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Abstract

Active learning (AL) aims to reduce labeling
costs by querying the examples most benefi-
cial for model learning. While the effective-
ness of AL for fine-tuning transformer-based
pre-trained language models (PLMs) has been
demonstrated, it is less clear to what extent
the AL gains obtained with one model transfer
to others. We consider the problem of trans-
ferability of actively acquired datasets in text
classification and investigate whether AL gains
persist when a dataset built using AL coupled
with a specific PLM is used to train a different
PLM. We link the AL dataset transferability to
the similarity of instances queried by the dif-
ferent PLMs and show that AL methods with
similar acquisition sequences produce highly
transferable datasets regardless of the models
used. Additionally, we show that the similarity
of acquisition sequences is influenced more by
the choice of the AL method than the choice of
the model.

1 Introduction

Pre-trained language models (PLMs) – large over-
parameterized models based on the transformer
architecture (Vaswani et al., 2017) and trained on
large corpora – are the leading paradigm in mod-
ern NLP, yielding state-of-the-art results on a wide
range of NLP tasks. However, large models require
large amounts of data. Active learning (AL; Set-
tles, 2009) addresses the data bottleneck problem
by improving data labeling efficiency. It employs
human-in-the-loop labeling with the model itera-
tively selecting data points most informative for
labeling. Recent work has demonstrated the effec-
tiveness of AL for fine-tuning PLMs (Dor et al.,
2020; Grießhaber et al., 2020; Margatina et al.,
2022; Yuan et al., 2020; Shelmanov et al., 2021).

While AL may considerably reduce model de-
velopment costs, it also potentially limits the scope
of use of the actively acquired datasets. Since data
sampling in AL is guided by the inductive bias of

the acquisition model, the dataset will typically not
represent the original population’s distribution (At-
tenberg and Provost, 2011). This is troublesome
if one wishes to use the actively acquired dataset
to train a different model (consumer model) from
the one used for AL (acquisition model). If the two
models’ inductive biases differ, the AL gains can
cancel or even revert: the consumer model may per-
form worse when trained on the actively acquired
dataset than on a randomly sampled one. However,
the robustness of the actively acquired dataset to the
choice of the consumer model is obviously highly
desirable, as the acquisition model may become
unavailable or dated. The latter is common in NLP,
where new and better models are being developed
faster than new datasets. However, most AL stud-
ies use the same acquisition and consumer models,
and dataset transferability is seldom mentioned in
AL literature. A notable exception is the work of
Lowell et al. (2018), who showed the unreliability
of dataset transfer on standard NLP tasks.

In this work, we examine the problem of AL
dataset transferability for transformer-based PLMs
and conduct a preliminary empirical study on text
classification datasets. We first probe whether
AL gains persist between different transformer-
based PLMs, considering several AL methods and
datasets. Observing that on most datasets, the trans-
fer works in some cases but fails in others, we in-
vestigate the mechanisms underlying transferability.
We hypothesize a link between AL dataset trans-
ferability and how the acquisition and consumer
models sample instances. To probe this, we in-
troduce acquisition sequence mismatch (ASM) to
characterize to what extent the two models differ
in how they sample instances throughout AL iter-
ations. We investigate how ASM affects dataset
transferability and how ASM is affected by other
AL variables. We show that, while it is generally
reasonable to transfer actively acquired datasets be-
tween transformer-based PLMs, AL methods that
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retain low ASM produce more transferable datasets.
We also show that the choice of the AL method af-
fects ASM more than the choice of models.

To summarize our contributions: we (1) con-
duct an empirical study on the transferability of ac-
tively acquired datasets between transformer-based
PLMs, (2) propose a measure to quantify the mis-
match in the acquisition sequences of AL models
and link this to dataset transferability, and (3) ana-
lyze what design choices affect this mismatch. We
provide code for the experiments1 with the hope
that our results will encourage NLP practitioners to
use AL when fine-tuning PLMs and motivate fur-
ther research into the AL dataset’s transferability.

2 Related Work

Although AL has been extensively studied for
shallow and standard neural models (without pre-
training), research on combining AL and PLMs
lags behind. The initial studies showed promise,
with AL methods outperforming random sampling
for text classification (Dor et al., 2020; Grießhaber
et al., 2020). The field is gradually gaining trac-
tion with studies demonstrating AL effectiveness
even with simple uncertainty-based methods (Gon-
sior et al., 2022; Schröder et al., 2022). Moreover,
PLMs open up new possibilities, such as comple-
menting AL with model adaptation using unlabeled
data (Yuan et al., 2020; Margatina et al., 2022).

