features. We also note that
these methods are motivated from domain adap-
tation methods that aim to avoid domain-specific
features (Ganin and Lempitsky, 2015; Cicek and
Soatto, 2019; Tang et al., 2020; Trung et al., 2022;
Ngo et al., 2022). In contrast, our model introduces
additional augmentation representations from re-
trieval to achieve language-universal representa-
tions.

5 Conclusion

We present a novel method for cross-lingual trans-
fer learning for ED. Instead of removing language-
specific features, our model augments the represen-
tations for the input sentences with those from rel-
evant sentences in the target language to align the
representations for the source and target languages.
Our method involves a retrieval component to ob-
tain relevant sentences that is jointly trained with
the ED model. Our proposed method demonstrates
the state-of-the-art cross-lingual performance over
six different language pairs.

Limitations

In this work we present a novel method based on
representation augmentation to solve cross-lingual
transfer learning for event detection (ED). Al-
though our experiments demonstrate the effective-
ness of the proposed method, there are still some

limitations that can be improved in future work.
First, our current method only leverages sentence-
level context in input document to perform ED
over different languages. This might not be op-
timal as document-level context has been shown
to be helpful for ED (Pouran Ben Veyseh et al.,
2021b) that can be explored in future research to
improve our cross-lingual models. Second, the eval-
uation for our model is limited to only three popular
languages (English, Chinese, and Arabic) that are
supported by existing pre-trained language models,
unlabeled data, and text processing tools. As such,
it is unclear whether the method can be adapted to
many other languages with limited access to such
resources (e.g., low-resource languages). We be-
lieve this is an important direction that can be inves-
tigated in future work to advance our understanding
for ED models. Finally, our method requires joint
training with a retrieval model (based on multilin-
gual pre-trained language models) that can impose
additional computational costs (as shown in Table
3). Reducing necessary computational costs for our
model is an important direction to make it more
accessible for different applications and domains.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.
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