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Abstract

Few-shot named entity recognition (NER),
identifying named entities with a small num-
ber of labeled data, has attracted much atten-
tion. Frequently, entities are nested within each
other. However, most of the existing work on
few-shot NER addresses flat entities instead of
nested entities. To tackle nested NER in a few-
shot setting, it is crucial to utilize the limited
labeled data to mine unique features of nested
entities, such as the relationship between inner
and outer entities and contextual position infor-
mation. Therefore, in this work, we propose a
novel method based on focusing, bridging and
prompting for few-shot nested NER without
using source domain data. Both focusing and
bridging components provide accurate candi-
date spans for the prompting component. The
prompting component leverages the unique fea-
tures of nested entities to classify spans based
on soft prompts and contrastive learning. Ex-
perimental results show that the proposed ap-
proach achieves state-of-the-art performance
consistently on the four benchmark datasets
(ACE2004, ACE2005, GENIA and KBP2017)
and outperforms several competing baseline
models on F1-score by 9.33% on ACE2004,
6.17% on ACE2005, 9.40% on GENIA and
5.12% on KBP2017 on the 5-shot setting.

1 Introduction

Named entity recognition (NER), aiming at iden-
tifying the spans of text and classifying them into
pre-defined entity categories, is a fundamental task
in natural language processing (Yan et al., 2021).
NER serves as a crucial component for many down-
stream tasks such as information extraction, sen-
timent analysis and other NLP applications (Mao
and Li, 2021; Peng et al., 2022).

Few-shot NER, focusing on named entity recog-
nition with a small number of labeled data, has
attracted much attention. Frequently, entities are
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Figure 1: (a) An example sentence marked with nested
entities in GENIA. (b) The percentages of the entities of
Protein being nested with the entities of other categories
in GENIA.

nested within each other as shown in Figure 1(a).
However, most of the existing work on few-shot
NER addresses flat entities instead of nested enti-
ties. Approaches for few-shot flat NER can mainly
be divided into three categories: sequence-labeling-
based, generative-based and span-based methods.
Sequence-labeling-based mehtods treat NER as se-
quence labeling that assigns a tag for each token us-
ing the BIO or IO tagging scheme (Ma et al., 2022b;
Huang et al., 2022b; Das et al., 2022). Generative-
based methods autoregressively generate the entity
types or the pointer index sequence directly (Cui
et al., 2021; Hou et al., 2022; Chen et al., 2022).
Span-based methods enumerate text spans in the
input text and classify each span based on its cor-
responding template score (Yang et al., 2022), or
the similarity between the span representation and
the anchor (Wang et al., 2022a; Ma et al., 2022c;
Wang et al., 2022b; Ji et al., 2022).

Directly applying current few-shot flat NER
methods to nested named entities suffers from some
weaknesses. For sequence-labeling-based meth-
ods, extra strategies such as layering and concate-
nating the nested entity’s multiple labels into one
label (Straková et al., 2019; Wang et al., 2020)
are needed. Such adaptation lacks flexibility and
makes the already scarce supervision signal even
more sparse. Generative-based methods can di-
rectly handle nested entities. However, due to the
auto-regressive generation manner, the optimiza-
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tion objective is not consistent with the NER task,
resulting in some biases learned by the model dur-
ing the training process (Zhang et al., 2022). In
addition, such biases are more difficult to eliminate
with limited labeled data.

By enumerating all the text spans, span-based
nested NER can be converted into flat NER, which
seems promising. However, such adaptation faces
two challenges. First, it is crucial to utilize the rela-
tionship between inner and outer entities in nested
NER, which is usually ignored in the previous work.
Some types of entities in medical-related datasets
are prone to be nested. As shown in Figure 1 (b), in
GENIA, the frequencies of the entities of Protein
type being nested with the entities of DNA type are
nearly five times higher than that with the entities
of RNA type. Secondly, the same mention may
have different types in polysemy scenarios. There-
fore, it is necessary to capture local features and
precisely model contextual information.

