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Abstract

A critical limitation of deep NLP models is
their over-fitting over spurious features. Previ-
ous work has proposed several approaches to
debunk such features and reduce their impact
on the learned models. In this work, a normal-
ization strategy is proposed to eliminate the
false features caused by the textual surfaces of
noun phrases. The motivation for this strategy
is that noun phrases often play the role of slots
in textual expressions and their exact forms
are often not that important for performing the
final task. As an intuitive example, consider
the expression ”x like eating y". There are
a huge number of suitable instantiations for
x and y in the locale. However, humans
can already infer the sentiment polarity of x
toward y without knowing their exact forms.

Based on this intuition, we introduce Norm-
Net, a pretrained language model based net-
work, to implement the normalization strategy.
NormNet learns to replace as many noun
phrases in the input sentence as possible with
pre-defined base forms. The output of Norm-
Net is then fed as input to a prompt-based
learning model to perform label prediction.
To evaluate the effectiveness of our strategy,
we conducted experimental studies on several
tasks, including aspect sentiment classification
(ASC), semantic text similarity (STS), and
natural language inference (NLI). The experi-
mental results confirm the effectiveness of our
strategy.

1 Introduction

Deep learning has proven quite effective in many
NLP tasks (Collobert et al., 2011; Mikolov et al.,
2013; Devlin et al., 2019). However, despite their
great success and various NLP applications they
power, critical limitations persist. A typical issue
is their tendency to learn spurious features instead
of the true signals of the task (Leino et al., 2019;
Sagawa et al., 2020; Wang and Culotta, 2021;
Yang et al., 2021b). This often leads to corrosive

outcomes, from degraded performance on data
in which the features no longer present (Kumar
et al., 2019; Gui et al., 2021), to pernicious biases
in model decisions (Blodgett et al., 2020), and
to overall reduced trust in technology (Han and
Tsvetkov, 2021).

This work proposes to address the spurious
features caused by the textual surfaces of noun
phrases. Here, we mainly consider noun phrases
because they are often highly variable and re-
placing their forms would not make the sentence
unreasonable. As a motivating example, consider
the task to identify the sentiment polarity of I
toward apples based on the textual expression
I like eating apples, which belongs to
the positive class. Here, "I" and "apples" can be
changed to many other forms (e.g., "I"→ "They",
"Many people", etc.) with the resulting sentences
still reasonable. If the model is trained on such an
example, it may over-fit the spurious correlations
between the positive class and I or apples.
These spurious correlations will result in over-
fitting, degrading the generalization performance
and interpretability of the learned model.

Such a problem can be mitigated by pre-
processing the original expression into x like
eating y before feeding it as input to the
learning model and reformulating the task to
predict the sentiment of x toward y, where x and
y denote two variables. In this way, the processed
expression, together with its label, captures abstract
knowledge independent of the specific forms of x
and y—x is positive toward y no matter x is I or
They and y is apples or bananas. In addition,
such a pre-processing can make the learned model
more interpretable and facilitate symbolic learning.

With this consideration, we propose the idea
of sentence normalization, which aims to replace
as many noun phrases in the input sentence as
possible with specifically designed base forms.
Figure 1 shows a normalized input sentence for
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an intuitive understanding. To implement the idea,
we introduce a pretrained language model (PLM)
based network, NormNet. Given an input sentence,
NormNet will first identify noun phrases in the
sentence. Then, it applies a PLM to evaluate the
variability of every noun phrase conditional on
its context. Phrases with high variability will be
normalized to a base form, ranging from "A" to "Z".
The resulting sentence will then be fed as input to
the learning model to perform label prediction.

We tested the effectiveness of NormNet on
three typical NLP tasks, i.e., Aspect Sentiment
Classification (ASC), Semantic Text Similarity
(STS), and Natural Language Inference (NLI). The
experimental results show that our normalization
strategy can improve both the models’ in-domain
and cross-domain performance. The contribution
of this work is three-fold:

• We propose a novel idea of normalization for
addressing the spurious features caused by the
textual surfaces of noun phrases to deep NLP
models.

• We introduce a pretrained language model
based network, NormNet, to implement the
proposed normalization strategy.

