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Abstract

Building robust deep neural networks (DNNs)
against adversarial attacks is an important but
challenging task. Previous defense approaches
mainly focus on developing new model struc-
tures or training algorithms, but they do little
to tap the potential of training instances, es-
pecially instances with robust patterns carring
innate robustness. In this paper, we show that
robust and non-robust instances in the training
dataset, though are both important for test per-
formance, have contrary impacts on robustness,
which makes it possible to build a highly robust
model by leveraging the training dataset in a
more effective way. We propose a new method
that can distinguish robust instances from non-
robust ones according to the model’s sensitivity
to perturbations on individual instances during
training. Surprisingly, we find that the model
under standard training easily overfits the ro-
bust instances by relying on their simple pat-
terns before the model completely learns their
robust features. Finally, we propose a new mit-
igation algorithm to further release the poten-
tial of robust instances. Experimental results
show that proper use of robust instances in the
original dataset is a new line to achieve highly
robust models. Our codes are publicly available
at https://github.com/ruizheng20/robust_data.

1 Introduction

Deep neural networks (DNNs) have made signifi-
cant progress in a number of fields, such as com-
puter vision (He et al., 2016) and natural language
processing (Devlin et al., 2019), but they are sus-
ceptible to adversarial examples, which are crafted
by adding small, human-imperceptible adversar-
ial perturbations to normal examples (Goodfellow
et al., 2015; Alzantot et al., 2018). To improve the
robustness of models, many techniques have been
developed, such as robust architecture search (Guo

∗Equal contribution.
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et al., 2020; Huang et al., 2021), model pruning (Se-
hwag et al., 2020; Zheng et al., 2022), adversarial
training (Madry et al., 2018; Zhu et al., 2020) and
regularizations (Lyu et al., 2015; Wang et al., 2021).
However, most of these defensive approaches fo-
cus on developing new model structures or training
algorithms, ignoring the fact that training data has
a decisive impact on the trained model.

It is widely believed that the more abundant the
labeled data, the higher the likelihood of learning
diverse features, which in turn leads to well general-
ized models (Swayamdipta et al., 2020). However,
in practice, adversarial robustness remains a chal-
lenge that cannot be solved simply by scaling up
the dataset (Xie and Yuille, 2020). On the one
hand, recent theoretical work argues that training
a model invariant to adversarial perturbations re-
quires a much larger dataset than that is required
for standard generalization (Schmidt et al., 2018;
Alayrac et al., 2019). On the other hand, the model
tends to use any available signal to maximize ac-
curacy, and thus, adversarial examples can arise
as a result of manipulating highly predictive but
fragile features in the data (Ilyas et al., 2019). The
above evidences indicate that, adversarial vulnera-
bility is not only associated with the training data
size, but is also an inherent property of the data.
Most of existing defense methods treat all data
equally, which requires us to have a closer look at
the dataset whether all instances contribute equally
to improving the robustness of the model.

In this paper, we focus on exploring the relation-
ship between training data and adversarial robust-
ness, with the aim of figuring out the following
questions:

Q1: Which instances are important for adver-
sarial robustness, and how do we find them? We
delve into the training dynamics of each instance
and find that instances have different robustness.
Even without the help of adversarial training, a por-
tion of the data progressively becomes more robust
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to perturbations, and these instances are called ro-
bust instances.1 When we train models on these
data in isolation, they are more helpful in improv-
ing robustness than other subsets of data with the
same size. Motivated by this phenomenon, we
propose a metric based on the adversarial loss of
each instance across the training epochs to indicate
the impact of training instances on robustness. As
shown in Figure 2, this metric reveals three distinct
regions in the dataset: a region with inherently ro-
bust instances, a region with non-robust instances,
and a region with instances that fluctuate between
robust and non-robust. Based on the proposed met-
rics, a significant portion of robust instances can be
selected from the training dataset to significantly
improve the robustness of the model.

Q2: Why is the benefit of robust instances
held back when mixed with other training in-
stances? How to make the best out of them
to improve robustness? DNNs exhibit mem-
orization effects in that they first memorize easy
and clean patterns, and then hard and noisy ones
(Zhang et al., 2017; Wang et al., 2019). The robust
instances have simple and straightforward task pat-
terns that better align with human perception. We
find that the model under standard training easily
overfits the robust instances by relying on their sim-
ple patterns before the model starts to learn their
robust features, which limits the power of robust
instances. To address this problem, we propose a
new mitigation algorithm that impedes overconfi-
dent predictions by regularizations for robust in-
stances to avoid overfitting. The proposed method
effectively releases the potential of robust instances,
while other instances contribute little to robustness
improvement. In particular, our contributions are:

• We show that the instances are not equally
important to improve the robustness of the
model. The robust instances are more critical
to robustness than other instances.

• We propose a new approach to distinguish the
robust instances from non-robust ones based
on their sensitivity to perturbations during
training.

• We find that the standard training easily over-
fits the robust instances relying on their simple
patterns rather than learning robust features.

