
Findings of the Association for Computational Linguistics: ACL 2023, pages 218–235
July 9-14, 2023 ©2023 Association for Computational Linguistics

Boost Transformer-based Language Models with
GPU-Friendly Sparsity and Quantization

Chong Yu1, Tao Chen2,∗, Zhongxue Gan1,∗
1Academy for Engineering and Technology, Fudan University

2School for Information Science and Technology, Fudan University
21110860050@m.fudan.edu.cn, {eetchen, ganzhongxue}@fudan.edu.cn

Abstract

Along with the performance improvement in
NLP domain, the sizes of transformer-based
language models (TLM) are also dramatically
increased. Some prior works intend to com-
press TLM models into more compact forms,
but do not fully consider the hardware charac-
ters may not support the efficient execution for
these forms, leading to the deployment of TLM
on hardware with noticeable acceleration is still
challenging. This paper thoroughly designs a
compression scheme named GPUSQ-TLM to
maximally utilize the GPU-friendly 2:4 fine-
grained structured sparsity and quantization
characters. Especially, a dense TLM model is
first pruned to meet the GPU’s acceleration con-
straint of sparse patterns with FP16 type, then
it is further quantized into a fixed-point one by
quantization-aware training, to provide an extra
speedup for integer tensors on GPU. A mixed-
strategy knowledge distillation of labels, logits
and feature maps is used for best accuracy com-
pensation during pruning and quantization pro-
cess. Experiment results show GPUSQ-TLM
scheme achieves state-of-the-art compression
on TLM model of various encoder and de-
coder blocks with negligible accuracy degra-
dation on SQuAD, GLUE, CNN-DM & XSum
and WikiText benchmarking tasks. Moreover,
GPUSQ-TLM can boost actual deployment
performance by up to 4.08-4.25× times latency
and 6.18-6.79× throughput on A100 GPU.

1 Introduction

Equipped with the attention mechanism and ar-
chitecture (Vaswani et al., 2017), the transformer-
based language models (TLM) are proficient
in handling long-range dependencies of the se-
quence inputs. The subsequent studies showed
that transformer-based pre-trained language mod-
els (Devlin et al., 2019; Radford et al., 2018)
could achieve state-of-the-art performances on var-
ious natural language processing (NLP) (Wolf

∗ Tao Chen and Zhongxue Gan are corresponding authors.

et al., 2019) benchmarks, including question an-
swering (Rajpurkar et al., 2016), paraphrase detec-
tion (Dolan and Brockett, 2005), sentiment anal-
ysis (Socher et al., 2013), natural language in-
ference (Bowman et al., 2015), and text classi-
fication (Howard and Ruder, 2018), etc. Mean-
while, the transformer-based structure also ex-
panded its success to other disciplines like com-
puter vision (Carion et al., 2020; Dosovitskiy
et al., 2020), music (Huang et al., 2018), chem-
istry (Schwaller et al., 2019), life sciences (Rives
et al., 2021), and pharmaceutics (Yang et al., 2021).

Figure 1: State-of-the-art NLP models size comparison.

Along with the performance improvement,
transformer-based language models’ scales are also
dramatically increased. BERT model (Devlin et al.,
2019) sets the milestone for pre-trained language
models with transformer encoder as its backbone.
It has 340 million parameters for the large version.
Generative Pre-trained Transformer (GPT) series
are dedicated to scaling pre-trained transformer de-
coder architecture and proved that a large-scale pre-
trained language model could achieve impressive
few-shot performance with diverse downstream
tasks. The parameters scale increases from 110
million of GPT-1 (Radford et al., 2018) to 1.5 bil-
lion of GPT-2 (Radford et al., 2019) and finally
boosts to 175 billion of GPT-3 (Brown et al., 2020).
Megatron-LM model (Narayanan et al., 2021) is

218



with 1 trillion parameters trained on 3072 GPUs.
Switch Transformers (Fedus et al., 2022) further
increase the scale of pre-trained language models
to 1.6 trillion parameters with a Mixture of Experts
(MoE) style. A detailed comparison of state-of-the-
art transformer-based models can refer to Figure 1.

Model compression techniques by transferring
the large-scale TLM models to a lightweight ver-
sion can benefit more efficient computation with
less memory and energy consumption. There are
some previous studies to compress the TLM mod-
els to compact forms. However, there are some
main drawbacks in these prior arts:

• Prior arts aim to reduce the theoretical model
size, which is not directly leading to better
efficiency on deployed hardware. (Chen et al.,
2020; Xu et al., 2021; Kurtic et al., 2022) can
prune 50%-97% of BERT weights. However
the left weights have irregular sparse pattern
do not match hardware supported acceleration
characteristics, leading to only 2%-8% latency
speedup on GPU hardware.

• How to keep the best accuracy with mul-
tiple compression methods and generalize
on various TLMs lack systematical investiga-
tion. (Sanh et al., 2019; Sun et al., 2019; Jiao
et al., 2020) compress by pruning several en-
tire transformer blocks in BERT models, lead-
ing to apparent accuracy drop. (Frantar and
Alistarh, 2023) can prune 50% weights for
GPT models. But the accuracy drop is even
larger. Moreover, these compression methods
are specifically designed according to each
model structure. So they cannot directly apply
to other model types.

Because the 2:4 fine-grained structured sparse
pattern (See section 3.1 for more details) is well
supported on NVIDIA GPUs and corresponding
libraries for math acceleration and memory sav-
ing, so we are motivated to design the compres-
sion strategy for TLM models to meet such sparse
pattern. Moreover, the 2:4 sparse GEMM sup-
ports low-precision formats like INT8. So it is
natural to design the compression scheme GPUSQ-
TLM, by combining the GPU-friendly Sparsity
and Quantization to boost deployment efficacy for
Transformer-based Language models, especially
on GPU platforms. GPUSQ-TLM method con-
sists of three stages. First, an original TLM model
is pruned to meet the GPU’s acceleration constraint
of structured sparse patterns with FP16 type. Then

the floating-point sparse model is quantized into
a fixed-point one by quantization-aware training
(QAT), which can provide an extra speedup for
GPU integer tensors. Finally, a mixed strategy
knowledge distillation of labels, logits and feature
maps is developed for best accuracy compensation
during the above pruning and quantization process.

Our main contributions include:
• Unlike prior arts aiming at reducing theo-

retical metrics, GPUSQ-TLM utilizes GPU-
friendly 2:4 sparsity with low-precision quan-
tization, achieving better GPU acceleration.

• GPUSQ-TLM combines mixed knowl-
edge distillation with sparse pruning and
quantization-aware training, which can best
compensate for compressed models’ accuracy.

• GPUSQ-TLM can apply to various TLM
structures and tasks, boosting up to 4.08-
4.25× times latency and 6.18-6.79× through-
put on A100 GPU.

• GPUSQ-TLM can work as plug-in to further
accelerate compressed models generated by
other methods (See section 4.5 for details).

2 Related Work

2.1 Pruning for TLM Compression

Sparsity is a standard technology (Han et al., 2015)
for deep learning model compression, which can
save computational power and reduce the memory
bandwidth with storage burden. Pruning the ele-
ments with less influence on the model’s output is
a common way to compress a neural model into
a sparse form. (Xu et al., 2021) and (Chen et al.,
2020) are the typical works to prune 50%-95%
of model weights and finetune to recover most of
the accuracy. (Kurtic et al., 2022) further improves
the pruning effect with second-order Hessian ap-
proximation. However, the pruned sparse format
is irregular and difficult to accelerate with algebra
libraries and hardware (Mishra et al., 2021).