To address the issues mentioned above, we pro-
pose a novel span-based method based on Focus-
ing, brIdging and prompTing (FIT) for few-shot
nested NER without using source domain data.
In the focusing stage, inspired by the IO tagging
scheme of sequence-labeling-based methods, each
token is tagged whether a part of an entity or not.
Then entity-concentrated parts can be obtained
by concatenating continuous tokens marked with
the I-tag. In the bridging stage, for each entity-
concentrated part, all spans obtained by enumer-
ating are chosen as candidate spans and filtered
according to the boundary score of each candidate
span. The bridging stage acts as a bridge connect-
ing the flat entity-concentrated parts with nested
NER since nested entities can be obtained by enu-
merating. In the prompting stage, to make use of
the relationship information between nested entities
and contextual position information, adversarial
prompt-based span classification is proposed. The
soft prompts directly before and after the span are
inserted to make full use of the contextual position
information near the span for classification. More-
over, contrastive learning is employed to shorten
the distance between sentence representations to
reduce the interference caused by soft prompts. In
this way, we preserve the potential connections
between nested entities.

Our main contributions are as follows:

• A novel span-based method based on Focus-
ing, brIdging and prompTing (FIT) for few-

shot nested NER is proposed. To the best of
our knowledge, we are the first to tackle few-
shot nested NER without using source domain
data.

• To make use of the relationship information
between nested entities and contextual posi-
tion information, adversarial prompt-based
span classification is proposed.

• Experimental results show that FIT achieves
state-of-the-art performance consistently on
the four benchmark datasets (ACE2004,
ACE2005, GENIA and KBP2017) and out-
performs several competing baseline models
on F1-score by 9.33% on ACE2004, 6.17%
on ACE2005, 9.40% on GENIA and 5.12%
on KBP2017 on 5-shot setting.

2 Related Work

2.1 Nested NER

Most of the existing nested NER methods focus on
the fully supervised learning paradigm. There are
sequence-labeling-based methods (Straková et al.,
2019; Wang et al., 2020), generative-based meth-
ods (Yan et al., 2021; Tan et al., 2021), span-based
methods (Shen et al., 2021; Yuan et al., 2022;
Huang et al., 2022a), anchor-based methods Lin
et al. (2019) and so on. There are also methods
based on hyper-graph, which adopt the hyper-graph
to represent all possible nested structures in a sen-
tence (Katiyar and Cardie, 2018; Wang and Lu,
2018). However, these supervised nested NER
methods rely on plenty of labeled data to work,
which is not suitable for the few-shot setting.

2.2 Few-shot NER

In recent years, several methods have been pro-
posed to solve the few-shot flat NER task, mainly
including sequence-labeling-based (Huang et al.,
2021; Ma et al., 2022b,a; Yang and Katiyar, 2020;
Das et al., 2022; Huang et al., 2022b), generative-
based (Cui et al., 2021; Hou et al., 2022; Chen et al.,
2022) and span-based (Yang et al., 2022; Wang
et al., 2022b) methods. In terms of different defi-
nitions of few-shot setting, few-shot NER can also
be divided into two categories: in-domain (Huang
et al., 2022b) and domain transfer (Das et al., 2022)
settings. The former directly uses few samples for
training and tests on the complete test set; while the
latter pre-trains on the rich-resource source domain
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dataset and then fine-tunes on a low-resource tar-
get domain dataset. To the best of our knowledge,
there is only one work dedicated to studying the
few-shot nested NER (Ming et al., 2022). For each
word, they design a Biaffine representation module
for learning the contextual dependency represen-
tation, and then merge semantic representation by
the residual module. However, they apply max
pooling to extract the most important features as
span representation, which loses a lot of span in-
formation. Moreover, we focus on the in-domain
setting, a more difficult scenario, instead of the do-
main transfer setting. Our approach can be easily
adapted to the domain-transfer setting by using the
pre-training and fine-tuning paradigm.

3 Method

In this section, we will first introduce the task defi-
nition of nested NER, then describe the details of
FIT. Finally, the training objective is introduced.

3.1 Overall Architecture

Given an input sentence x = {x1, . . . , xn} of n
tokens, nested NER aims to correctly identify the
left and right boundary tokens xel and xer for every
entity e = {xel , . . . , xer} in x, and assign e the
correct entity type y from a predefined list of cate-
gories Y , e.g., Y = {“GPE”, “ORG”, . . . }. Unlike
flat NER, there will be overlapping between en-
tities and the tokens in entity e may be assigned
multiple types in nested NER.

We formalize nested NER as span extraction
and span classification which further are divided
into three subtasks. Figure 2 illustrates how the
proposed approach, FIT, works. In the focusing
stage, the entity-concentrated parts, such as “state
legislatures” shown in Figure 2, are obtained. In
the bridging stage, span extraction is conducted
on the parts obtained in the focusing stage. Spans
such as “representatives to the electoral college” are
collected. In the prompting stage, spans obtained
in the bridging stage are classified.