1In this paper, a robust instance means that the model is in-
sensitive to perturbations of this instance. In the later sections,
we will show that robust instances also have a positive impact
on the robustness of the model.

• We propose a new mitigation algorithm to fur-
ther release the potential of robust instances.
Our analysis and results are verified by exten-
sive experiments.

2 Characterizing robust instances

We find that the model have different sensitivities
to perturbations of the instances during the train-
ing phase, and this property is strongly correlated
with the robustness of the trained models. Based
on this, we propose an approach to identify these
innately robust instances and demonstrate that they
contribute more to robustness when trained in iso-
lation.

2.1 Adversarial Loss during Training
Given a C-class dataset D = {(x0

i ,yi)}Ni=1 of size
N , x0

i denotes the natural input embeddings and yi

is the label vector. Our method assumes a model
fθ whose parameters θ are optimized to minimize
the empirical risk, as in standard training, without
any extra regularization. The loss function on the
natural input x0

i is ℓ(x0
i ,yi,θ). We use a stochastic

gradient-based optimization procedure to optimize
the model parameters, with training instances ran-
domly ordered at each epoch, across T epochs.

To measure robustness of the instances during
training, we perturb the input word embeddings.2

The goal of an attack method is to find an adversar-
ial example xi that remains in the ϵ-ball centered
at x0

i (∥xi − x0
i ∥F ≤ ϵ) but can fool the model

to make an incorrect predication (fθ(xi) ̸= yi).
The loss function on adversarial example xi can
reflect to what extent the robust and useful features
are preserved under adversarial perturbation (Ilyas
et al., 2019):

ℓadv(xi,yi,θ) = max
∥xi−x0

i ∥F≤ϵ
ℓ(xi,yi,θ). (1)

A wide range of attack methods have been pro-
posed to craft adversarial examples. Projected Gra-
dient Descent (PGD) iteratively perturbs normal
input x0 for a number of steps K with fixed step
size η. If the perturbation goes beyond the ϵ-ball, it
is projected back to the ϵ-ball (Madry et al., 2018):

xk
i =

∏(
xk−1
i + η · sign(∇xℓ(x

k−1
i ,yi,θ))

)
,

where xk
i is the adversarial example at the k-th step,

sign(·) denotes the sign function and
∏
(·) is the

projection function.
2In our work, the robustness of an instance refers to the

robustness of the model on a specific instance.
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Robust Instances

Non-Robust Instances

Swing Instances

Figure 1: Data map for the SST-2 train set, based on a BERT-base model. Density plots for the three different
measures (sensitivity, variability and flip rate) based on the adversarial loss of each instance during training are
shown towards the right. The training instances can be roughly classified into three types: robust instances, non-
robust instances and swing instances.

We characterize the evolution of robustness us-
ing statistics of adversarial losses throughout train-
ing. The first statistic aims to measure the sensitiv-
ity of the model predictions in the face of perturba-
tions. We define sensitivity of individual instance
x0
i as mean adversarial loss across epochs:

µ̂i =
1

T

T∑

t=1

ℓadv(xi,yi,θt), (2)

where θt denotes the model parameters at the end
of t-th epoch. We also consider a more coarse, dis-
crete, and perhaps more intuitive statistic, the rate
of times the model provides incorrect predictions
when the input is perturbed, referred to as flip rate;
this score has only T + 1 possible values.

Finally, we consider variability, i.e., the spread
of adversarial loss across epochs as measured by
the standard deviation:

σ̂i =

√∑T
t=1 (ℓadv(xi,yi,θt)− µ̂i)

2

T
. (3)

If the model consistently assigns the same predic-
tion to a perturbed instance (whether correct or
not), this instance will have low variability. On the
contrary, if the model is indecisive, this instance
will have high variability.

2.2 Data Maps

In order to better illustrate the differences in in-
stances, we use the above statistics as coordinates
to construct a data map (Swayamdipta et al., 2020).
We construct data maps for three widely used
benchmark datasets: SST-2 (Socher et al., 2013)
– a binary classification task that needs to classify
movie reviews as positive or negative; QQP (Wang
et al., 2017) – a paraphrase identification task to
determine if two questions are paraphrases of each
other; AGNews (Zhang et al., 2015) is a text clas-
sification task that classifies news articles into one
of four topics. All data maps are built using results
from the models based on the BERT-base (Devlin
et al., 2019) architecture.

Figure 1 shows the data map for the SST-2
dataset. It is obvious that the data follow a bell-
shaped curve with respect to sensitivity and vari-
ability. The majority of instances fall within the
high sensitivity and moderate variability regions
on the map (Figure 1, bottom-right). These in-
stances are always non-robust to perturbations (for
the model); therefore, we refer to them as non-
robust instances. The second group is smaller
and consists of instances with low sensitivity and
low variability (Figure 1, bottom-left). As such in-
stances are robust to perturbations during training,
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Figure 2: Adversarial losses of 10% most non-robust,
robust and swing instances on SST-2 training set. The
adversarial loss of robust instances is gradually decreas-
ing, which means that they have more robust features.

we refer to them as robust instances. The third
group consists of instances with high variability
(Figure 1, top); these instances swing between be-
ing sensitive or robust to perturbations. Therefore,
we refer to them as swing instances.