Some studies have started to prune the entire
transformer blocks to improve the real hardware
deployment efficiency. For accuracy compensation,
knowledge distillation (KD) (Hinton et al., 2015)
technology is applied with the principle of using
a teacher model with better accuracy as the super-
visor for the compressed model to mimic. With
KD, (Sanh et al., 2019; Sun et al., 2019; Jiao et al.,
2020; Sun et al., 2020) succeed in compressing the
BERT model with various tiny versions. We prove

219



the proposed GPUSQ-TLM method in section 4.5
can help such coarse-grained pruning methods to
compress inside each transformer block with fur-
ther acceleration on GPU.

2.2 Quantization for TLM Compression

Quantization is another orthogonal model compres-
sion technique (Wu et al., 2020) by applying lower-
precision formats other than the standard 32-bit
floating-point (FP32) data type for weight parame-
ters, inputs, and activations when executing a neu-
ral model. Quantization can speed up deployment
efficiency because the low-precision formats have
higher computational throughput support in several
processors (NVIDIA, 2020; Jouppi et al., 2017;
Arafa et al., 2019), with the extra benefit of reduc-
ing the memory pressure.

(Shen et al., 2020) quantizes BERT models to
ultra-low precision using second-order Hessian in-
formation. But ultra-low precision like 3-bit is not
supported on hardware. To facilitate the deploy-
ment, (Kim et al., 2021) makes an integer-only
approximation for all operations in BERT to avoid
floating point calculation. But it also increases the
difficulty of maintaining accuracy. Our method
combines distillation strategies in calibration and
uses quantization-aware training (QAT) for improv-
ing accuracy compensation effect.

3 Boost TLM on GPU

GPUSQ-TLM mainly contains structured sparse
pruning and sparse-distillation-combined QAT
workflows. We explain the structured sparse pattern
on GPU in section 3.1 and Appendix A.1, and how
to compress each part of a transformer-based lan-
guage model according to the GPU-friendly sparse
pattern in sections 3.2 and 3.3. Section 3.4 de-
scribes the GPUSQ-TLM design as a whole.

3.1 Fine-grained Structured Sparsity on GPU

General Matrix Multiplication (GEMM) is the
fundamental operation inside the common parts
of TLM models, such as convolution, linear pro-
jection, and multi-head attention blocks. A spe-
cific unit called sparse Tensor Core (NVIDIA,
2017a) was introduced in NVIDIA Ampere archi-
tecture (NVIDIA, 2020) for hardware acceleration.
Accordingly, a constraint named 2:4 fine-grained
structured sparsity (Mishra et al., 2021) is im-
posed on the allowed sparsity pattern, i.e., two val-
ues from every four contiguous elements on rows

must be zero. Due to the 2:4 sparsity support on
GPU Tensor Core hardware, sparse GEMM can
reduce memory storage and bandwidth by almost
2× and provide 2× math throughput compared to
dense GEMM by skipping the redundant zero-value
computation. NVIDIA Ampere GPU architecture
supports various numeric precision for 2:4 spar-
sity, including FP32, FP16, INT8, and INT4, etc.
More details on structured sparsity can refer to Ap-
pendix A.1.

3.2 Apply 2:4 Sparsity in Transformer Block

The transformer block (Vaswani et al., 2017) is
the fundamental building structure in various TLM
models. The majority of the weight parameters and
the execution time are taken in stacked transformer
blocks. For example, about 90.2% of the weight pa-
rameters and 99.3% of the inference time are from
the transformer blocks in BERT-large model, and
about 77.7% of the weight parameters and 97.5% of
the inference time are from the transformer blocks
in BERT-base model (Devlin et al., 2019). For the
GPT-3-6.7B and GPT-3-175B models (Brown et al.,
2020), about 96.8% & 99.6% of the weight param-
eters and 97.3% & 99.7% of the inference time
are from the transformer blocks. So in this subsec-
tion, we focus on how to apply the 2:4 fine-grained
structured sparsity in the transformer block.

Transformer blocks used in TLM models are
directly borrowed from or made tiny changes on
the standard transformer block introduced in the
naive attention mechanism (Vaswani et al., 2017).
Usually, the TLM models can be divided into three
main categories, i.e., only use the encoder trans-
former blocks (Devlin et al., 2019), only use the
decoder transformer blocks (Brown et al., 2020),
and use both the encoder and decoder transformer
blocks (Lewis et al., 2020). The essential compo-
nents, like feed forward, residual add, and layer
norm, are almost identical in an encoder and a
decoder transformer block. The main difference
is an encoder transformer block usually uses a
multi-head self-attention; in contrast, a decoder
transformer block usually uses a masked multi-
head self-attention and a multi-head cross-attention.
However, the basic GEMM operations inside the
multi-head self-attention, masked multi-head self-
attention, and multi-head cross-attention are almost
identical. Without losing the generalization of the
proposed method, we illustrate the utilization of
2:4 sparsity with a language model with standard

220



Figure 2: Illustration about applying the 2:4 fine-grained structured sparsity in transformer-based language model.
The above part of the figure shows a TLM model structure, with hierarchical zoom-in details of transformer block
and multi-head attention module. The below part in the orange dashed box shows how to compress a dense matrix
with the sparse Tensor Core. The sparse target layers include the final linear projection, as well as the feed forward
and linear projection inside each transformer block. To facilitate the quantization-aware training, we also insert the
quantization simulation and de-quantization simulation operation pairs before and after the sparse target layers.

encoder transformer blocks. 2:4 fine-grained struc-
tured sparsity mainly targets accelerating GEMM
operations. So the Q, K, and V projection layers,
the linear projection layer in the multi-head atten-
tion module, and the linear projection layers in the
feed-forward module are the proper targets to ap-
ply, as shown in the zoomed-in parts (marked with
green blocks) in Figure 2.

The input of a TLM is often a input tensor with
shape RB×L, where B is the batch size, L is the
sequence length. The input tensor will firstly pass
through an input embedding layer that converts
each one-hot token representation into a d dimen-
sional embedding vector, where d is the embedding
size. The output tensor of input embedding layer

with shape RB×L×d additively composed with the
output of position embedding layer to generate the
input tensor X of N series of transformer blocks.

The input tensor X transfers to query Q, key K
and value V with separate linear projection layers
in a multi-head self-attention module with head
number as H . For each head with head index h:

Qh = XWq
h, Kh = XWk

h, Vh = XWv
h, (1)

where Wq
h, Wk

h, Wv
h ∈ Rd× d

H are the weight pa-
rameters of query, key and value linear projection
layers in head h. Then the query, key and value
tensors in each head go into a scaled dot-product
attention to get the attention output tensor Ah:

Ah = softmax

(
QhKT

h√
d

)
Vh, (2)

221



where the softmax is a row-wise operation, and
the dot-product of query and key is divided by

√
d

as a form of normalization to alleviate gradient
vanishing problem of the softmax function. The
outputs of all heads A1, · · · , AH are concatenated
together and go through an output linear projection
layer with weight tensor Wo. So the final output
tensor MHA of a multi-head self-attention module
can be calculated as follows:

MHA = Concat(A1, · · · ,AH)Wo (3)

MHA tensor will add the input tensor X in a resid-
ual way, and go through the layer-normalization
layer to get the output tensor Y, followed by a
fully connected feed-forward layer with weight ten-
sor Wff as well as another residual add and layer-
normalization pair to get the final output tensor Z
for one transformer block, i.e.,

Y = LayerNorm (MHA + X)

Z = LayerNorm
(

YWff + Y
) (4)

The output of the last transformer block will
go through the final linear projection layer with
weight tensor Wfp to get the output tensor
for the entire language model. So the over-
all size of trainable parameters1 in a dense
transformer-based language model is SD

TLM =
16 × N

[
H

(
Wq

h + Wk
h + Wv

h

)
+ Wo + Wff

]
+

16 × Wfp bits. If we applying the 2:4 structured
sparsity as shown in Figure 2 with FP16 format, the
overall size of trainable parameters can be reduced
to 0.5625× SD

TLM .
In Figure 2, we also insert the quantization

simulation and de-quantization simulation oper-
ation pairs before and after the 2:4 sparse target
layers. With these operation pairs, we can trans-
fer the sparse target layers as INT format during
the quantization-aware training. And the final 2:4
sparse INT8 model can further reduce the overall
size of trainable parameters to 0.3125× SD

TLM .