• Experimental studies on ASC, STS, and NLI
tasks verify the effectiveness and reasonability
of the proposed strategy.

2 Related Work

2.1 Data Augmentation
One of the related techniques to our idea is
word-substitution-based data augmentation. This
technique randomly replaces words or phrases
with other strings, such as synonyms (Fadaee et al.,
2017; Kobayashi, 2018), words having the same
morphological features (Silfverberg et al., 2017),
or words predicted by a pretrained language model
(Wu et al., 2019; Wang et al., 2022; Bayer et al.,
2022). For instance, give the expression "I like
eating apples.", the technique may generate
augmented expressions: "They like eating
apples.", "I like eating bananas.",
"I love eating apples", etc. Then, it will
generate task labels for these expressions using
some heuristics and append the generated samples
to the training data set for model training. Such
a technique has been found effective for various
natural language processing tasks, such as machine

translation (Xia et al., 2019), text classification
(Feng et al., 2021), and dialogue understanding
(Niu and Bansal, 2019).

However, such a data augmentation technique
can be an expensive process. It will dramatically
increase the overall size of the dataset by orders
of magnitude. For example, if just substituting
2 words with 10 possible candidates for each
sentence of the training data set, the dataset can
easily grow by a factor of 10×10 = 100 (if applied
independently). While this may have some benefits
in terms of over-fitting, it can also significantly
increase data storage costs and training time, which
can scale linearly or super-linearly with respect to
the training set size.

Instead of explicitly listing all the possible substi-
tutions of a word or phrase through data augmenta-
tion, our method seeks to represent the possible sub-
stitutions with a consistent form, e.g., representing
"I like eating apples.", "They like
eating apples.", and "I like eating
bananas." with a consistently form "x like
eating y.". Compared with the data augmenta-
tion technique, this method is much more efficient,
with each sentence corresponding to only one
normalized sentence.

2.2 Word Normalization

Another related techniques to the idea of our
proposed normalization strategy are word-
normalization and lemmatization (Schütze et al.,
2008), which are two prevalent techniques in
NLP to alleviate model over-fitting. They reduce
inflectional forms and sometimes derivationally
related forms of a word to a common base form
based on heuristic rules and morphological
analysis. For example, am, is, are will be
stemmed to a consistent base form be.

The idea of our strategy is somehow motivated
by the two techniques but has several critical differ-
ences. First, the base form of word-normalization
and lemmatization is word dependent, making
the normalized word vocabulary still large. In
comparison, our strategy uses much simpler base
forms. Second, word-normalization applies the
normalization process to every word independently,
ignoring its context. While our strategy uses a
pretrained language model to model its context
to determine which word or phrase should be
normalized.
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visited[MASK] [MASK] …Baidu

PLM

visitedProf. Zhang …Baidu

𝑠 Prof. Zhang|𝒔𝒫𝟏 > 𝛿

then had [MASK] …

then had launch …

𝑠 launch|𝒔𝒫! < 𝛿
NormNet

Normalize?    ✓ Normalize?

visited“A” …Baidu then had launch …

Prompt: The sentiment polarity of Prof. Zhang toward Wang
Xiang Yuan in the statement “Prof. Zhang visited Baidu with 
the accompany of Dr. Peng, and then had launch in Wang
Xiang Yuan, one of his favourite restaurant.” is [MASK].

Original Input: Prof. Zhang visited Baidu with the accompany 
of Dr. Peng, and then had launch in Wang Xiang Yuan, one of 
his favourite restaurant.

Normalized Input: “A” visited “B” with the accompany of 
“C”, and then had launch in “D”, one of his favourite 
restaurant.

Prompt: The sentiment polarity of “A” toward “B” in the 
statement " ‘A’visited ‘B’ with the accompany of ‘C’, and 
then had launch in ‘D’, one of his favourite restaurant." is 
[MASK].

Figure 1: Schema of the proposed approach. It applies the prompt-learning-based method to perform label
prediction. In addition, it introduces a NormNet module to simplify the input sentence, i.e., replacing some noun
phrases with special tokens ("A"-"Z"). Here, sP1

and sP2
denotes the sentence with "Prof. Zhang" and "launch"

being masked, respectively.