While there is much research on AL for stan-
dard scenarios where the acquisition and consumer
models are the same, there is little research on
AL dataset transfer. Prabhu et al. (2019) demon-
strated that combining uncertainty AL strategies
with deep models produces sampled datasets with
good sampling properties that have a large over-
lap with support vectors of SVM trained on the
entire dataset. Likewise, Farquhar et al. (2021)
showed that deep neural models benefit from the
sample bias induced by the acquisition model (the
opposite is true for shallow models). However, the
jury is still out on the effects of sample bias on the
consumer model. The most prominent empirical
study on AL transfer with neural models (Lowell
et al., 2018) predates PLMs. Tsvigun et al. (2022)
focused on alleviating the effects of acquisition-
consumer mismatch in PLMs by using lightweight
distilled models for acquisition and larger versions
of the models as consumer models. Even though
the study focuses on improving the transferability

1https://github.com/fjelenic/al-transfer

of actively acquired datasets, the reasons behind
the successful transfer are yet to be explored. An
older study of AL dataset transferability for text
classification and shallow models by Tomanek and
Morik (2011) showed that transfer works in most
cases but that neither sample nor model similarity
explains transferability. Our study explores these
characteristics for acquisition-consumer pairings
of different PLMs.

3 Experimental Setup

Our study used four datasets, three models, and
three AL methods (cf. Appendix B for details). The
datasets we used are Subjectivity (SUBJ; Pang and
Lee, 2004), CoLA (COLA; Warstadt et al., 2018),
AG-News (AGN; Zhang et al., 2015), and TREC
(TREC; Li and Roth, 2002)). The three transformer
models we used are BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020). The AL methods we considered are
entropy (ENT; Settles, 2009), core-set (CS; Sener
and Savarese, 2017), and BADGE (BA; Ash et al.,
2019)). This gives 108 AL configurations (72 trans-
fer and 36 no-transfer configurations). Further-
more, we ran each configuration with 20 different
warm-start sets to account for stochasticity. The AL
acquisition was simulated until the budget of 1500
labeled data points was exhausted (model perfor-
mance for all datasets reached a plateau), labeling
50 data points per step.

We assessed dataset transferability using the dif-
ference in the area under the F1 curve of the model
trained on the actively acquired dataset and the
same model trained on a randomly sampled dataset
(∆AUC). We deem the AL dataset transfer suc-
cessful if ∆AUC is not significantly less than zero
and unsuccessful otherwise. We chose ∆AUC to
make the notion of transferability independent of
when the AL acquisition terminates. On the other
hand, as terminating the AL after acquiring too few
labeled data is unrealistic, we also report ∆AUC10,
which is ∆AUC calculated with an offset of 10 it-
erations (500 labeled instances) of the AL loop.
Comparing ∆AUC10 to ∆AUC provides insights
into how transferability changes through time.

4 Results

4.1 Dataset transferability
We grouped the 108 AL configurations into three
groups based on the sign of the mean ∆AUC value
and the p-value of the difference between AUC
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∆− ∆0 ∆+ ∆−
10 ∆0

10 ∆+
10 Σ

SUBJ 0 0 18 0 0 18 18
COLA 2 8 8 2 7 9 18
AGN 7 4 7 3 2 13 18
TREC 8 3 7 0 2 16 18

R→B 2 2 8 0 1 11 12
E→B 2 2 8 0 2 10 12
B→R 2 4 6 0 1 11 12
E→R 2 4 6 1 2 9 12
B→E 5 1 6 2 2 8 12
R→E 4 2 6 2 3 7 12

ENT 11 3 10 3 2 19 24
CS 4 10 10 2 6 16 24
BA 2 2 20 0 3 21 24

Σ 17 15 40 5 11 56

Table 1: Breakdown of datasets, acquisition→consumer
model pairs (denoted by initial letters), and AL methods
by transferability: negative (−), neutral (0), and positive
(+) transfer. ∆AUC is shown as ∆.

scores of transfer and random sampling:2 nega-
tive (∆AUC < 0 and p<.05), neutral (p≥.05), and
positive (∆AUC ≥ 0 and p<.05) transfer. The no-
transfer AL configurations (where the acquisition
and consumer models are the same) are generally
successful (25 positive, 9 neutral, and 2 negative
configurations as per ∆AUC; 33 positive, 2 neu-
tral, and 1 negative configuration as per ∆AUC10).
The grouping of the remaining 72 configurations
with AL dataset transfer is given in Table 1. We
observe that the dataset, the acquisition-consumer
model pairing, and the AL method all affect trans-
fer success.