Robust dynamic. We consider three data subsets,
i.e., 10% of the most robust, 10% of the most non-
robust, and 10% of the most swing. Figure 2 shows
the adversarial losses of instances from these three
regions of the SST-2 dataset during the training pro-
cedure. The most significant difference among the
three regions is the decline rate of their adversarial
losses, which is much faster in the region of robust
instances than in the other two regions. This means
that robust instances have more robust features and
they become more robust to perturbations as train-
ing proceeds, without the help of robust learning
methods such as adversarial training.

Case study. Table 5 shows instances of SST-
2 that belong to the different regions mentioned
above. Robust instances have more straightforward
task patterns, are better aligned with human per-
ception, and are easy to understand. In contrast,
most non-robust and swing instances are ambigu-
ous, have no obvious task patterns, and are chal-
lenging for humans, which may explain why these
instances are vulnerable to perturbations (Tsipras
et al., 2019).

3 Data Selection using Data Maps

The data map shows the different regions in the
dataset. It is natural to wonder what role instances
from different regions play in learning and adversar-
ial robustness. We answer this question empirically
by training the model solely on instances selected
from each region, and then performing standard

Dataset Baseline Accuracy Robustness

SST-2

100% train 92.1 6.1

100% FreeLB 91.7 29.4

50% non-robust 93.1 4.7

50% swing 91.6 17.2

50% robust 91.1 23.9

QQP

100% train 90.1 20.8

100% FreeLB 90.2 27.4

50% non-robust 86.2 18.3

50% swing 88.9 20.6

50% robust 75.5 28.7

Table 1: Accuracy (%) and robustness (accuracy un-
der TextFooler attack) for BERT-base models trained
on three different type of instances of SST-2 and QQP.
Training 50% most robust instances achieves better ro-
bustness performance, even matching the adversarial
training on 100% training data.

generalization (Accuracy) as well as robustness
(accuracy under attack) evaluations.

The training strategy is simple and straightfor-
ward – we train the model from scratch on the
subsets of the training data selected by ranking
instances based on the statistics described above.
We hypothesize that robust and swing instances are
more important for improving the robustness of
the model because they have more robust features
and more stable to perturbations as training pro-
ceeds. We compare the performance of the models
trained on different data regions with other base-
lines. All considered subsets contain 50% of the
training data (to control the effect of training data
size on performance).

Baselines. The most natural baseline is using all
of the data (100% train). Our data selection base-
lines consider the subsets of 50% of the most robust
(50% robust), 50% of the most non-robust (50%
non-robust) and 50% of the most indecisive (50%
swing), which is a trade-off between robust and
non-robust instances. Finally, we also compare our
models trained on data subsets with a textual ad-
versarial training method, Freelb (Zhu et al., 2020),
which is a strong defense baseline in NLP (100%
FreeLB).

Results. We report accuracy on the test set to
evaluate generalization performance, and accuracy
under attack using TextFooler (Jin et al., 2020) as
the attacker to measure adversarial robustness.

Table 1 shows our results on the SST-2 and QQP
datasets. We can observe that: 1) Training on 50%
most robust instances results in the best robust-
ness performance among all data selections, ex-
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(a) Accuracy on SST-2
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(b) Robustness on SST-2
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(c) Accuracy on QQP
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(d) Robustness on QQP

Figure 3: Accuracy (%) and robustness performance with increasing proportion (%) of most non-robust, robust and
swing instances. 50% of the most robust instances are sufficient to achieve competitive robustness performance,
while more data would impair robustness. The key finding is that only a portion of the instances is helpful for the
robustness of the model.
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(d) Robustness evaluation

Figure 4: Overfitting to robust instances. 1) (a) and (b) show the model easily overfits the robust instances. 2) (b)
and (d) show the standard training has overfitted the robust instances before the models start learning their robust
features. 3) (c) and (d) show that by mitigating the overfitting to robust instance, the model can learn their robust
features better.

ceeding that of 100% train and even better than
100% FreeLB on QQP. 2) In both datasets, the
robustness performance of non-robust instances is
lower than all other baselines, which is expected be-
cause the features of these instances are non-robust.
3) The generalization performance of non-robust
instances is better than that of robust, because well
generalized features are more sensitive to adversar-
ial perturbations. 4) The model trained on most
swing instances sacrifices a bit of robustness to
improve generalization compared with the perfor-
mance of the model trained on robust instances.