3.3 Apply Sparsity in Multi-head Attention

Based on the analysis of the scaled dot-product
attention in equation 2, Qh, kh, Vh are output acti-
vation tensors from the query, key and value linear
projection layers in head h, so it does not have any
trainable parameters. However, its computational
cost is non-zero due to the softmax and the two

1We do not count the weight parameters of the input embed-
ding and position embedding layers into the overall trainable
parameters of the model. Because the embedding operation
may implement as a given lookup table which is not learnable.

dot-product operations, i.e., Qh with KT
h and the

output of softmax with Vh.
The row-wise softmax has a specific effect of

normalizing each row of the softmax output tensor
as only several elements have large magnitudes.
In contrast, the other majority have very close-to-
zero magnitudes. Inspired by this phenomenon, we
can apply row-wise sparsity to the output of soft-
max to help further improve the efficiency of the
scaled dot-product attention. Inspired by the 2:4
sparse pattern in sparse Tensor Core, we explore
the general N:M structured sparsity, i.e., N values
from every M contiguous elements in a row must
be zero2. The sparse Tensor Core has the hard-
ware components to accelerate the compression
and decompression, while the general N:M sparsity
implements the compression and decompression
with software. So 2:4 sparsity is more efficient than
general N:M sparsity implementation with N = 2
and M = 4. However, if N ≪ M , i.e., N

M < 0.5,
the general N:M sparsity can compress the tensor
as a more compact form, which helps to save more
memory traffic and load-store cost. As the output
of softmax usually has a higher sparse ratio than
0.5, it is more suitable to apply the N:M sparsity.
Then the scaled dot-product attention for getting
the attention output tensor Ah with N:M sparsity
enabled can be expressed as follows:

Ah = spN :M

[
softmax

(
QhKT

h√
d

)]
Vh, (5)

3.4 Overall GPUSQ-TLM Compression

Our method utilizes the GPU-friendly structured
Sparsity and Quantization characters to compress
the Transformer-based Language Model, so we
name the compression scheme GPUSQ-TLM.
GPUSQ-TLM mainly contains structured sparse
pruning and sparse-distillation-combined QAT
workflows, as shown in Figure 3. Featured-based
and logits distillations are applied in each workflow
as auxiliary accuracy compensation.
Structured Sparse Pruning aims to compress
the dense floating-point model MDF as the sparse
floating-point model MSF . Based on the discus-
sion in subsections 3.2 and 3.3, we can compress
GEMM-intensive parts of a transformer-based lan-
guage model according to the GPU-friendly 2:4
fine-grained structured sparse pattern, and further
compress the dot-production in multi-head atten-
tion modules with N:M sparsity. To best compen-

2M is a power of 2, and M <= 256, N < M

222



Figure 3: GPUSQ-TLM scheme with two sub-workflows. For the structured sparse pruning workflow, the
dense floating-point model MDF is compressed as the sparse floating-point model MSF . Hard label, soft logits and
feature-based distillation losses are accumulated as the overall sparse pruning loss. The sparse floating-point model
MSF is quantized as the sparse quantized model MSQ for the sparse-distillation-combined QAT workflow. Hard
label, soft logits and feature-based calibration losses are accumulated as the overall quantization calibration loss.

sate for the accuracy of MSF , we apply knowledge
distillation (KD) (Hinton et al., 2015), which can
effectively transfer the predicted hard label of the
one-hot representation or soft logits of probabilities
over several classes from a teacher model with ap-
pealing performance to a student model. If the stu-
dent model wants more supervision, feature-based
KD is applied to mimic the teacher model’s feature
maps. Because we compress the feature maps with
N:M sparsity in the multi-head attention, in struc-
tured sparse pruning workflow, three KD strategies
are jointly used.

Denoting distillation losses for the hard label,
soft logits and feature maps are Lp

hard, Lp
soft,

Lp
feature, respectively, and their weight factors are:

α, β, γ, then the overall sparse pruning loss Lp is
calculated as follows:

Lp = α ∗ Lp
hard + β ∗ Lp

soft + γ ∗ Lp
feature (6)

Structured sparse pruning workflow minimizes the
Lp loss w.r.t weight parameters of MSF model.
Sparse-distillation-combined QAT aims to fur-
ther compress the sparse floating-point model MSF

as the sparse quantized model MSQ on data for-
mat, i.e., quantize from the floating-point formats
to INT8. We mainly discuss the quantization-
aware training (QAT) strategy for the following

reasons. From the performance perspective, QAT
can achieve the same deployment efficiency with
the toolkit (NVIDIA, 2022). From the accuracy
perspective, QAT learns the scale factor adjust-
ment during training, so the learned scale factor
leads to less quantization noise and a better ac-
curacy compensation effect. Moreover, compres-
sion by GPU-friendly structured sparsity needs the
premise (Mishra et al., 2021) to access the training
set and undergo a fine-tuning process. So we can
fully utilize the training set and fine-tuning process
to calibrate the quantization scale factor and boost
the accuracy of quantized sparse model.

We borrow the KD idea and jointly learn to cali-
brate the quantization scale factor from the teacher
model’s hard label prediction, soft logits, and fea-
ture maps from critical layers. Unlike the sparse
pruning workflow in which MDF model serves as
the teacher and MSF model serves as the student, in
the QAT process, MSF model serves as the teacher,
and MSQ model serves as the student.3

3Using the dense floating-point model serves as the teacher
in the QAT process is not recommended, even though it usu-
ally has better accuracy than the sparse floating-point model.
Because based on the previous study (Mirzadeh et al., 2020;
Yu, 2021), the distillation effectiveness will drop if the teacher
and student models have a noticeable gap in scale or data
format.

223



Denoting calibration losses for the hard label,
soft logits and feature maps are Lc

hard, Lc
soft,

Lc
feature, respectively, and their weight factors are

still: α, β, γ, then the overall quantization calibra-
tion loss Lc is calculated as follows:

Lc = α ∗ Lc
hard + β ∗ Lc

soft + γ ∗ Lc
feature (7)

Sparse-distillation-combined QAT minimizes
the Lc loss w.r.t weight parameters of MSQ model.
The details about each loss item in GPUSQ-TLM
are provided in Algorithm 1 in Appendix A.2.

4 Experiments

For the experiments in this paper, we choose Py-
Torch (Paszke et al., 2017) with version 1.12.0 as
the framework to implement all algorithms. The
results of the dense model training, sparse and QAT
compression experiments, and the acceleration per-
formance are obtained with A100 (NVIDIA, 2020)
GPU clusters. All the reference algorithms use the
default data type provided in public repositories.