Evidently, transferability differs across datasets:
the transfer is always positive on SUBJ (which is
the simplest task we considered in terms of the
number of labels, the balance of classes, and the
MDL task complexity measure; cf. Appendix B),
while most neutral transfers occur on COLA. A
more interesting picture emerges from the differ-
ent acquisition-consumer model pairings and AL
methods. Most negative transfers are transfers to
ELECTRA, while most neutral transfers are those
to RoBERTa (perhaps due to it being optimized
for robustness). On the other hand, transfer to
BERT is positive in most cases, perhaps because
BERT’s pre-training regime is most similar to that
of the other two models. Among the AL methods,
entropy mostly makes the transfer negative, most
neutral transfers occur with core-set, and BADGE

2We used either the paired t-test or Wilcoxon signed-rank
test, depending on the results of Lilliefors’ test for normality.

is the best choice for ensuring positive transfer-
ability. However, when looking at the later steps
of the AL loop, differences between entropy and
BADGE vanish, while the core-set lags slightly
behind. Thus, ∆AUC tends to increase through-
out the AL process, suggesting that increasing the
amount of sampled data lowers the risk of unsuc-
cessful transfer (cf. Appendix C for additional F1

scores analysis).

4.2 Acquisition sequence mismatch
We hypothesize there is a link between dataset
transferability and the sequence in which data
points are acquired for labeling by AL. In partic-
ular, we posit that dataset transferability will be
successful when the acquisition sequence of the
acquisition model does not differ from what the
acquisition sequence of a consumer model would
be if that model had access to the original dataset.
We introduce the acquisition sequence mismatch
(ASM) to measure the differences in acquisition
sequences. To compute the ASM between two
acquisition sequences, we pair the corresponding
batches of the two sequences and average their
pairwise differences. To measure the difference be-
tween a pair of batches, we take the average of the
distances of best-matched examples between the
batches. To account for the fact that AL methods
may choose numerically different yet semantically
similar data points, we measure the similarity of
acquired instances in representation space. We
use GloVe embeddings (Pennington et al., 2014)
as a common representation space independent of
the choice of acquisition and consumer models
and compute the cosine distance between averaged
word embeddings. Lastly, we use the Hungarian al-
gorithm (Kuhn, 1955) to construct a bipartite graph
between two batches with distance-weighted edges
to find the best-matching examples. Formally, we
define ASM as follows:

1

T

T∑

t=1

1

|Bt|
min

S(Bt
A),S(Bt

B)




|Bt|∑

i=1

d(xiA, x
i
B)


 (1)

where T is the length of the sequence (the number
of steps of the AL loop), S(Bt) is the set of all
of the permutations of instances in the selected
batch at step t, and d(xiA, x

i
B) is the cosine distance

between instance representations from sequences
A and B for a batch at position i of a given batch
permutation. Intuitively, ASM assumes that both
batches cater to the same informational need of the
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Figure 1: Distributions of ASM values for combinations
of AL methods and acquisition+consumer model pairs
(denoted by initial letters).

model, so it calculates how much the instances that
should carry out the same role in the batch differ.

Given a dataset, we hypothesize ASM may be
affected by both the choice of the models and the
choice of the AL method. Figure 1 shows that the
distributions of ASM values are more alike when
grouped by the AL methods than when grouped
by the model pairings. To verify this observation,
we conducted two Kruskal-Wallis H-tests for each

dataset: in the first, populations were determined
by the AL method, and we concluded that there
was a significant difference in ASM (p<.05); in
the second, the populations were determined by
the model pairing, and there was no significant
difference in ASM (p>.05). This suggests that the
choice of AL method affects ASM more than the
choice of acquisition-consumer model pairing.