In Figure 3, we show the evolution of generaliza-
tion performance and adversarial robustness when
we change the size of the selected subsets of data.
Each point in the figure corresponds to retraining
the model from scratch (with the same hyperparam-
eters as the base model) on an increasingly larger
subset of the training data. We observe that the
generalization performance improves rapidly when
we increase the size of non-robust and swing sub-
sets. This means that the original training dataset
is redundant to the model, and training the model
on a small portion of the data also gives excellent
generalization performance. Comparatively, by in-

creasing the number of robust and swing, 50% of
the data is sufficient to achieve excellent robust-
ness performance, while more data actually hurts
robustness. On the one hand, we require sufficient
data to improve the generalization, and on the other
hand, excessive well-generalized data will harm the
robustness. We cannot rely on data selection alone
to get the best generalization and robustness at the
same time, and in the next sections we will show
how to leverage instances from different regions to
achieve win-win results in performance.

4 Why Do Robust Instances Fail?

In the previous section, we observed that robust in-
stances are import for adversarial robustness. This
leads us to wonder why robust instances fail in
competition with non-robust instances, and is it in-
evitable when we train these data together? In this
section, we provide further insight into the training
procedure by investigating the interactions between
robust and non-robust instances.

4.1 Overfitting to Robust Instances
As shown in Figure 4, we find that robust instances
are easy to learn and converge faster than non-
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(b) Mitigating overfitting
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Figure 5: Synthetic continuous learning settings for SST-2. The background color of each column indicates the
training partition, with the light blue background denoting training non-robust instances and the light orange
denoting training robust instances. The curves in (a) and (b) track the performance of the two partitions during
interleaved training, and curves in (c) and (d) indicate the performance of the test set. The figure highlights that
mitigating the overfitting of the model to robust instances can reduce the conflict between robust and non-robust
instances, making the robust instances to better improve the robustness of the model.

robust instances. As the training loss of robust
instances approaches zero, the test loss is increas-
ing, which means that the model overfits the robust
instances. However, the robustness of the model
continues to improve, even as the training loss be-
comes (close to) zero. This suggests that the model
under standard training easily overfits the robust
instances before the model starts to learn their ro-
bust features. We further show the results in Figure
4(c) when we use the Flooding (Ishida et al., 2020)
algorithm to mitigate overfitting to robust instances,
where Flooding intentionally prevents further re-
duction of the training loss when it reaches a rea-
sonably small value. Flooding prevents the model
from memorizing and being overconfident in these
instances. By mitigating the overfitting to robust
instances, the benefits of robust data are further
demonstrated.

The above analysis leads us to believe that, to
some extent, the overfitting to robust instances re-
duces their ability to improve robustness, especially
when competing with non-robust instances. To test
this hypothesis, we conduct an experiment inspired
by the standard continuous learning setup (Toneva
et al., 2019). We created two equally sized datasets
by extracting 50% of the most robust and 50% of
the most non-robust instances, respectively. Then,
we train a model for 2 epochs on each partition in
an alternating fashion, while tracking generaliza-
tion and robustness on the test set. The background
color represents which of the two datasets is cur-
rently being used for training.

It can be concluded that: 1) Figures 5(a) and
5(d) show that even if we train the non-robust in-
stances first, the robust instances can still improve
robustness in the next 2 epochs. However, as the

training loss of the robust instances converges to
zero, the model learns less and less from the robust
instances. 2) As shown in Figure 5(a), there is a sig-
nificant conflict in learning between the robust and
non-robust instances, which means that the model
learns distinct features from them. 3) Figure 5(b)
shows the conflict effect between robust and non-
robust instances is reduced by mitigating the over-
fitting of the model to robust instances. Therefore,
mitigating overfitting to robust instances allows the
model to better generalize their robust features.

4.2 Mitigating Overfitting
Based on the above analysis, our aim is to mitigate
the overfitting to robust instances in the standard
training process. While overfitting has been exten-
sively studied in the machine learning community
to reduce the generalization gap, few approaches
consider the impact of overfitting on adversarial
robustness.

To address this problem, we propose to regular-
ize the predictions of robust instances from being
over-confident by integrating loss-restricted (LR)
methods (Szegedy et al., 2016; Ishida et al., 2020)
into the standard training framework. We believe
that LR is suitable for standard training because it
can be easily implemented by adding a term to the
objective function. Specifically, we construct a new
dataset Dp%

r using the p% most robust instances in
the original dataset, and other instances construct
D\Dp%

r . The training loss on the instance xi with
LR can be expressed as:

ℓLR(xi,yi,θ) =

{
ℓ(xi,yi,θ), xi ∈ D\Dp%

r ,

R(ℓ (xi,yi,θ)) , xi ∈ Dp%
r ,

where R(·) denotes regularization term. In our
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method, we consider two regularizations, Flooding
(Ishida et al., 2020) and Label Smoothing (Szegedy
et al., 2016), to control the training loss for allevi-
ating overfitting.

Flooding is a direct solution to the issue that the
training loss becomes (near-)zero. When the train-
ing loss reaches a reasonably small value, Flooding
intentionally prevents further reduction of the train-
ing loss, and the flood level corresponds to the level
of training loss that the user wants to maintain. The
algorithm of Flooding is simple, modifying the
training loss as (Liu et al., 2022):

RFL(ℓ(xi, yi,θ)) = |ℓ(xi, yi,θ)− b|+ b, (4)

where b > 0 is the user-specified flood level. By us-
ing Flooding, the training loss will oscillate around
the flood level. The model will continue to “ran-
dom walk” with the same non-zero training loss,
thus the model will move into a region with a flat
loss landscape, leading to better generalization.