3.2 Focusing

Given an input text x = {x1, . . . , xn} consisting
of n tokens, the focusing stage is to find the entity-
concentrated parts in x, i.e., all the longest parts
where named entities are adjacent as shown in Fig-
ure 2, which is important for the following bridg-
ing stage. We denote the set of entity-concentrated
parts as xr = {xr1 , . . . ,xrK}, where xri∩xrk =

∅, xrk = {xl, . . . , xr} ⊂ x denotes k-th part, and
xl, xr denote the left and right boundary tokens
respectively.

The focusing stage is accomplished by construct-
ing an IO tagging module and predicting each token
whether a part of an entity or not based on its tag
score. Each entity-concentrated part xrk can be ob-
tained by concatenating continuous tokens marked
with I-tag.

The implementation details are as follows. First,
we feed the input text into BERT to obtain the rep-
resentation h ∈ Rn×d, where d is the dimension of
the BERT hidden states. For each token xi, BERT
tokenizer may divide it into multiple subtokens
ti = (ti1, . . . , tij). Consequently, the representa-
tion htagi of each token xi is the concatenation of
the mean pooled subtoken representation hpi and
the representation of the [CLS] token h[CLS]. The
tag score ptagi is calculated as follows:

hpi = MeanPooling(hti1 , . . . , htij) (1)

htagi = Concat(hpi , h
[CLS]) (2)

ptagi = Softmax(MLPtag(h
tag
i )) (3)

where MLP denotes the multilayer perceptron for
binary classification. Then whether a token is a
part of an entity can be calculated as:

ŷtagi = argmax(ptagi ) (4)

For the binary classifier, we simply use the cross-
entropy loss:

Lfocus =
∑

i

CrossEntropyLoss(ptagi , ytagi )

(5)
where ytagi is the ground truth label; ytagi being 1
denotes xi is part of an entity and 0 denotes that xi
is not part of an entity.

3.3 Bridging
In the bridging stage, for each entity-concentrated
part xrk obtained in the focusing stage, we enu-
merate all spans in xrk to obtain candidate nested
spans. Candidate nested spans are filtered accord-
ing to the boundary scores to reduce spans with
low-quality.

To calculate the boundary score of each candi-
date nested span, we need to calculate the probabil-
ities of each token xi ∈ xrk being the left or right
boundary of an entity respectively.
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Figure 2: The architecture of the proposed approach, FIT.

For each entity-concentrated part xrk , its part-
representation hri is the mean pooling of all tokens’
representations in xrk . We concatenate the part-
representation hri and the token representation hpi to
obtain the representation hboundaryi for each token
xi ∈ xrk , which is used to calculate whether token
xi is the left or right boundary of an entity. The
probabilities of each token xi being the left and
right boundaries can be calculated as follows:

hri = MeanPooling(hxl
, . . . , hxr) (6)

hboundaryi = Concat(hri , h
p
i ) (7)

plefti = Softmax(MLPleft(h
boundary
i )) (8)

prighti = Softmax(MLPright(h
boundary
i )) (9)

To train the MLPleft and MLPright classifiers,
we need to pre-assign the categories ylefti and
yrighti of xi. 1 denotes that xi is the left or right
boundary of an entity while 0 denotes that xi is
not the boundary of an entity. We simply use the
cross-entropy loss:

Lleft =
∑

i

CrossEntropyLoss(plefti , ylefti )

(10)
Lright =

∑

i

CrossEntropyLoss(prighti , yrighti )

(11)
We denote the set of candidate nested spans ob-

tained by enumerating xrk as ŝ = (s1, . . . , sw),

where si = (sli , . . . , sri) denotes i-th candidate
nested span, and sli , sri denote the left and right
boundary tokens of the span respectively. Then the
boundary score of each candidate nested span si
can be calculated as:

pspansi
= pleftsli

⊙ prightsri
(12)

where pleftsli
denotes the probability of the left

boundary token sli of the span si being the left
boundary of an entity. Likewise, prightsri

denotes the
probability of the right boundary token sri of the
span si being the right boundary of an entity. Note
that ⊙ is element-wise multiplication.