4.1 Compression Efficacy for Encoder-Only
Transformer-based Language Model

To evaluate the compression efficacy of GPUSQ-
TLM and make the comparison with prior arts on
the TLM only use the encoder transformer blocks,
BERT-large and BERT-base (Devlin et al., 2019)4

are chosen as the target models. For the prior
compression arts, we choose DistilBERT (Sanh
et al., 2019), TinyBERT (Jiao et al., 2020), PKD-
BERT (Sun et al., 2019), MobileBERT (Sun et al.,
2020), BERT-of-Theseus (Xu et al., 2020), Sparse-
BERT (Xu et al., 2021), BERT-Tickets (Chen
et al., 2020) and BERT-Surgeon (Kurtic et al.,
2022) as the reference sparse pruning methods,
and we choose Q-BERT (Shen et al., 2020) and
I-BERT (Kim et al., 2021) as the reference quanti-
zation methods. For GPUSQ-TLM, the loss adjust-
ment factors for hard label, soft logits and feature-
based losses apply α = 1, β = 10, and γ = 1. The
comparison results are shown in Table 1.

All models are evaluated on Stanford Ques-
tion Answering Dataset (SQuAD) for question an-
swering with Exact Match (EM) and F1 metrics,
and General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) benchmark, which con-
sists of single-sentence tasks, i.e., CoLA (Warstadt
et al., 2019) and SST-2 (Socher et al., 2013),
sentence similarity tasks, i.e., MRPC (Dolan

4
https://github.com/NVIDIA/DeepLearningExamples/tree/

master/PyTorch/LanguageModeling/BERT

and Brockett, 2005), STS-B (Cer et al., 2017),
QQP, and natural language inference tasks, i.e.,
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016) and RTE (Bentivogli et al., 2009) with
corresponding accuracy metrics.

We can apply GPUSQ-TLM to compress the
model as sparse GEMM and sparse GEMM-MHA5

versions. For both versions, the accuracy on
SQuAD and GLUE benchmarks is almost equal to
or even better than the naive BERT-base and BERT-
large and better than other models compressed with
prior arts. Moreover, GPUSQ-TLM compression
can significantly boost the deployment efficiency
on A100 GPU with the toolkit (NVIDIA, 2022)
support of structured sparsity and quantization, i.e.,
4.08-4.25× and 6.18-6.79× improvement of la-
tency and throughput, apparently better than the
other models compressed with prior arts.

4.2 Compression Efficacy for Decoder-Only
Transformer-based Language Model

To evaluate the compression efficacy of GPUSQ-
TLM and prior arts on the TLM only use the
decoder transformer blocks, OPT (Zhang et al.,
2022)6 and GPT (Brown et al., 2020)7 are cho-
sen as the target models. For the prior arts, we
choose SparseGPT (Frantar and Alistarh, 2023)
as the sparse pruning reference method, and
we choose ZeroQuant (Yao et al., 2022) and
LLM.int8 (Dettmers et al., 2022) as the quanti-
zation reference methods. For GPUSQ-TLM, the
loss factors for hard label, soft logits and feature-
based losses apply α = 1, β = 10, and γ = 1).
We evaluate perplexity (ppl) for all the models on
WikiText-103 (Merity et al., 2016) test dataset. The
comparison results are shown in Table 2.

For both GPUSQ-TLMGEMM and GPUSQ-
TLMGEMM−MHA compressed models, the per-
plexity on WikiText-103 benchmarks is equal to
or with small drop than the naive OPT and GPT
models and better than other models compressed
with prior arts. Moreover, GPUSQ-TLM can sig-
nificantly boost the deployment efficiency on A100
GPU, i.e., 2.46-2.48× and 3.24-3.29× improve-
ment of latency and throughput, apparently better
than the other models compressed with prior arts.

5Because N:M sparsity is not officially support on A100
GPU, so we need to write the kernel as the software imple-
mentation for acceleration.

6
https://github.com/facebookresearch/metaseq

7
https://github.com/NVIDIA/Megatron-LM

224

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/facebookresearch/metaseq
https://github.com/NVIDIA/Megatron-LM


Model Name with
Compression Methods

SQuAD 1.1 GLUE Speedup
EM (%) F1 (%) CoLA SST-2 MRPC STS-B QQP MNLI-(m/mm) QNLI RTE BS=1 BS=32

BERT-base 80.8 88.5 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 1x 1x
GPUSQ-TLMGEMM 82.1 89.3 52.2 95.3 89.1 86.4 72.4 85.5/84.5 92.1 66.9 3.73x 4.92x
GPUSQ-TLMGEMM−MHA 81.9 88.9 51.8 93.2 88.5 85.4 70.9 84.1/83.2 90.2 66.1 4.08x 6.18x
DistilBERT 79.1 86.9 51.3 91.3 87.5 83.6 69.6 81.6/81.3 88.8 59.9 1.75x 1.93x
TinyBERT 79.2 86.8 51.1 93.1 87.3 83.7 71.6 84.6/83.2 90.4 66.1 1.75x 1.93x
PKD-BERT 79.5 87.1 51.3 92.0 85.0 85.2 70.7 81.5/81.0 89.0 65.5 1.75x 1.94x
BERT-of-Theseus 79.6 87.2 47.8 92.2 87.6 84.1 71.6 82.4/82.1 89.6 66.2 1.73x 1.90x
SparseBERT 78.2 85.6 48.2 90.4 88.5 82.9 68.9 81.8/80.6 87.4 66.0 1.08x 1.21x
BERT-Tickets 80.1 87.7 51.3 91.9 88.5 85.4 70.8 84.3/83.2 88.9 66.0 1.02x 1.07x
BERT-Surgeon 80.7 88.5 51.4 92.2 87.9 83.7 71.1 83.4/82.5 89.2 65.5 1.05x 1.15x
Q-BERT 80.3 88.3 51.7 92.9 88.4 85.4 70.8 83.9/82.8 90.0 65.9 3.01x 3.38x
I-BERT 80.5 88.2 52.0 94.1 89.0 85.3 70.8 84.2/83.3 90.3 67.7 3.01x 3.38x
BERT-large 84.1 90.9 60.5 94.9 89.3 86.5 72.1 86.7/85.9 92.7 70.1 1x 1x
GPUSQ-TLMGEMM 85.6 91.9 60.9 95.5 89.9 87.1 72.6 87.3/86.5 93.3 70.6 3.85x 5.33x
GPUSQ-TLMGEMM−MHA 85.8 92.1 60.7 95.1 89.5 86.5 72.1 86.9/86.1 92.9 70.2 4.25x 6.79x
BERT-Surgeon 84.2 90.7 59.9 93.9 88.4 85.6 71.4 85.8/85.0 91.7 69.4 1.06x 1.16x
I-BERT 83.9 90.6 60.4 94.9 89.4 86.2 72.0 86.5/85.6 92.5 70.0 3.09x 3.61x

Table 1: Compression efficacy of GPUSQ-TLM on encoder-only transformer-based language models. GPUSQ-
TLMGEMM represents the GEMMs operations in models compressed by GPUSQ-TLM method with structured
sparsity. GPUSQ-TLMGEMM−MHA represents both the GEMMs and the MHA are compressed with structured
sparsity. The speedup is measured on single A100 GPU (NVIDIA, 2020) with sequence length 384 for each
model. We use the performance of BERT-base and BERT-large as the baselines, and measure the speedup of other
compressed models against BERT-base and BERT-large with batch size (BS) equals to 1 & 32, respectively.