Label smoothing is another widely known tech-
nique to mitigate the overfitting problem by penal-
izing overconfident model outputs (Müller et al.,
2019). For a model trained with hard labels, we
minimize the expected value of the cross-entropy
between the true label yi and the model’s output for
xi, where yi is a one-hot vector with “1” for cor-
rect class and “0” for others. For a model trained
with the label smoothing, we minimize the cross-
entropy between the modified label yLS

i and the
model’s output:

RLS(ℓ(xi,yi,θ)) = ℓ(xi,y
LS
i ,θ), (5)

where yLS
i = yi(1−α)+α/C, α is the smoothing

parameter and C is the number of classes .
From Table 2, we can observe that the above

regularizations are valid. The robustness of the
model is significantly improved by mitigating the
overfitting of robust instances, while also achiev-
ing high accuracy. We use two regularizations to
prove that the above conclusion does not depend
on any specific regularization. In the experimental
section, we perform more experiments to verify the
effectiveness of the proposed method.

5 Experiments

In this section, we provide experimental results us-
ing BERT-base (Devlin et al., 2019) as a backbone
model on the SST-2 (Socher et al., 2013), QQP
(Wang et al., 2017) and AGNews (Zhang et al.,

Dataset Baseline Accuracy Robustness

SST-2
Standard Training 92.1 6.1

+ Flooding 91.9 46.0

+ Label Smoothing 92.5 41.4

QQP
Standard Training 90.1 20.8

+ Flooding 90.9 39.4

+ Label Smoothing 91.0 45.1

Table 2: Accuracy (%) and robustness for BERT-base
models when using Flooding and Label Smoothing to
mitigate the overfitting to 50% most robust instances.
By mitigating the overfitting to robust instances and
using standard training on other instances, excellent
accuracy and robustness can be achieved at the same
time.

2015) datasets to validate and analyze the effec-
tiveness of our proposed approach. Experimental
implementation details and hyperparameters are
provided in Appendix A.

5.1 Robust Evaluation

The evaluation metrics used in our experimental
analyses include: 1) Clean%: the accuracy on the
clean test dataset; 2) Aua%: the model’s predic-
tion accuracy under attack; 3) #Query: the average
number of times the attacker queries the victim
model. For a robust model, higher accuracy un-
der attack and higher query times are expected.
The baselines we used and adversarial settings are
shown in Appendix A. More experimental results
and analysis are presented in Appendix B.

Results. Table 3 shows the results of the pro-
posed method and other baselines under adversarial
attack. We can observe that the proposed method
achieves a significant improvement in robustness
compared to other defense methods. Both Flooding
and Label Smoothing work well in our approach.
The proposed method improves the robustness with-
out sacrificing accuracy, while robust tickets lose
much accuracy on SST-2 despite also having a high
robustness. We consistently demonstrate the effec-
tiveness of our approach on different datasets.

6 Related Work

Text attacks typically generate adversarial exam-
ples by manipulating characters (Ebrahimi et al.,
2018; Gao et al., 2018), words (Ren et al., 2019;
Jin et al., 2020; Li et al., 2020; Alzantot et al.,
2018; Zang et al., 2020; Maheshwary et al., 2021),
phrases (Iyyer et al., 2018) of the original input,
or even entire sentences (Wang et al., 2020), to
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Dataset Method Clean%
BERT-Attack TextFooler TextBugger

Aua% #Query Aua% #Query Aua% #Query

SST-2

Fine-tune 92.1 3.8 106.4 6.1 90.5 28.7 46.0

PGD 92.2 13.4 151.3 18.1 118.5 44.2 53.6

FreeLB 91.7 23.9 174.7 29.4 132.6 49.7 53.8

InfoBERT 92.1 14.4 162.3 18.3 121.1 40.3 51.2

RobustT 90.9 20.8 169.2 28.6 149.8 43.1 53.9

Ours+Flooding 92.3 42.4 224.6 46.8 163.3 55.9 63.2

Ours+Label Smoothing 91.9 41.3 235.7 47.3 170.5 58.8 63.4

QQP

Fine-tune 90.1 18.1 187.8 20.8 131.3 24.3 58.8

PGD 91.2 30.5 254.1 33.6 174.2 35.9 89.2

FreeLB 91.3 32.8 262.8 36.4 180.2 37.7 96.8

InfoBERT 91.5 33.0 263.9 36.3 180.1 38.2 94.6

RobustT 91.2 35.2 271.2 37.3 183.9 39.5 97.0

Ours+Flooding 90.9 37.0 289.8 39.4 195.8 40.8 98.4

Ours+Label Smoothing 91.1 42.4 316.1 44.5 208.9 47.3 102.1

AGNews

Fine-tune 94.7 4.1 412.9 14.7 306.4 40.0 166.2

PGD 95.0 20.9 593.2 36.0 399.2 56.4 193.9

FreeLB 95.0 19.9 581.8 33.2 396.0 52.9 201.1

InfoBERT 94.4 11.1 517.0 25.1 374.7 47.9 193.1

RobustT 94.9 21.8 617.5 35.2 415.6 49.0 206.9

Ours+Flooding 94.5 73.1 874.2 76.6 527.5 78.7 252.9

Ours+Label Smoothing 94.7 75.4 904.0 79.4 947.3 82.3 262.6

Table 3: Main results on adversarial robustness evaluation. The proposed method on downstream tasks achieves a
significant improvement of robustness. The best performance is marked in bold.