4.3 Acquisition mismatch analysis
We found a statistically significant negative corre-
lation between ∆AUC and ASM for each dataset.3

This supports our hypothesis that the lower the mis-
match between acquisition sequences of the two
models, the higher the transferability of a dataset
from one model to the other. Besides ASM, we
use another measure for analyzing dataset transfer-
ability: the difference between the dataset acquired
with AL using the acquisition model and the dataset
acquired with AL using the consumer model. We
call this measure the acquired dataset mismatch
(ADM). Essentially, ADM computes the mismatch
between samples similarly to ASM but between en-
tire datasets obtained after the last sampling step.

Above we showed that the choice of the AL
method affects the ASM. Figure 2 shows that
BADGE gives smaller ASM than the other two
methods, whereas core-set gives larger ASM than
the other two methods.4 However, the intriguing
effect emerges when comparing the difference in
batches through time and differences in the entire
acquired datasets through time. In the early steps,
BADGE gives the highest similarity of acquired
datasets among the considered methods, which
leads to it having the lowest ASM. However, in
later steps, entropy dominates the similarity of ac-
quired datasets.5 It seems as if entropy acquired
similar datasets for different models by taking those
models through different sequences of the popula-
tion distribution. This effect is seen in Table 1,
where entropy is the worst method when using
∆AUC to measure transfer success while manag-
ing to parry BADGE when using ∆AUC10. The
difference in transferability between entropy and
BADGE completely vanishes when looking at the
last step of the AL loop (cf. Appendix, Table 3).

3Spearman correlation coefficients are −0.11 for SUBJ,
−0.19 for COLA, −0.27 for AGN, and −0.38 for TREC, all
significant with p<.05.

4Verified using three one-sided Wilcoxon signed-rank tests
with p<.05 corrected for FWER.

5Verified using three one-sided Wilcoxon signed-rank tests
on ADM with p<.05 corrected for FWER.
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Figure 2: The mismatch between acquired batches (top) and ADM at each step of the AL loop (bottom) for different
AL methods.

It is clear that entropy can produce transferable
datasets, but it requires more time to do so.

We speculate that the effect of BADGE having
the lowest ASM yet entropy achieving the lowest
ADM could emerge due to the interaction between
the AL method and the model’s decision bound-
ary. Namely, uncertainty AL methods sample data
points on the decision boundary with high over-
lap with support vectors of the SVM trained on
the whole dataset, as pointed out by Prabhu et al.
(2019). Since BADGE combines uncertainty and
diversity, i.e., it samples data points the model is un-
certain about for diverse reasons, it samples along
the entire decision boundary at each step, and since
decision boundaries of the models are roughly the
same, so are the sampled data points. Entropy, on
the other hand, relies solely on uncertainty. Due to
its greedy nature, entropy tends to sample similar
points because if one data point has high uncer-
tainty, data points similar to it are also going to
have high uncertainty (Zhdanov, 2019). This may
manifest as sampling local patches of space on the
decision boundary. Therefore, entropy may take
more time to define the boundary than BADGE
because it is forming the boundary from patches
of space with the highest uncertainty at a given
AL step rather than holistically sampling along the
boundary at each step. Since the shape of the de-
cision boundary is more similar between different
models than the local interactions along the bound-
ary, entropy has a higher batch mismatch in the
early steps. However, once more data is labeled
and the boundary becomes stable, both entropy and
BADGE start to have a low batch mismatch, as
seen in Figure 2. Since entropy is deterministic and
never strays from the decision boundary, it ends
up having a lower ADM than BADGE. Lastly, we

believe that the core-set method has the highest
ASM and ADM because it selects data based on di-
versity in the model’s representation space, which
is more model-specific and shares fewer properties
between different models than the decision bound-
ary. Further exploring the described interaction is
a compelling direction for future work.

It may be that AL methods with different acqui-
sition sequences end up acquiring a similar dataset
and have high transferability, as in the case of en-
tropy, an uncertainty-based acquisition function.
It is also possible that acquired datasets differ be-
tween models but that the transfer remains success-
ful because it taps into some other essential aspect
of a transferable dataset, as is the case with core-set,
a diversity-based acquisition function. However,
the best strategy to ensure dataset transferability
appears to be a mixture of uncertainty and diversity,
as provided by BADGE. This appears to minimize
ASM between models, making datasets transfer-
able regardless of the number of AL steps.