2.3 Symbolic Learning

A potential application of our strategy is to connect
deep learning with symbolic learning. Symbolic
learning uses symbols to represent certain objects
and concepts, and allows developers to define
relationships between them explicitly, e.g., (x is
the father of y) ∧ (y is the father
of z) ⇒ (x is the grandfather of z),
with x, y, and z denoting three different variables
(Mao et al., 2019). Based on the defined symbolic
rules, it builds a rule system to perform the end
tasks.

Because symbolic systems learn ideas or in-
structions explicitly and not implicitly, they are
extremely data-efficient, interpretable, and robust
to a cleverly designed adversarial attack (Evans and
Grefenstette, 2018). However, a critical limitation
of symbolic learning is that it requires developers to
provide symbolic rules manually and the dominant
data in the real world is non-symbolic, e.g., the
natural language data. Thus, some recent work
proposed to automatically mine rules from natural
language data (Evans and Grefenstette, 2018) and
applied deep learning to symbolic learning (Zhang
and Sornette, 2017).

Our strategy can be seen as an combination of
symbolic learning and deep learning. It replaces
some noun phrases of natural language expressions
with symbols and applies deep model to the
resulting expressions to perform the end tasks. This
can enhance the robustness of the deep model to the
noise on the symbolic phrases. In addition, based
on the normalized expression and learned model,

it may mine symbolic rules with logic mining
techniques like Markov Logic Network (MLN)
(Richardson and Domingos, 2006) and perform
symbolic reasoning with pre-defined rules. We
leave this research in future work.

2.4 Prompt-tuning-based Model Learning
Nowadays, most NLP tasks are built on pre-trained
language models (PLMs) (Kenton and Toutanova,
2019; Brown et al., 2020). A typical practice to
utilize PLMs is adding a task-specific head on top
of PLMs, and then fine-tuning the entire model by
optimizing task-specific objectives on training data.
However, most existing PLMs are trained with
language modeling objectives, which usually differ
from the learning objectives of downstream tasks.
There is a gap between PLMs and downstream
tasks, and the performance degradation introduced
by the gap is often considerable when the down-
stream training data set is small.

To overcome the gap between pre-training and
downstream tasks, another popular technique for
utilizing PLMs has been introduced, which we
call prompt-tuning in this work. In prompt-tuning,
downstream tasks are formalized as language
modeling problems by inserting language prompts,
and the results of language modeling are heuris-
tically mapped to the solutions of downstream
tasks (Schick et al., 2020; Han et al., 2022). As
shown in Figure 1, a typical prompt template
has the form: "<Input> <Prompt Words>
[MASK]." (the numbers and positions of each
component may change). And there are a set
of label words (e.g. "positive" and "negative")
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Input Sentence: Certainly not the best sushi in New York but
the place is clean.
Aspect: place

Prompt: The sentiment polarity of the writer toward “place” is
[MASK] according to the statement “Certainly not the best 
sushi in New York but the place is clean. ”
Verbalizer (Label): positive, negative, neutral

Figure 2: Template design for ASC

serving as the candidate set for predicting [MASK].
By fusing the original input with the prompt
template for predicting [MASK] and then mapping
predicted words to corresponding labels, prompt
tuning converts a classification task into a language
modeling task. Compared to the conventional
fine-tuning method, prompt-tuning is more similar
to the pre-training objectives, thereby helping to
better use knowledge in PLMs and often obtaining
better performance, especially when the training
data set of the downstream task is small (Gu et al.,
2022).

3 Methodology

Figure 1 shows the general architecture of the
proposed method. It adopts a prompt-tuning-based
learning model to perform the end tasks. And
compared with the traditional prompt-tuning-based
method, it additionally introduces a NormNet to
pre-process the input sentence, which replaces
some noun phrases in the input sentence with
special tokens (we use "A"-"Z" in this work).
The resulting sentence is then fed as input to the
prompt-tuning-based learning model to perform
model training and inference. In the following,
we illustrate the detail of the prompt-tuning-based
learning model and NormNet, respectively.

3.1 Prompt-tuning-based Learning Model

We adopt the popular prompt-tuning-based method
to perform the end tasks. Here, we illustrate the
template and verbalizer we used for ASC, STS, and
NLI, respectively.