deceive the model. The most widely used attacks
are word-level attacks, which replace words in a
sentence with synonyms and maintain a high-level
similarity and validity in the semantic (Li et al.,
2020) or embedding space (Jin et al., 2020).

To counter adversarial attacks, a number of de-
fense methods have been developed, such as ad-
versarial training (Madry et al., 2018; Zhu et al.,
2020; Li and Qiu, 2021), information compression
(Wang et al., 2021; Zhang et al., 2022), and model
pruning (Zheng et al., 2022; Xi et al., 2022). How-
ever, most of these defensive approaches focus on
developing new model structures and training al-
gorithms, ignoring the fact that training data has a
decisive impact on the robustness of the model. In
this paper, we propose a new defense method from
a data perspective to improve the robustness of the
model by better utilizing the robust instances in the
original dataset.

A body of work tends to view the existence of
adversarial examples as an inevitable consequence
of using high-dimensional inputs and the statistical
fluctuations due to data size and data noise (Good-
fellow et al., 2015; Gilmer et al., 2018). How-
ever, Ilyas et al. (2019) claim that adversarial vul-
nerability is a direct result of sensitivity to well-
generalizing features in the data. Data-related stud-
ies in the field of robustness focus on improving

the robustness of models using more unlabeled data
(Carmon et al., 2019; Alayrac et al., 2019) and data
augmentation (Lee et al., 2020; Rebuffi et al., 2021).
Dong et al. (2021) find that low-quality data may
not be useful or even detrimental to adversarial ro-
bustness. To the best of our knowledge, no work
has attempted to characterize the impact of each
instance in the training dataset on robustness.

7 Conclusion

In this paper, we address the challenge of under-
standing the impact of training instances on robust-
ness, particularly to improve the robustness of the
model. We study the adversarial losses of each
instance during training and show how these losses
can be used as a metric to identify robust instances.
Our empirical results suggest that the proposed met-
ric is a very promising measure for characterizing
the contribution of training instances to robustness,
and can be used to prune out non-robust instances
to construct a dataset that is inherently robust. Fur-
thermore, we show that standard training can easily
overfit robust instances by relying on their simple
patterns before the model learns the robust features.
The robustness of the model can be significantly
improved by mitigating the overfitting of the model
to robust instances during the standard training.
Further investigations in this direction may lead to
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new technologies for adversarial defense.

Limitations

In this work, we find that robust instances are help-
ful for model robustness and propose a metric to
select them. However, we only applied one single
criterion, i.e. the training dynamic of adversarial
loss, as selection metric. More instance features
can be inspected in terms of the relation with model
robustness and further serve as metrics for robust
data selection. Moreover, in this work, we use the
selected data for standard fine-tuning with simple
regularization, while the impact of data robustness
on adversarial training is not studied. These two
problems will be explored in future work.
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A Experimental Details

A.1 Implementation Details
Our implementation of the proposed method is
mainly based on BERT, so most of the hyperparam-
eter settings are based on them.3 We use AdamW
as our optimizer with the learning rate 2e−5, a
batch size 32 and a linear learning rate decay sched-
ule with a warm-up of 0.1. The dropout rate is set
to 0.1 for all task-specific layers. We implement
three adversarial attack methods using TextAttack
framework and follow the default parameter set-
tings.4 The accuracy (Clean%) is tested on the
whole test set. Other adversarial robustness evalua-
tion metrics (e.g., Aua% and #Query) are evaluated
on the 1000 randomly selected test instances for
all datasets. All experiments are conducted using
NVIDIA RTX3090 GPUs.

A.2 Hyperparameters
Our proposed method consists of two stages; the
first stage finds robust instance from the training
dataset based on the statistics of adversarial loss,
and the second stage, uses regularizations to miti-
gate the overfitting of the model to robust instances
during standard training. Adversarial loss objective
introduces four hyperparameters: the perturbation
step size η, the initial magnitude of perturbations ϵ0,
the number of adversarial steps K, and we do not
constrain the bound of perturbations. In addition,
we report the flood level b, smoothing parameter α
and the p% most robust instances in the proposed
overfitting mitigation method.

Hyperparameters SST-2 QQP AGNEWS

Stage1

η 0.08 0.08 0.08

ϵ0 0.05 0.05 0.05

K 8 8 8

Epoch 10 10 10

Stage2

b 0.2 0.2 0.2

α 0.8 0.8 0.8

p% 30 50 50

Epoch 5 5 5

Table 4: Hyperparameters used in the proposed method.