Models
WikiText-103 (ppl. Lower the ppl num means better)

Baseline GPUSQ GPUSQ SparseGPT ZeroQuant LLM.int8-TLMGEMM -TLMGEMM−MHA

OPT-125M 15.09 15.17 15.25 20.13 15.40 15.21
OPT-1.3B 12.76 12.81 12.85 15.22 13.19 12.87
OPT-2.7B 11.03 11.07 11.15 11.90 11.25 11.13
OPT-6.7B 10.31 10.32 10.35 10.97 10.52 10.36
OPT-13B 9.75 9.74 9.80 10.71 9.95 9.79
GPT3-125M 19.01 19.15 19.26 25.35 19.35 19.25
GPT3-1.3B 10.19 10.28 10.37 12.15 10.56 10.40
GPT-2.7B 9.41 9.48 9.55 10.49 9.93 9.60
GPT3-6.7B 8.51 8.56 8.62 9.06 8.68 8.57
GPT-13B 8.02 8.04 8.12 8.80 8.18 8.08

Speedup

OPT-13B, BS=1 1x 2.12x 2.46x 1.07x 1.66x 1.66x
OPT-13B, BS=1K 1x 3.07x 3.24x 1.25x 1.83x 1.83x
GPT-13B, BS=1 1x 2.12x 2.48x 1.07x 1.68x 1.68x
GPT-13B, BS=1k 1x 3.11x 3.29x 1.27x 1.85x 1.85x

Table 2: Compression efficacy of GPUSQ-TLM on
decoder-only TLM. The speedup is measured on the
A100 GPU with sequence length 2048 for each model.
We use the performance of OPT-13B and GPT-13B as
the baselines, and measure the speedup of other com-
pressed models against OPT-13B and GPT-13B with
batch size (BS) equals to 1 & 1024, respectively.

4.3 Compression Efficacy for Language
Model with Encoder and Decoder

To evaluate the compression efficacy of GPUSQ-
TLM on the TLM uses both of encoder and decoder
transformer blocks, BART (Lewis et al., 2020)8 is
chosen as the target model. We evaluate rogue
scores on the CNN-DM (Nallapati et al., 2016) and
XSum (Narayan et al., 2018) datasets. The results
are shown in Table 3.

4.4 Different N:M Sparse Ratio for MHA
We use the BERT-base an BERT-large as examples
to make an ablation study for different compression

8
https://github.com/NVIDIA/DeepLearningExamples/tree/

master/PyTorch/LanguageModeling/BART

Models
CNN-DM XSum Speedup
rogueLSum rogueLSum BS=1 BS=32

BART 40.99 36.61 1x 1x
GPUSQ-TLM_GEMM 41.14 36.73 1.55x 1.72x
GPUSQ-TLM_GEMM_MHA 40.98 36.56 1.79x 2.06x

Table 3: Compression efficacy of GPUSQ-TLM on
encoder-decoder TLM models. The speedup is mea-
sured for XSum test set on the A100 GPU with source
length 1024, target length 60 and beam search 6.

ratios of the multi-head attention (MHA) module.
Comparison results are shown in Figure 4.

From Figure 4, we can find the relative accuracy
gap between the compressed and dense models en-
larges with the increased sparse ratio, i.e., 50%
(2:4) is the best, followed by 25% (2:8 & 1:4),
and 12.5% (2:16 & 1:8). Moreover, with the same
sparse ratio, larger N and M leads to smaller accu-
racy drop, e.g., with the same 25% sparse ratio, the
model with 2:8 sparsity in multi-head attention has
better accuracy than 1:4, though both sparse pat-
terns are able to match the dense model’s baseline
with the proposed distillation.

Another finding is distillation is very helpful for
the accuracy maintenance. Without distillation, just
applying the sparsity and quantization during the
pure finetune stage or both pretrain and finetune
stages will lead to the accuracy drop from the dense
model. However, with distillation, even if we apply
2:4 sparsity on GEMMs and N:M sparsity on multi-
head attentions, the accuracy can be recovered and
even slightly better than the dense models.

225

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BART
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BART


Figure 4: Different N:M sparsity for multi-head attention module in BERT-Base and BERT-large for SQuAD task.
The delta accuracy metric means the accuracy gap between the compressed model and the dense model divides the
original dense model accuracy.

4.5 Plug-In Compression Efficacy
Some prior arts (Sanh et al., 2019; Jiao et al., 2020;
Sun et al., 2019) mainly prune the entire trans-
former blocks for TLM without considering the
operations inside each block. So for these coarse-
grained compressed models, GPUSQ-TLM can
help to compress the weights of layers inside each
transformer block into the GPU-friendly sparse
pattern and low precision format. The results are
shown in Table 4. We can find GPUSQ-TLM
method can further accelerate these coarse-grained
compressed BERT models on GPU without losing
accuracy from their coarse-grained forms.

5 Conclusion

GPUSQ-TLM is a comprehensive scheme to keep
the accuracy to the best with multiple compres-
sion strategies. The compressed model satisfies
the GPU-friendly structured sparsity and quantiza-

Models with
Compression Methods

SQuAD 1.1 GLUE Speedup
EM (%) F1 (%) SST-2 MRPC BS=1 BS=32

BERT-base 80.8 88.5 93.5 88.9 1x 1x
DistilBERT 79.1 86.9 91.3 87.5 1.75x 1.93x
DistilBERTGPUSQ 80.1 87.4 91.5 87.7 6.13x 8.34x
TinyBERT 79.2 86.8 93.1 87.3 1.75x 1.93x
TinyBERTGPUSQ 80.1 87.3 93.3 87.5 6.13x 8.34x
PKD-BERT 79.5 87.1 92.0 85.0 1.75x 1.94x
PKD-BERTGPUSQ 80.5 87.6 92.2 85.2 6.13x 8.34x

Table 4: Compression efficacy of plug-in GPUSQ-
TLM on models compressed by other methods.

tion characters. With the acceleration of GEMMs
and MHA modules, GPUSQ-TLM can boost de-
ployment efficiency for TLM models with various
encoder and decoder structures on GPU with negli-
gible accuracy degradation on benchmarking tasks.

Limitations

We should point out that the GPUSQ-TLM com-
pression scheme is highly related to the NVIDIA
GPU’s features to support GPU-friendly 2:4 fine-

226



grained structured sparsity with various data for-
mats. So if the GPUSQ-TLM compressed mod-
els are deployed on the different GPU types
without such support, the deployment efficiency
may not be as high as expected. For example,
the last-generation V100 (NVIDIA, 2017b) and
T4 (NVIDIA, 2018) GPUs have no support for
structured sparsity, so the deployment efficiency is
lower than A100 (NVIDIA, 2020) GPU.

We should also point out NVIDIA AGX Orin
chip also support GPU-friendly 2:4 fine-grained
structured sparsity as A100 GPU and mainly sup-
port edge device use scenarios like autonomous
driving. So, in theory, we can also deploy the
transformer-based language models on the AGX
Orin chip. However, the large language models
need to consume large on-chip memory, so they
usually cannot be held by a single AGX Orin chip.
For A100 to represent the server use scenarios, we
can use multiple A100 GPUs for parallel execution,
but for AGX Orin, we usually only have one chip
for the deployment device. That’s why we do not
test the GPUSQ-TLM compressed model on the
AGX Orin chip.

Ethics Statement

GPUSQ-TLM compression scheme is proven ef-
fective for various transformer-based language
models with encoder and decoder structures. It
will have a broad impact to encourage the study to
model compression and deployment improvement
in the NLP community.

We should also point out that the GPUSQ-TLM
compression scheme uses knowledge distillation.
So GPUSQ-TLM needs more on-chip memory
consumption during the compression process be-
cause we need a teacher model for distillation. For
compressing a huge transformer-based language
model, we may need more GPUs to work in parallel
to hold both the teacher model and the target model.
So GPUSQ-TLM may cost more power consump-
tion during the compression process, which is not
environment-friendly. But the compressed models
are more efficient than the original dense model,
leading to less power consumption during the in-
ference process. Moreover, the time and resources
spent in model deployment will far outweigh the re-
sources spent in training over the model’s life. This
point turns the time and resource increase from a
simple trade-off between training and inference to
a net positive, as overall resource consumption is

reduced over the whole life of the model.