Template for ASC. Let s denote the input
sentence, a denote the queried aspect, and
[MASK] denote the mask placeholder. For
performing the Aspect Sentiment Classification
task, we apply the hard template with the
form: The sentiment polarity of
the writer toward "a" is [MASK]
according to the statement "s".

Sentence A: Where can I book high-speed rail tickets from 
Guangzhou to Changsha?
Sentence B:Where to take the train back to Guangzhou in 
Changsha?

Prompt: The meaning of the statement “Where can I book 
high-speed rail tickets from Guangzhou to Changsha?” is
[MASK] [MASK] the statement “Where to take the train back 
to Guangzhou in Changsha? ”
Verbalizer (Label): consistent with (1), different from (0)

Figure 3: Template design for STS

Premise: A soccer game with multiple males playing.
Hypothesis: Some men are playing a soccer game.

Prompt: From the statement “A soccer game with multiple 
males playing.” we can deduce that “Some men are playing a 
soccer game.” [MASK] happen.”
Verbalizer (Label): can (entailment), cannot (contradiction),
may (neutral)

Figure 4: Template design for NLI

It accepts "positive", "negative", and
"neutral" as the three possible predicted words
at the position of [MASK], one mapped to an
unique ASC label. We show an intuitive example
of this template in Figure 2.

Template for STS. Let sa and sb denote the two
text expressions of a STS example, and [MASK]
denote the mask. For performing the Semantic
Text Similarity task, we apply the hard template
with the form: The meaning of the
statement "sa" is [MASK] [MASK]
the statement of "sb". It accepts
"consistent with" and "different
from" as the possible predicted phrase at the
mask positions, which is then mapped to the label
"1" and "0", respectively. We show an intuitive
example of this template in Figure 3.

Template for NLI. Let sp denote the premise
expression, sh denote the hypothesis expression,
and [MASK] denote the mask placeholder. For
performing the Natural Language Inference
task, we apply the hard template with the form:
From the statement "sp" we deduce
that "sh" [MASK] happen. It accepts
"can", "cannot", and "may" as the possible
predicted words at the position of [MASK], which
is then mapped to the NLI label "entailment",
"contradiction", and "neutral", respectively. We
show an intuitive example of this template in
Figure 4.
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Original Input: Certainly not the best sushi in New York but
the place is clean.

Normalized Input: Certainly not the best sushi in “A” but the
place is clean.

Aspect: place

Figure 5: Normalized example for ASC

Original Input: Where can I book high-speed rail tickets from 
Guangzhou to Changsha? [SEP] Where to take the train back to 
Guangzhou in Changsha?

Normalized Input: Where can I book high-speed rail tickets 
from “A” to “B”? [SEP] Where to take the train back to “A” in 
“B”?

Figure 6: Normalized example for STS

We finetune a PLM to perform the above tasks.
Specifically, at training time, we finetune the PLM
to predict the target words at the positions of
[MASK]s using the mask prediction objective. At
inference time, we applied the finetuned PLM to
predict the masked words and accordingly, make
label prediction.

3.2 NormNet

The right part of Figure 1 gives a working process
of NormNet on an sampled input sentence, and
Figure 5, 6, and 7 show a normalized example given
by NormNet for ASC, STS, and NLI, respectively.
Note that, for STS and NLI, the two sentences of
a single sample are concatenated into a single
sentence, separated by [SEP], at this process. After
that, the normalized sentence will be separated into
two sentences using [SEP]. In general, NormNet
involves three steps: 1) identify noun phrases; 2)
determine which phrases should be normalized;
and 3) normalize the phrases and generate the
output sentence.

Specifically, given an input sentence s, NormNet
first identifies the set of noun phrases, denoted as
N , in s using the spaCy chunking tool (Honnibal
and Montani, 2017) with the "en_core_web_sm"
model. Phrases occurring in different positions but
having the same surface form in s correspond to a
unique element in N .

Then, for each phrase, P ∈ N , it replaces all
the occurrences of P in s with [MASK]s (every
constituent token of the phrase is replaced with a
[MASK] token). The resulting sentence, sP , is
then fed as input to a pretrained masked language
model to determine if P should be normalized. For

Original Input: A soccer game with multiple males playing. 
[SEP] Some men are playing a soccer game.