5 Conclusion

We presented an empirical study on the transferabil-
ity of actively acquired text classification datasets
for transformer-based PLMs. Our results indicate
no significant risk in transferring datasets, espe-
cially for larger amounts of data. We also showed
that transfer is largely successful when preserving
the sequence and similarity of acquired instances
between the models, which is what methods com-
bining uncertainty and diversity acquisition func-
tions seem to do. Transferability appears to differ
considerably across datasets, so future work should
examine what dataset characteristics are predictive
of transfer success.
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Limitations

Our study revealed considerable differences in
transferability and other measures we considered
across different datasets. Nonetheless, the study
focused on the differences in transferability arising
from the choice of the models and the AL methods
rather than the dataset. To eliminate confounding
due to datasets, we grouped the results by datasets
and analyzed each group separately. Despite this,
the scope of our results is limited by the fact that all
datasets used are in English and possibly contain
their own biases.

Even though we showed that it could still be use-
ful to transfer actively acquired datasets between
transformer-based PLMs, it is important to keep in
mind that actively acquired datasets are not repre-
sentative of the original data distribution due to the
sampling bias introduced by active learning.
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Train Test # Labels NLE MDL

SUBJ 8000 2000 2 1.00 0.30
COLA 8551 1043 2 0.88 1.00
AGN 20000∗ 7600 4 1.00 0.56
TREC 5452 500 6 0.92 0.34

Table 2: Dataset statistics. We report train and test
set sizes, number of labels, normalized label entropy
(information entropy of label distribution normalized
by the entropy of uniform distribution with the same
number of variables), and MDL normalized by the MDL
of the dataset with the largest value (COLA). Train set
of AGN was subsampled from the original train set of
120000 instances.

A Reproducibility

We conducted our experiments on 4× AMD Ryzen
Threadripper 3970X 32-Core Processors and 4×
NVIDIA GeForce RTX 3090 GPUs with 24GB of
RAM, which took roughly one week. We used Py-
Torch version 1.12.1, Transformers version 4.21.3,
and CUDA 11.4.

B Experimental design choices

B.1 Datasets
The datasets used in this paper are standard bench-
marks in NLP for text classification. We chose
these datasets to represent different attributes: the
number of labels (binary or multi-class classifica-
tion) and the balancing of the labels (balanced and
imbalanced classes). The diversity of the dataset
characteristics can give an insight into the impact
of these attributes on dataset transferability. We
present dataset statistics in Table 2. There we also
show minimum description length (MDL) (Perez
et al., 2021) of each dataset, which can be inter-
preted as the complexity of the task.
Subjectivity: Movie-review data with reviews la-
beled as either subjective or objective. This is a
balanced dataset with binary labels.
CoLA: The Corpus of Linguistic Acceptability is
a dataset containing sentences labeled as grammat-
ical or not. This is an imbalanced dataset with
binary labels.
AG-News: Corpus of news articles annotated
by the article’s topic (World, Sports, Business,
Sci/Tech). The dataset was created by subsampling
the corpus to the size of 20,000 examples. This is
a balanced dataset with four classes.
TREC: The dataset contains questions labeled with
the type of subject of the question. This is an im-
balanced dataset with six classes.

B.2 Models

We picked the models that share the common ar-
chitecture; they are all transformer-based PLMs
but differ in pre-training data and pre-training ob-
jectives. This choice of models enables us to an-
alyze the impact of different pre-training design
choices on dataset transferability. All models were
trained using ADAM optimizer with a learning rate
of 2 · 10−5 and batch size of 64 for five epochs for
both acquisition and evaluation phases.
BERT: One of the first and most popular
transformer-based pre-trained language models.
The model was pre-trained using a generative
masked language modeling objective. This model
has 12 layers, a hidden state size of 768, and 12
heads with 110M parameters in total.
RoBERTa: A model with the same architecture
and pre-training objective as BERT but trained on
more data and with optimized hyperparameters to
make the model more robust. This model has 12
layers, a hidden state size of 768, and 12 heads
with 125M parameters in total.
ELECTRA: It uses the same architecture and pre-
training data as BERT but with discriminative in-
stead of generative pre-training objectives. Instead
of masking some tokens in text and having to guess
the identity of masked tokens as BERT does, the
generative pre-training objective corrupts some to-
kens by replacing them with plausible alternatives,
and then the model has to decide for each token
whether it is the original token or the replaced one.
This model has 12 layers, a hidden state size of
768, and 12 heads with 110M parameters in total.