Acknowledgements

This work is supported by Shanghai Natural Sci-
ence Foundation (No. 23ZR1402900), Shang-
hai Municipal Science and Technology Major
Project (No.2021SHZDZX0103), and Zhejiang
Lab Project (No. 2021KH0AB05).

References
Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli,

Akhilesh Kumar, Lily P Looi, Sreenivas Mandava,
Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha
Vedaraman, et al. 2019. Cascade lake: Next gen-
eration intel xeon scalable processor. IEEE Micro,
39(2):29–36.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632–
642.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877–1901.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European Conference on Computer
Vision, pages 213–229. Springer.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in Neural Informa-
tion Processing Systems, 33:15834–15846.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

227

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8641463
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8641463
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://aclanthology.org/D15-1075.pdf
https://aclanthology.org/D15-1075.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171–
4186.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232–
5270.

Elias Frantar and Dan Alistarh. 2023. Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135–1143.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 328–339.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko-
reit, Ian Simon, Curtis Hawthorne, Noam Shazeer,
Andrew M Dai, Matthew D Hoffman, Monica Din-
culescu, and Douglas Eck. 2018. Music transformer:
Generating music with long-term structure. In Inter-
national Conference on Learning Representations.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163–4174.

Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
2017. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture,
pages 1–12.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International Conference
on Machine Learning, pages 5506–5518. PMLR.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. arXiv preprint arXiv:2203.07259.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distilla-
tion via teacher assistant. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 5191–5198.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong
Yu, and Paulius Micikevicius. 2021. Accelerat-
ing sparse deep neural networks. arXiv preprint
arXiv:2104.08378.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstractive
text summarization using sequence-to-sequence rnns
and beyond. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning, pages 280–290.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-
ficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
15.

NVIDIA. 2017a. NVIDIA Tensor Core.

NVIDIA. 2017b. NVIDIA Tesla V100 GPU.

NVIDIA. 2018. NVIDIA T4 GPU Accelerator.

228

http://aclanthology.lst.uni-saarland.de/N19-1423.pdf
http://aclanthology.lst.uni-saarland.de/N19-1423.pdf
http://aclanthology.lst.uni-saarland.de/N19-1423.pdf
https://aclanthology.org/I05-5002.pdf
https://aclanthology.org/I05-5002.pdf
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://arxiv.org/abs/1503.02531
https://aclanthology.org/P18-1031.pdf
https://aclanthology.org/P18-1031.pdf
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
https://aclanthology.org/2020.findings-emnlp.372.pdf
https://aclanthology.org/2020.findings-emnlp.372.pdf
https://dl.acm.org/doi/pdf/10.1145/3079856.3080246
https://dl.acm.org/doi/pdf/10.1145/3079856.3080246
https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/2203.07259
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378
https://aclanthology.org/K16-1028.pdf
https://aclanthology.org/K16-1028.pdf
https://aclanthology.org/K16-1028.pdf
https://aclanthology.org/D18-1206.pdf
https://aclanthology.org/D18-1206.pdf
https://aclanthology.org/D18-1206.pdf
https://dl.acm.org/doi/pdf/10.1145/3458817.3476209
https://dl.acm.org/doi/pdf/10.1145/3458817.3476209
https://dl.acm.org/doi/pdf/10.1145/3458817.3476209
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf


NVIDIA. 2020. NVIDIA A100 Tensor Core GPU.

NVIDIA. 2022. NVIDIA TensorRT.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In Ad-
vances in Neural Information Processing Systems-
Autodiff Workshop.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth
Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, et al. 2021. Biologi-
cal structure and function emerge from scaling unsu-
pervised learning to 250 million protein sequences.
Proceedings of the National Academy of Sciences,
118(15):e2016239118.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin,
Peter Bolgar, Christopher A Hunter, Costas Bekas,
and Alpha A Lee. 2019. Molecular transformer: a
model for uncertainty-calibrated chemical reaction
prediction. ACS Central Science, 5(9):1572–1583.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2158–2170.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. 2020. Integer quantization
for deep learning inference: Principles and empirical
evaluation. arXiv preprint arXiv:2004.09602.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Compressing
bert by progressive module replacing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, pages 7859–7869.

Dongkuan Xu, Ian En-Hsu Yen, Jinxi Zhao, and Zhibin
Xiao. 2021. Rethinking network pruning–under the
pre-train and fine-tune paradigm. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2376–2382.

Lijuan Yang, Guanghui Yang, Zhitong Bing, Yuan
Tian, Yuzhen Niu, Liang Huang, and Lei Yang. 2021.
Transformer-based generative model accelerating the
development of novel braf inhibitors. ACS Omega,
6(49):33864–33873.

229

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://openreview.net/pdf?id=BJJsrmfCZ
http://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/D16-1264.pdf
https://aclanthology.org/D16-1264.pdf
https://www.pnas.org/doi/pdf/10.1073/pnas.2016239118
https://www.pnas.org/doi/pdf/10.1073/pnas.2016239118
https://www.pnas.org/doi/pdf/10.1073/pnas.2016239118
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://pubs.acs.org/doi/pdf/10.1021/acscentsci.9b00576
https://pubs.acs.org/doi/pdf/10.1021/acscentsci.9b00576
https://pubs.acs.org/doi/pdf/10.1021/acscentsci.9b00576
https://ojs.aaai.org/index.php/AAAI/article/view/6409
https://ojs.aaai.org/index.php/AAAI/article/view/6409
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D19-1441.pdf
https://aclanthology.org/D19-1441.pdf
https://aclanthology.org/2020.acl-main.195.pdf
https://aclanthology.org/2020.acl-main.195.pdf
https://aclanthology.org/2020.acl-main.195.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446.pdf
https://aclanthology.org/W18-5446.pdf
https://aclanthology.org/W18-5446.pdf
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00290/43528/Neural-Network-Acceptability-Judgments
https://aclanthology.org/N18-1101.pdf
https://aclanthology.org/N18-1101.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://aclanthology.org/2020.emnlp-main.633.pdf
https://aclanthology.org/2020.emnlp-main.633.pdf
https://aclanthology.org/2021.naacl-main.188.pdf
https://aclanthology.org/2021.naacl-main.188.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674994
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674994


Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861.

Chong Yu. 2021. Minimally invasive surgery for sparse
neural networks in contrastive manner. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3589–3598.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Appendix of this paper is in the following pages.

230

https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2206.01861
https://openaccess.thecvf.com/content/CVPR2021/html/Yu_Minimally_Invasive_Surgery_for_Sparse_Neural_Networks_in_Contrastive_Manner_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yu_Minimally_Invasive_Surgery_for_Sparse_Neural_Networks_in_Contrastive_Manner_CVPR_2021_paper.html
https://arxiv.org/abs/2205.01068


A Appendix

In this Appendix, we will provide some supplemen-
tary materials and more experimental results for the
proposed GPUSQ-TLM compression scheme be-
yond the tight page limitation in manuscript. The
detailed outline is as follows.

• Section A.1 provides the details of fine-
grained structured sparsity on GPU. It aims to
further support the contents in Section 3.1 of
the manuscript.

• Section A.2 provides the details and whole
workflow of the GPUSQ-TLM algorithm. It
aims to further support the contents in Sec-
tion 3.4 of the manuscript.

• Section A.3 provides the details about the
hyper-parameters settings in experiments. It
aims to further support the contents in Sec-
tion 4 of the manuscript.