Normalized Input : “A” with multiple males playing. [SEP]
Some men are playing “A”.

Figure 7: Normalized example for NLI

the purpose, we calculate the mask prediction score
of P given sP :

s(P|sP) =
−1

C(P)× |P|

C(P)∑

i=1

∑

t∈Pi

log p(t|sP ;θ),

(1)
where sP denotes the sentence s with P being
masked, C(P) denotes the times of occurrence of
P in s, Pi denotes the i-th occurrence of P , and θ
denotes the parameter of the pretrained language
model, which is fixed at the process. Intuitively,
a high value of s(P|sP) indicates either P does
not frequently occur in the background of sP
or the content occurring in the position of P is
highly variable. In both the cases, fitting the
joint distribution of P and sP using finite training
data will easily result in over-fitting. Motivated
by the intuition, we apply the following strategy
to determine if P should be normalized: If
s(P|sP) > δ, then P in s should be
normalized, with δ being a scalar
hyper-parameter.

Finally, we replace each normalized phrase
in s with a special token, ranging from “A" to
“Z". The resulting input sentence is then fed as
input to the learning model for model training
and inference. At training time, the computational
cost of NormNet is O(nsnpnplm), where ns is the
training data size, np is the average number of
noun phrases in a sentence, and nplm denotes the
forward cost of the PLM. At inference time, the
computational cost of NormNet is O(npnplm).

4 Experiment

4.1 Tasks & Datasets
Aspect Sentiment Classification. The task of
aspect sentiment classification (ASC) involves
predicting the sentiment polarity of a person toward
a given aspect mentioned in the text written by
the person. We performed experiments on two
datasets for this task: the Multi-Aspect Multi-
Sentiment MAMS (Jiang et al., 2019) dataset
and the Restaurant review (Rest14) dataset from
SemEval 2014 (Pontiki et al., 2016).
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Semantic Text Similarity. Semantic text similar-
ity tasks involve predicting whether two sentences
are semantically equivalent or not. We performed
experiments on two datasets for this task: the
Microsoft Paraphrase corpus (MRPC) (Dolan and
Brockett, 2005), and the Quora Question Pairs
(QQP) dataset (Chen et al., 2018).

Natural Language Inference. The task of natu-
ral language inference (NLI) involves reading a pair
of sentences and judging the relationship between
them from one of entailment, contradiction or
neutral. We evaluate the task on two datasets: the
Multi-Genre Natural Language Inference (MNLI)
dataset (Williams et al., 2018), and the Recognizing
Textual Entailment (RTE) dataset (Bentivogli et al.,
2009). For MNLI, we reported performance on its
matched testing set.

For each task, we evaluated the model’s in-
domain and cross-domain performance. To eval-
uate the model’s cross-domain performance, we
trained the model on the training set of one dataset
and tested its performance on the testing set of
another dataset of the same task.

4.2 Baselines

We compared our method with three baselines. The
first one is the method that applies the conventional
finetuning method to perform the end tasks. We call
this baseline as PLMTuning. The second baseline
is the method that directly applies the prompt-
tuning-based learning model to perform the task.
We call this baseline as PLMPrompt. The third
baseline is the method that additionally applies
the word-substitution-based data augmentation
technique based on PLMPrompt. We call this
baseline as PLMPrompt+SubAug. To make a fair
comparison between PLMPrompt+SubAug and our
method (referred to as PLMPrompt+NormNet),
we only performed substitution on phrases that
were determined to be normalized by our method
for implementing PLMPrompt+SubAug.