A.3 Baselines
The baseline methods we use include: 1) Fine-tune
(Zhang et al., 2015): the official BERT implemen-
tation on downstream tasks; 2) PGD (Madry et al.,

3https://github.com/huggingface/transformers
4https://github.com/QData/TextAttack

2018): standard adversarial training with PGD at-
tacks; 3) FreeLB (Zhu et al., 2020): an enhanced
adversarial training to generate adversarial exam-
ples at low cost; 4) infoBERT (Wang et al., 2021):
the information bottleneck-based approach filter-
ing out redundant and noisy information to improve
the robustness of the features; 5) RobustT (Zheng
et al., 2022): the robust sub-network extracted from
the original model with innately better robustness.

A.4 Attack Settings.

Three widely accepted attack methods are used to
evaluate the robustness of the proposed approach
and other baselines. BERT-Attack (Li et al., 2020)
and TextFooler (Jin et al., 2020) are two word-level
attackers that first identify the important words in
a sentence, and then replace them with semanti-
cally similar and grammatically correct synonyms.
TextBugger (Li et al., 2019) generates adversarial
typos by using both character-level and word-level
perturbations.

B Additional Results

B.1 Case Study

Table 5 shows the case study for the instances se-
lected by the proposed metric. Robust instances
have more straightforward task patterns, are bet-
ter aligned with human perception, and are easy
to understand. In contrast, most non-robust and
swing instances are ambiguous, have no obvious
task patterns, and are challenging for humans.

B.2 Importance of Robust Dynamic

In this paper, we propose a new metric that iden-
tifies important instances contributing to adversar-
ial robustness based on the adversarial loss during
training. To further understand the role of the ad-
versarial loss in our approach, we compared our
method with a metric based on the original train-
ing loss. From the results in Table 6, data selec-
tion based on training loss statistics can identify
instances that play an important role in generaliza-
tion, rather than robustness.

B.3 Mitigating Overfitting to Other Instances

In the proposed method, we use regularization to
mitigate the overfitting of model to robust instances.
In Table 7, we show the results when regularization
is applied on other instances with different sizes.
When we use regularization on robust and swing in-
stances, the robustness of the model is significantly
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Instances Sentence Label

Robust

a charming , funny and beautifully crafted import Positive
a lovely and beautifully Positive
have a great time Positive
bright shining star Positive
bad writing , bad direction and bad acting – the trifecta of badness Negative
a good time Positive
charming , funny and beautifully crafted import Positive
a lovely and beautifully photographed romance . Positive
’s lovely and amazing Positive
have a good time Positive

Non-robust

vulgarity , sex scenes , and Negative
hard-driving narcissism is a given Negative
marinated in clichés and mawkish dialogue Negative
as its uncanny tale of love , communal discord , and justice Negative
cloying messages and irksome characters Negative
seems a prostituted muse ... Negative
is tragically Negative
painful , horrifying and oppressively tragic Negative
some weird relative trots out the video he took of the family vacation to stonehenge Negative
cheesy backdrops , ridiculous action sequences , Negative

Swing

hide new secretions from the parental units Negative
an overall sense of brusqueness Negative
, dragon loses its fire midway , nearly flickering out by its perfunctory conclusion . Negative
your brain and your secret agent decoder ring at the door Negative
, two towers outdoes its spectacle . Positive
as-nasty - Negative
semi-surrealist exploration of the creative act . Positive
viscerally repellent Negative
silly – and gross – but it ’s rarely as moronic as some campus gross-out films . Negative
bittersweet Positive

Table 5: Examples of the most robust, non-robust and swing instances in the SST-2 training set, with gold standard
labels. Robust instances have more straightforward task patterns, are better aligned with human perception, and are
easy to understand.

improved, while using regularization on non-robust
instances does not improve the robustness. This
suggests that the excellent performance of the pro-
posed work is due to our better exploitation of the
robust features in the data rather than depending on
regularizations. Although previous work finds that
the Flooding algorithm can improve the robustness
of the model, it cannot obtain a performance com-
parable to the proposed method. Moreover, there
is no evidence to show that the robustness of the
model can be improved by using label smoothing
alone.

B.4 Instances from More Regions

Table 6 shows the accuracy and robustness eval-
uation for models trained on instances selected
from different regions on the data map. The model
trained on robust instances (with low sensitivity
and low variability) achieves the best robustness.

B.5 Effect of Regularized Instance Proportion
Figure 6 shows the proposed method across all pro-
portions of regularized instances. The adversarial
robustness improves as the proportions of regular-
ized instances grows until a certain threshold, then
the robustness deteriorates.