• Section A.4 provides an ablation study to
measure the influence of the different adjust-
ment factors for the hard label, soft logits, and
feature-based losses (α, β, γ) on GPUSQ-
TLM compressed model accuracy. It aims to
further support the contents in Section 4 of
the manuscript.

A.1 Fine-grained Structured Sparsity on GPU
In this subsection, we first introduce the 2:4 fine-
grained structured sparse feature on GPU. Then we
illustrate its benefit on math efficiency by compar-
ing the same matrix multiplication with and without
this sparse feature. And finally, we illustrate how
to encode to meet the 2:4 fine-grained structured
sparse pattern and its benefit on memory saving.

General Matrix Multiplication (GEMM) is the
fundamental operation inside the common parts
of TLM models, such as convolution, linear pro-
jection, and multi-head attention blocks. A spe-
cific acceleration unit called Tensor Core (NVIDIA,
2017a) was first introduced in NVIDIA Volta
GPU (NVIDIA, 2017b) to accelerate these GEMM
operations and further enhanced to support sparse
GEMM in NVIDIA Ampere GPU architec-
ture (NVIDIA, 2020). To improve the GPU hard-
ware efficiency for sparse GEMM operation, a con-
straint named 2:4 fine-grained structured spar-
sity (Mishra et al., 2021) is imposed on the allowed
sparsity pattern, i.e., two values from every four
contiguous elements on rows must be zero. Due to
the 2:4 sparsity support on GPU Tensor Core hard-
ware, sparse GEMM can reduce memory storage

and bandwidth by almost 2× and provide 2× math
throughput compared to dense GEMM by skipping
the redundant zero-value computation, as shown
in Figure 5. NVIDIA Ampere GPU architecture
supports various numeric precision for 2:4 sparsity,
including FP32, FP16, INT8, and INT4, etc.

Sparse M✕N✕K GEMMDense M✕N✕K GEMM

K

A 
m

at
rix

 (D
en

se
)

☓

Accumulator (result)

N

Dense operation 
on Tensor Core

M

B matrix (Dense)

C matrix (Dense)

M

K

K/2

A 
m

at
rix

 (S
pa

rs
e)

Non-zero data 
values

2-bits 
indices

K/2

☓

Accumulator (result)

Sparse operation 
on Tensor Core

Select

B matrix (Dense)

C matrix (Dense)

N

Choose matching K/2 
elements out of K 

elements

M M

K

Figure 5: Comparison of computing a M × N × K
GEMM onto a GPU Tensor Core. Dense matrix A of
size M×K in left side becomes M× K

2 in right side af-
ter compressing with 2:4 fine-grained structured sparse
pattern. GPU sparse Tensor Core automatically picks
only the elements from B according to the nonzero el-
ements in A. Comparing the dense and sparse GEMM
operations, B and C are the same dense K × N and
M×N matrices, respectively. By skipping the unneces-
sary multiplications of redundant zeros, sparse GEMM
accelerate the dense GEMM with 2×.

The sparse GEMM performs the sparse matrix ×
dense matrix = dense matrix operation by skipping
the redundant zero-value computation with sparse
Tensor Core acceleration. For example, matrix A of
size M×K follows the 2:4 fine-grained structured
sparse pattern, and the dense matrix B is of size
K ×N . If we use the dense GEMM operation to
calculate between matrices A and B, the zero values
in A would not be skipped during computation.
Assuming that the entire M×N×K dense GEMM
will calculate the result matrix C with M ×N size
in T GPU cycles. If we use the sparse GEMM
operation, only the non-zero elements in each row
of matrix A and the corresponding elements from
matrix B, which sparse Tensor Core automatically
picks out without run-time overhead, are calculated.
So the entire M ×N ×K sparse GEMM will also
calculate the same result matrix C with M × N
size but only needs T/2 GPU cycles, i.e. leading to
2× math throughput speedup.

To encode the matrix to meet the 2:4 fine-grained
structured sparse pattern, GPU uses 2-bit metadata
per non-zero element to indicate the position of
two non-zero elements in every four-wide chunk
of elements in a row. We use an example to il-
lustrate the storage scenario. For a matrix of only

231



Figure 6: Storage formats for 2:4 fine-grained struc-
tured sparse pattern and metadata with FP16 and INT8
operators. (x,y denote the non-zero elements.)

four elements with FP16 data format, storing as a
dense pattern requires 4× 16bits = 64bits, while
storing as a 2:4 sparse pattern requires 2×16bits+
2 × 2bits = 36bits, leading to 43.75% memory
savings in storage. For a matrix of only four ele-
ments with INT8 data format, storing as dense and
2:4 sparse pattern requires 4× 8bits = 32bits and
2× 8bits+ 2× 2bits = 20bits, respectively, and
leading to 37.5% memory savings in storage. The
real matrices used in GEMM operations usually
contain elements with a multiple of four. So the
storage of these matrices duplicates the aforemen-
tioned simple example multiple times. Without loss
of generality, the conclusion is the 2:4 structured
sparse pattern with FP16 and INT8 format lead to
43.75% and 37.5% savings in storage.

Because the 2:4 fine-grained structured sparse
pattern is well supported on NVIDIA GPUs and
corresponding libraries for math acceleration and
memory saving, so we are motivated to design the
compression strategy for TLM models to meet
such sparse pattern. Moreover, the 2:4 sparse
GEMM supports low-precision formats like INT8.
So it is natural to combine the sparsity and quanti-
zation in the proposed strategy jointly. GPUSQ-
TLM will firstly compress the language models as
a 2:4 sparse pattern with FP16 format, then further
quantize to a 2:4 sparse INT8 format for boosting
best actual deployment efficiency on GPUs.

A.2 Overall GPUSQ-TLM Compression
In GPUSQ-TLM, structured sparse pruning
aims to compress the dense floating-point model
MDF as the sparse floating-point model MSF .
Sparse-distillation-combined QAT aims to fur-
ther compress the sparse floating-point model MSF

as the sparse quantized model MSQ on data format,
i.e., quantize from float-point data type to integer
data type. The details about GPUSQ-TLM are
provided in Algorithm 1.

Models Factor alpha Factor beta Factor gamma SQuAD 1.1 GLUE
EM (%) F1 (%) SST-2 MRPC

BERT-base % % % 80.8 88.5 93.5 88.9

GPUSQ-TLMGEMM

1 10 1 82.1 89.3 95.3 89.1
1 0 1 81.3 88.7 94.0 88.7
1 10 0 80.6 88.3 93.1 88.5
1 5 1 82.0 89.1 95.1 89.0
1 20 1 82.1 89.4 95.4 89.1
1 10 0.8 81.9 89.0 95.0 89.0
1 10 1.2 82.2 89.4 95.4 89.1

BERT-large % % % 84.1 90.9 94.9 89.3

GPUSQ-TLMGEMM

1 10 1 85.6 91.9 95.5 89.9
1 0 1 84.3 91.0 95.1 89.5
1 10 0 83.7 90.5 94.6 88.7
1 5 1 85.5 91.7 95.3 89.8
1 20 1 85.6 92.0 95.6 89.9
1 10 0.8 85.5 91.6 95.3 89.8
1 10 1.2 85.6 92.0 95.6 90.0

Table 5: Ablation study of the loss adjustment factors
of GPUSQ-TLM method.

A.3 Hyper-Parameters in Experiments
For BERT-large and BERT-base (Devlin et al.,
2019)9, OPT (Zhang et al., 2022)10 and GPT
(Brown et al., 2020)11, and BART (Lewis et al.,
2020)12 models, we follow the hyper-parameters
settings in public repositories marked by the foot-
notes and detailed list in Table 6. Multiple A100
GPUs are used for data-parallel and pipeline-
parallel in training or fine-tuning experiments.