4.3 Implementation Detail

Implementation of PLMTuning. To perform
the ASC task, we inserted the "[unused1]" token
before and after the occurrence of the queried
aspect in the input sentence. For instance, given the
input sentence "I like eating apples."
and the query "apples", we reformulated the in-
put sentence to "I like eating [unused]
apples [unused]." and fed it as input to

the learning model to perform model learning
and inference. To perform the STS task, we
concatenated the two input sentences (denoted
as sa and sb) of a sample into a single sentence
connected by the special token "[SEP]": "sa [SEP]
sb" and "sb [SEP] sa". At inference time, the label
of the sample, (sa, sb), was obtained by averaging
the prediction results on its two generated inputs. In
similar, to perform the NLI task, we concatenated
the two input sentences (denoted as Premise sp and
Hypothesis sh) of a sample into a single sentence
connected "[SEP]" for the form: "sp [SEP] sh".
For all the tasks, label prediction was built on the
final representation of the "[CLS]" token in PLMs.
AdamW optimizer (Loshchilov and Hutter, 2018)
with linear decay warm-up was applied for model
learning. The initial learning rate was set to 2e-5
and the warm-up ratio was set to 0.1. Batch size
was set to 32 for MAMS, Rest14, RTE, and MRPC
and 64 for QQP and MNLI.

Implementation of PLMPrompt+SubAug.
We performed substitution on phrases that were
determined to be normalized by our method, and
we applied the BART pretrained model (Lewis
et al., 2020) to perform the substitution. Take
the input "I like eating apples." as an
example and suppose that we are to do substitution
on "apples". We would feed "I like
eating [MASK]." as input to BART, which
would generate 5 (2 for QQP and MNLI) phrases
in the [MASK] position, each one consisting of
up to 6 tokens. For each generated phrase, we
would place it to the [MASK] position and then
feed the resulting sentence to the chunking model
to check if it is a noun phrase. If so, the phrase
would be preserved as a candidate substitution of
"apples". Otherwise, it would be deprecated.

Implementation of NormNet. The pretrained
language model of NormNet was implemented
by ERNIE-Gram (Xiao et al., 2021), which was
explicitly trained on a n-gram mask language
model objective. For determining the value of δ,
we first extracted named entities from the training
set of each dataset using the spaCy NER tool with
the "en_core_web_sm" model. We tuned the value
of δ so that 70% of the extracted entities would be
normalized. This was motivated by the fact that
named entities often play the role of slot values in
an expression (Louvan and Magnini, 2020) and it
can often improve the NER performance with the
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Rest14 MAMSIn-Domain
Acc F1 Acc F1

BERT-base-uncased∗ 82.74 73.73 78.86 78.01
PLMTuning 84.23 78.22 82.89 82.78
PLMPrompt 84.58 79.74 83.17 83.09
PLMPrompt+SubAug 84.69 79.81 83.25 83.17
PLMPrompt+NormNet 84.97 80.18 83.28 83.19

Cross-Domain
Rest14

↪→MAMS
MAMS
↪→ Rest14

Acc F1 Acc F1

PLMTuning 67.61 67.47 79.44 73.28
PLMPrompt 69.53 69.44 81.16 75.17
PLMPrompt+SubAug 70.24 70.15 82.73 76.08
PLMPrompt + NormNet 72.21 72.09 84.01 77.65

Table 1: In-domain and cross-domain performance on
ASC. Results of BERT-base-uncased∗ on Rest14 and
MAMS are retrieved from (Yang et al., 2021a) and (Lin
et al., 2022), respectively. The PLM of the learning
model was implemented by bert-base-uncased.

augmentation method that replacing an entity of a
sentence with other entities of the same type (Dai
and Adel, 2020).

All the experiments were run three times and the
medium value within the three runs was reported.

4.4 Results on ASC
Table 1 shows the in-domain and cross-domain
performance on the ASC task. From the table,
we can see that: 1) Compared with PLMTuning,
PLMPrompt achieves slightly better in-domain
performance and significantly better cross-domain
performance on the two ASC datasets. This verifies
the advantage of the prompt-tuning technique
over the conventional fine-tuning technique on
the two ASC datasets. 2) PLMPrompt+SubAug
achieves a little in-domain and about 1% abso-
lute cross-domain performance improvement over
PLMPrompt on the two tested datasets. This
verifies the effectiveness of the word-substitution-
based data augmentation technique. However,
the computational cost of PLMPrompt+SubAug
is about 10 times of that of PLMPrompt. 3)
PLMPrompt+NormNet achieves further improve-
ment over PLMPrompt+SubAug, especially in the
perspective of cross-domain performance, on the
two ASC datasets. This verifies the advantage of
our normalization strategy over the augmentation
strategy on the two ASC datasets. As a conclusion,
the proposed normalization strategy can bring
consistent performance improvement to the prompt-
tuning-based learning model and does better than
the word-substitution-based data augmentation
strategy, especially in the perspective of cross-

0.2 0.4 0.6 0.8
70.0

72.5

75.0

77.5

80.0

82.5

85.0

Acc@Rest
Acc@MAMS
Acc@Rest2MAMS
Acc@MAMS2Rest

Figure 8: ASC performance by the normalization ratio
controlled by α.

domain performance.