B.3 AL methods

AL methods used to select the most informative
data points are divided into two types of heuris-
tics: uncertainty and diversity. Methods using un-
certainty as a heuristic select data based on some
measure of the model’s uncertainty. The intuition
behind the uncertainty methods is that the more
uncertain the model is about a data point, the more
it can learn from knowing its label. In comparison,
diversity-based methods try to represent the input
space (which is not always the same as the input
population) as accurately as possible with as few
data points as possible. AL methods can combine
those two heuristics to select a group of data points
the model is uncertain about for different reasons.

The choice of the AL methods used in this ex-
periment was motivated by the type of heuristic
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F−
1 F 0

1 F+
1

SUBJ 0 1 17 18
COLA 3 11 4 18
AGN 1 4 13 18
TREC 0 2 16 18

R→B 0 3 9 12
E→B 0 4 8 12
B→R 1 1 10 12
E→R 1 2 9 12
B→E 1 3 8 12
R→E 1 5 6 12

ENT 1 5 18 24
CS 2 8 14 24
BA 1 5 18 24

4 18 50

Table 3: Breakdown of datasets, acquisition→consumer
model pairs (denoted by initial letters), and AL methods
by transferability measured via F1 score at the end of
the AL loop: negative (−), neutral (0), positive (+)
transfer.

(uncertainty vs. diversity) they used for sampling.
These methods allow us to analyze the impact of
the choice of heuristic on the success of dataset
transfer in AL.
Entropy: An uncertainty-based method that se-
lects data points with maximal information entropy
of their posterior class distribution.
Core-set: This diversity-based method selects data
points that best cover the representation space.
BADGE: A method that combines uncertainty and
diversity by using k-MEANS++ algorithm on the
would-be gradients of the models’ last layer for the
data points if their most probable labels were their
actual labels.

C Experiment runs

This section presents more results from our experi-
ment to complement the already presented results.
Table 3 shows transferability for different combi-
nations in the fashion of Table 1. However, instead
of measuring transferability with ∆AUC this table
uses the F1 score at the end of the AL loop (1500
labeled instances). To illustrate the success of reg-
ular AL (without the transfer), we present Table 4.
That table shows the same information as Table 1
and Table 3 but for situations where acquisition
and consumer models are the same. Lastly, we
present the learning curves of all of the runs of the
experiment in Figure 3 for Subjectivity, Figure 4
for CoLA, Figure 5 for AG-News, and Figure 6 for
TREC dataset.

2290



AUC− AUC0 AUC+ AUC−
10 AUC0

10 AUC+
10 F−

1 F 0
1 F+

1

SUBJ 0 0 9 0 0 9 0 0 9 9
COLA 0 3 6 1 2 6 1 4 4 9
AGN 1 3 5 0 0 9 0 0 9 9
TREC 1 3 5 0 0 9 0 0 9 9

BERT 1 2 9 0 0 12 0 0 12 12
RoBERTa 0 4 8 1 2 9 0 3 9 12
ELECTRA 1 3 8 0 0 12 1 1 10 12

ENT 1 4 7 0 1 11 0 1 11 12
CS 1 4 7 1 0 11 0 2 10 12
BA 0 1 11 0 1 11 1 1 10 12

2 9 25 1 2 33 1 4 31

Table 4: Breakdown of datasets, models, and AL methods in the groups based on the performance of regular AL:
negative (−), neutral (0), positive (+) AL.
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Figure 3: Learning curves for the Subjectivity dataset. The figure shows the mean F1 score of 20 runs with
confidence intervals of ± standard deviation.
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Figure 4: Learning curves for the CoLA dataset. The figure shows the mean F1 score of 20 runs with confidence
intervals of ± standard deviation. F1 curves for RoBERTa as consumer model with entropy as AL method have
high variance because entropy tends to favor minority class heavily, and the model starts to classify with minority
class more often than it should, so the F1 on the test set drastically drops. These drops happen one to two times per
seed during the AL loop before the method balances out the labels again.
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Figure 5: Learning curves for the AG-News dataset. The figure shows the mean F1 score of 20 runs with confidence
intervals of ± standard deviation.
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Figure 6: Learning curves for the TREC dataset. The figure shows the mean F1 score of 20 runs with confidence
intervals of ± standard deviation.
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