B.6 Additional Data Maps
The data maps for AGNEWS and QQP are shown
in Figure 7 and Figure 8, respectively.
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Datasets Metrics Regions
Top 10% Top 30% Top 50%

Clean% Aua% Clean% Aua% Clean% Aua%

SST-2

Adversarial Loss
Bottom-Left 87.9 9.9 89.6 11.5 91.1 23.9

Bottom-Right 83.8 2.9 89.7 4.2 93.1 4.7

Top 88.9 8.0 90.8 9.3 91.6 17.2

Training Loss
Bottom-Left 83.5 13.8 88.2 11.2 90.7 12.7

Bottom-Right 86.0 4.5 91.2 5.4 92.4 4.8

Top 34.1 0.2 91.6 10.2 92.7 8.9

QQP

Adversarial Loss
Bottom-Left 69.0 23.4 71.7 25.5 75.5 28.7

Bottom-Right 62.3 13.7 76.2 16.8 86.2 18.3

Top 78.8 17.7 85.2 23.5 88.9 20.6

Training Loss
Bottom-Left 58.9 15.5 66.3 11.8 76.7 14.5

Bottom-Right 20.5 0.4 83.1 7.4 89.0 11.2

Top 19.5 0.8 77.8 4.3 90.3 11.0

Table 6: Compare the performance of models trained on instances that are selected by the statistics of adversarial
loss and original training loss. Our results show that adversarial loss plays a vital role in the proposed metric.

Datasets Instances Regularization
Top 10% Top 30% Top 50%

Clean% Aua% Clean% Aua% Clean% Aua%

SST-2

Robust
Flooding 92.7 25.4 92.3 46.8 91.9 46.0

Label Smoothing 92.6 32.0 92.4 47.3 92.5 41.4

Non-robust
Flooding 92.4 5.4 92.3 14.0 92.0 11.9

Label Smoothing 92.4 11.1 92.4 10.5 92.0 7.1

Swing
Flooding 92.4 4.4 92.0 7.9 92.4 14.6

Label Smoothing 92.4 23.8 93.2 32.7 92.1 26.3

QQP

Robust
Flooding 90.9 20.8 91.1 31.6 90.9 39.4

Label Smoothing 91.1 37.4 90.9 41.0 91.1 44.5

Non-robust
Flooding 91.2 20.2 91.1 22.2 91.1 27.6

Label Smoothing 91.4 28.7 91.2 27.2 91.1 24.2

Swing
Flooding 91.1 22.0 91.0 22.6 90.9 29.0

Label Smoothing 91.2 30.2 91.2 32.8 91.0 35.2

Table 7: Accuracy and robustness evaluation using regularizations on p% (p = 10, 30, 50) most non-robust, robust
and swing instances. The robustness of the model is significantly improved when the overfitting of the model to
robust and swing instances is mitigated, while using regularization on non-robust instances cannot improve the
robustness.
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Figure 6: Robustness evaluation results of the proposed
method under different proportions of regularized in-
stances. The adversarial robustness improves as the
proportion of regularized instances grows until a certain
threshold, then the robustness deteriorates.

2328



Datasets Instances
Top 10% Top 30% Top 50%

Clean% Aua% Clean% Aua% Clean% Aua%

SST-2

Robust 87.9 9.9 89.6 11.5 91.2 23.9

Non-robust 83.8 2.9 89.7 4.2 93.1 4.7

Low-Sensitivity 88.1 9.0 89.7 10.7 91.1 21.0

High-Sensitivity 83.7 3.2 89.7 4.5 93.2 4.5

Low-Variability 87.7 7.9 88.8 4.9 91.6 5.8

Swing 88.9 8.0 90.8 9.3 91.6 17.2

Small Filp Rate 62.3 9.7 88.6 9.4 88.9 12.8

Large Filp Rate 91.2 7.1 91.9 6.3 92.5 4.7

QQP

Robust 69.0 23.4 71.7 25.5 75.5 28.7

Non-robust 62.3 13.7 86.2 16.8 87.0 18.3

Low-Sensitivity 68.0 19.3 70.5 21.5 75.0 24.7

High-Sensitivity 65.2 9.0 77.3 20.9 86.2 21.9

Low-Variability 79.6 16.0 84.9 14.7 88.9 10.3

Swing 78.8 17.7 85.2 23.5 88.9 20.6

Small Filp Rate 69.7 13.5 73.4 19.3 78.5 21.4

Large Filp Rate 70.9 7.6 82.1 7.5 89.0 8.4

Table 8: Accuracy and robustness evaluation for models trained on instances selected from different regions on the
data map.

Robust Instances

Non-Robust Instances

Swing Instances

Figure 7: Data map for the AGNEWS train set, based on a BERT-base model. Density plots for the three different
measures (sensitivity, variability and flip rate) based on the adversarial loss of each instance during training are
shown towards the right. The training instances can be roughly classified into three types: robust instances, non-
robust instances and swing instances.
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Robust Instances

Non-Robust Instances

Swing Instances

Figure 8: Data map for the QQP train set, based on a BERT-base model. Density plots for the three different
measures (sensitivity, variability and flip rate) based on the adversarial loss of each instance during training are
shown towards the right. The training instances can be roughly classified into three types: robust instances, non-
robust instances and swing instances.
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