Influence of δ. Here, we study the influence of
δ. In the study, we adjusted the value of δ so
that 10%-90% of the extracted entities would be
normalized. Figure 8 shows the performance of the
study. From the figure, we can see that our method
performed quite robustly to the variation of δ for
in-domain performance. Specifically, on Rest14,
the accuracy varied between 84.39 (with 90% of
entities normalized) to 85.02 (with 50% of entities
normalized). On MAMS, the accuracy varied
between 82.91 (with 10% of entities normalized) to
83.35 (with 60% of entities normalized). While the
results on the cross-domain Reset14 to MAMS task
showed that the accuracy varied from 70.32 (with
10% of entities normalized) to 73.18 (with 80% of
entities normalized). On the cross-domain MAMS
to Rest14 task, the accuracy varied between 81.68
(with 10% of entities normalized) to 84.57 (with
80% of entities normalized). It is worth noting
that our method outperformed PLMPrompt in all
settings of δ, which did not perform normalization.
An interesting observation is that the when the
normalization ratio increases from 0.8 to 0.9, both
the in-domain and across-domain performance
will slightly decrease. Our explanation to this
phenomenon is that the some common entities
can help knowledge generalization, like “sunshine"
often indicating “positive" polarity. Removing such
entities will slightly degrade the performance.

4.5 Results on STS

Table 2 shows the in-domain and cross-domain
performance on the STS task. From the table, we
can see that: 1) From the perspective of in-domain
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In-Domain MRPC QQP
BERT-base-uncased∗ 81.99 90.27
PLMTuning 82.35 90.86
PLMPrompt 84.56 90.27
PLMPrompt+SubAug 85.33 90.41
PLMPrompt+NormNet 85.87 90.65

Cross-Domain MRPC
↪→ QQP

QQP
↪→MRPC

PLMTuning 68.97 70.83
PLMPrompt 69.52 68.54
PLMPrompt+SubAug 70.08 68.83
PLMPrompt + NormNet 72.11 72.32

Table 2: In-domain and cross-domain performance
on STS. The PLM of the learning model was
implemented with bert-base-uncased. Results of BERT-
base-uncased∗ are retrieved from (Choshen et al.,
2022).

performance, PLMPrompt performs considerably
better than PLMTuning on MRPC but worse on
QQP. While from the perspective of cross-domain
performance, PLMPrompt achieves about 0.6%
absolute improvement over PLMTuning on the
cross-domain MRPC to QQP task but about 2.3%
absolute decrease on the QQP to MRPC task. Our
explanation to this phenomenon is that MRPC
is a small dataset. Its only contains about 3.7k
training samples, not large enough to completely
adopt the language modeling objective to the
finetuning objective. In contrast, QQP has about
370k samples. Thus, on QQP, prompt-tuning
does not show advantage over the conventional
fine-tuning technique. 2) PLMPrompt+SubAug
achieves a little performance improvement on the
in-domain MRPC and the cross-domain MRPC
to QQP tasks over PLMPrompt. However, on
the in-domain QQP task and the cross-domain
QQP to MRPC task, the performance improvement
introduced by data augmentation is negligible.
We believe this phenomenon is also resulting
from the size of the training data size. 3)
PLMPrompt+NormNet achieves consistent im-
provement over PLMPrompt+SubAug on both in-
domain and cross-domain tasks. This verifies the
effectiveness of our normalization strategy and
the advantage of our normalization over the word-
substitution-based data augmentation technique.