A.4 Ablation study of GPUSQ-TLM
The ablation study to measure the influence of
the different adjustment factors for the hard la-
bel, soft logits, and feature-based losses (α, β, γ)
on GPUSQ-TLM compressed model accuracy is
shown in Table 5.

By comparing the ablation results of row 2, row
3 and row 4 for each model, we find disabling no
matter soft logits distillation or feature-based dis-
tillation will lead to the accuracy degradation. We
can also find disabling the feature-based distillation
will lead to a more severe influence than disabling
the soft logits distillation. It indicates that mim-
icking feature maps is very helpful for accuracy
compensation in GPUSQ-TLM compression.

Finally, by comparing the ablation results of row
2, row 5 and row 6 for each model we can find
GPUSQ-TLM is relatively robust to the soft logits
loss adjustment factor. By comparing the ablation
results of row 2, row 7 and row 8 for each model
we can find GPUSQ-TLM is also robust to the
feature-based loss adjustment factor, i.e., within
the close range of β = 10 and γ = 1 the accuracy
of compressed models are stable.

9
https://github.com/NVIDIA/DeepLearningExamples/tree/

master/PyTorch/LanguageModeling/BERT
10
https://github.com/facebookresearch/metaseq

11
https://github.com/NVIDIA/Megatron-LM

12
https://github.com/NVIDIA/DeepLearningExamples/tree/

master/PyTorch/LanguageModeling/BART

232

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/facebookresearch/metaseq
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BART
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BART


Algorithm 1: GPUSQ-TLM: transformer-based language model joint compression with 2:4 and
N:M structured sparsity and sparse-distillation-combined QAT

Input: Dense floating-point model MDF contains K transformer blocks, Input tokens x
Data: Distillation temperature t, Loss adjustment factors for hard label, soft logits and feature: α, β, γ, Overall pruning

loss threshold δprune, Overall calibration loss threshold δcalibrate
Output: Sparse quantized model MSQ

1 /* 2:4 and N:M structured sparse pruning compression workflow */
2 Initialize sparse floating-point model MSF with the weight parameters from dense floating-point model MDF

3 while Overall sparse pruning loss: Lp is larger than threshold δprune do
4 Get feature maps of critical layers from MDF and MSF , e.g., multi-head attention and output of transformer block

i: FMDF
tfblocki

and FMSF
tfblocki

, and the final projection layer: FMDF
fproj and FMSF

fproj

5 // Calculate feature-based distillation loss with mean-squared-error (MSE) criterion

6 Lp
feature =

∑K
i=1

[
LMSE

(
FMDF
tfblocki

, FMSF
tfblocki

)]
+ LMSE

(
FMDF
fproj , F

MSF
fproj

)

7 // Calculate hard label distillation loss with cross entropy (CSE) criterion
8 if Ground truth labels: labelGround of input images x exists then
9 Lp

hard = LCSE (labelGround,MSF (x;T = 1))
10 else
11 Lp

hard = LCSE (MDF (x;T = 1) ,MSF (x;T = 1))
12 end
13 // Calculate soft logits distillation loss with Kullback Leibler divergence (KLD) criterion
14 Lp

soft = LKLD (MDF (x;T = t) ,MSF (x;T = t))

15 Calculate the overall sparse pruning loss: Lp = α ∗ Lp
hard + β ∗ Lp

soft + γ ∗ Lp
feature

16 Minimize the overall sparse pruning loss w.r.t weight parameters of sparse floating-point model MSF

17 end
18 /* sparse-distillation-combined QAT compression workflow */
19 Initialize sparse quantized model MSQ by PTQ the weight parameters from trained sparse floating-point model MSF

20 while Overall quantization calibration loss: Lc is larger than threshold δcalibrate do
21 Get feature maps of critical layers from MSF and MSQ, e.g., multi-head attention and output of transformer block i:

FMSF
tfblocki

and F
MSQ

tfblocki
, and the final projection layer: FMSF

fproj and F
MSQ

fproj

22 // Calculate feature-based calibration loss with mean-squared-error (MSE) criterion

23 Lcalibrate
feature =

∑K
i=1

[
LMSE

(
FMSF
tfblocki

, F
MSQ

tfblocki

)]
+ LMSE

(
FMSF
fproj , F

MSQ

fproj

)

24 // Calculate hard label calibration loss with cross entropy (CSE) criterion
25 if Ground truth labels: labelGround of input images x exists then
26 Lc

hard = LCSE (labelGround,MSQ (x;T = 1))
27 else
28 Lc

hard = LCSE (MSF (x;T = 1) ,MSQ (x;T = 1))
29 end
30 // Calculate soft logits calibration loss with Kullback Leibler divergence (KLD) criterion
31 Lc

soft = LKLD (MSF (x;T = t) ,MSQ (x;T = t))
32 Calculate the overall quantization calibration loss: Lc = α ∗ Lc

hard + β ∗ Lc
soft + γ ∗ Lc

feature

33 Minimize the overall quantization calibration loss w.r.t weight and scale factor parameters of sparse quantized
model MSQ

34 end

Models Task Optimizer Initial LR LR schedule Weight Decay Epochs Batch Size GPU Num

BERT-base9 SQuAD Adam 3.0e-5 Linear with WarmUp 0.01 4 3 8
BERT-base9 GELU Adam 2.4e-5 Linear with WarmUp 0.01 6 16 8
BERT-large9 SQuAD Adam 3.0e-5 Linear with WarmUp 0.01 4 3 8
BERT-large9 GELU Adam 2.4e-5 Linear with WarmUp 0.01 6 16 8
OPT-125M10 WikiText-103 AdamW 6.0e-4 Linear with WarmUp 0.01 15 16 32
OPT-1.3B10 WikiText-103 AdamW 2.0e-4 Linear with WarmUp 0.01 15 16 64
OPT-2.7B10 WikiText-103 AdamW 1.6e-4 Linear with WarmUp 0.01 15 16 64
OPT-6.7B10 WikiText-103 AdamW 1.2e-4 Linear with WarmUp 0.01 15 16 128
OPT-13B10 WikiText-103 AdamW 1.0e-4 Linear with WarmUp 0.01 15 16 256
GPT-125M11 WikiText-103 AdamW 6.0e-4 Linear with WarmUp 0.01 15 16 32
GPT-1.3B11 WikiText-103 AdamW 2.0e-4 Linear with WarmUp 0.01 15 16 64
GPT-2.7B11 WikiText-103 AdamW 1.6e-4 Linear with WarmUp 0.01 15 16 64
GPT-6.7B11 WikiText-103 AdamW 1.2e-4 Linear with WarmUp 0.01 15 16 128
GPT-13B11 WikiText-103 AdamW 1.0e-4 Linear with WarmUp 0.01 15 16 256
BART12 CNN-DM Adam 5.5e-5 Linear with WarmUp 0.01 3 16 8
BART12 XSum Adam 7.0e-5 Linear with WarmUp 0.01 3 16 8

Table 6: Experiments hyper-parameters for the transformer-based language models tested in this paper.

233



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section with name: Limitations.

�3 A2. Did you discuss any potential risks of your work?
Section with name: Limitations and another section with name: Ethics Statement.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section with name: Introduction.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �3 Did you run computational experiments?
Section with name: Experiments.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section with name: Experiments in manuscript and section with name: Hyper-Parameters in
Experiments in Appendix.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

234

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Not applicable. Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section with name: Experiments.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

235