4.6 Results on NLI

Table 3 shows the in-domain and cross-domain
performance on the NLI task. From the table,
we can see that: 1) On the in-domain RTE
task, PLMPrompt performs much better than

In-Domain RTE MNLI
BERT-base-uncased∗ 59.98 83.73
PLMTuning 63.54 83.56
PLMPrompt 67.17 83.62
PLMPrompt+SubAug 68.23 83.57
PLMPrompt+NormNet 68.51 84.21

Cross-Domain RTE
↪→MNLI

MNLI
↪→ RTE

PLMTuning 30.63 18.77
PLMPrompt 30.33 44.04
PLMPrompt+SubAug 30.67 44.28
PLMPrompt + NormNet 32.48 46.57

Table 3: In-domain and cross-domain performance
on NLI. The PLM of the learning model was
implemented with bert-base-uncased. Results of BERT-
base-uncased∗ are retrieved from (Choshen et al.,
2022).

PLMTuning, while on MNLI, the two models
perform similarly. This observation is similar to
that observed on the STS task, considering that
RTE is also a small dataset (only contains about
2.5k training samples) and MNLI is a much larger
dataset (contains about 393k training samples). On
the two cross-domain tasks, PLMPrompt performs
similar to PLMTuning. We think this is because
the gap between RTE and MNLI is quite large
and it does no matter what kind of tuning method
applied. 2) PLMPrompt+SubAug achieves about
1% absolute improvement over PLMPrompt on
the in-domain RTE task and only about 0.1%
absolute improvement on the in-domain MNLI
task. On the two cross-domain NLI tasks,
PLMPrompt+SubAug does not achieve much
improvement over PLMPrompt. Here, we give our
explanation to the results on the cross-domain RTE
to MNLI task. Based on our data analysis, we think
this results from the large gap between RTE and
MNLI. The generated substitutions do not often
occur in MNLI, making the data augmentation
not so effective. 3) On the in-domain RTE
and MNLI tasks, PLMPrompt+NormNet achieves
about 0.3% and 0.7% absolute improvement over
PLMPrompt+SubAug, respectively. While on the
cross-domain RTE to MNLI and the MNLI to
RTE task, PLMPrompt+NormNet achieves about
1.8% and 2.3% absolute improvement over PLM-
Prompt+SubAug, respectively. Our explanation to
this phenomenon is that our normalization strategy
normalizes phrases of different domains into a
consistent form, which is somehow equivalent to
applying all possible substitutions. This makes
our method more effective in the cross-domain
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• The coffee is ok, but the service is slow. ⇒
“A” is ok, but “B” is slow.

• What is the scope of research in biomedical engineering ? [SEP]
What is the scope for biomedical engineering in india ? ⇒
What is the scope of research in “A” ? [SEP] What is the scope 
for “A” in india ?

Figure 9: Samples on which PLMPrompt performs
incorrectly but our method performs correctly.

scenario.

4.7 Qualitative Study

Here, we selected some samples, on which
PLMPrompt made an incorrect prediction but
our method made a correct one, and empirically
study the reason. Figure 9 shows some of the
selected samples. Through case study on these
samples, we found that the class conditional
distributions, p(P|y), of the normalized phrases
in these samples are usually extreme. For example,
"coffee" only occurs in positive training samples
of Rest14, resulting in a strong connection between
"coffee" and the positive class label. This
may be the reason why PLMPrompt makes
an incorrect prediction for "coffee" based on
the expression "The coffee are ok , but
the service is slow .", which belongs
to the neutral class. In similar, "biomedical
engineering" occurs 37 times in positive class
training data and 7 times in negative class training
data of QQP.

5 Conclusion

This work proposes a normalization strategy
to overcome the spurious features caused by
noun phrase surfaces. Experimental studies on
Aspect Sentiment Classification (ASC), Semantic
Text Similarity (STS), and Natural Language
Inference (NLI) show that the proposed strategy
can improve both models’ in-domain and cross-
domain performance. A potential extension of this
work is extending the strategy to other types of
phrases.

6 Limitations

We think this work has the following limita-
tions: The first limitation is that our method
involves additional computation for identifying
noun phrases and determining which phrases
should be normalized. The second limitation is
that our method is only performed on noun phrases.

Other phrases may also introduce spurious features.
Extending our method to other types of phrases is a
potential research direction. The third limitation is
that due to the cost limitation, we did not test on the
more powerful GPT-based PLMs, which proves to
be more powerful and leads to heated discussions
recently.
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