Now we sort the set of candidate nested spans
ŝ according to the score pspansi . For candidate
nested spans with partial overlapping, those with
low scores are discarded. For simplification, we
denote the set of filtered candidate nested spans as
S = (s1, . . . , sf ), where S ⊂ ŝ.

3.4 Prompting

Let M be a language model pre-trained on large-
scale corpora, prompt learning formalizes the clas-
sification task into a masked language modeling
problem. Specifically, prompt learning wraps the
input text with a template, a piece of natural lan-
guage text or some marks. The model M should
predict the label in [MASK] position. In this work,
the prompting stage follows the common prompt-
learning practice (Schick and Schütze, 2021). In ad-
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dition, we introduce contrastive learning to achieve
adversarial prompt learning. Due to the space lim-
itation, instead of introducing the overall process,
we only list some key parts in this subsection.

Soft Prompts Setting. The first key part is how
to construct soft prompts. Wikipedia usually uses
the fullname(abbreviation) pattern when intro-
ducing entities. For example, when introducing
the “OSI model” in Wikipedia, the first sentence in
the first paragraph is “The Open Systems Intercon-
nection model (OSI model) is a conceptual model
. . . ” 1. Inspired by that, we build soft prompts us-
ing the same pattern entity(tag), making its form
closer to the form of sentences in the pre-training
corpus. Specifically, for each span si in the filtered
candidate nested spans set S, we wrap it into

xp = {xpart1 , [p1], si, [p2], [MASK], [p3], xpart2}
where [pi] denotes the soft prompt. For example,
assuming we need to classify the span “state” in the
sentence x in Figure 2, we wrap it into xp = “U.S.
law allows [p1] state [p2][MASK][p3] legislatures
to choose representatives to the electoral college as
a last resort.”

Then M predicts the probability of each label y
being filled in [MASK] token PM([MASK] = y |
xp).

The predicted ŷ is

ŷ = argmax
y∈Y

PM([MASK] = y | xp) (13)

This objective function is suitable for optimiza-
tion by applying a cross-entropy loss on the pre-
dicted probability.

Contrastive Learning Setting. As the con-
struction of soft prompts will interfere with nested
entities, the connection between inner and outer
nested entities may be cut off. To alleviate this
problem, we introduce contrastive learning. In-
spired by (Chen and He, 2021; Sevegnani et al.,
2022), we abandon the practice of negative pairs
used in traditional contrastive learning and only
construct positive pairs. Positive pairs are defined
as (xp1 ,xp2), where both xp1 and xp2 are differ-
ent wrapped spans obtained from S. Note that the
spans in the set S are all paired in pairs.

Then, we calculate cosine embedding loss by:

Lcontrast(xp1 ,xp2) = 1− cos(x[CLS]
p1 ,x[CLS]

p2 )
(14)

where x
[CLS]
pi is the [CLS] token representation of

xpi obtained by BERT.
1https://en.wikipedia.org/wiki/OSI_model

3.5 Training Objectives

The overall loss function is:

L = αLfocus + βLleft + γLright

+ηLprompt + λLcontrast
(15)

where Lfocus, Lleft, Lright, Lprompt and Lcontrast

are balanced with hyper-parameters α, β, γ, η and
λ respectively, and Lprompt denotes loss function
used in the soft prompt-learning.

4 Experiments

In this section, we conduct experiments on four
nested NER datasets to evaluate the effectiveness
of the proposed method.

4.1 Datasets

Experiments are conducted on four nested NER
datasets: ACE20042 (Doddington et al., 2004),
ACE20053 (Walker et al., 2005), GENIA4 (Ohta
et al., 2002) and KBP20175 (Ji et al., 2017). Please
refer to Appendix A.1 for the introduction and sta-
tistical information about the datasets.

4.2 Experiment Settings

In-Domain Setting. For few-shot learning, we
conduct 5, 10, and 20-shot experiments without
pre-training on the rich-resource source domain.
For a k-shot experiment, all the original test sets
are preserved for testing, and the training and devel-
opment sets are resampled for training. Following
the same sampling method as previous work (Ma
et al., 2022b), we sample k instances per class from
the original training set to form the few-shot train-
ing set and sample another k instances per class
from the original development set to form the few-
shot development set. It is worth noting that no
random seed is searched when sampling. 10 sets of
data were sampled for k-shot, and all subsequent
metrics were taken from the average of these 10
sets of data. The statistical information of few-shot
datasets obtained by sampling can be found in Ap-
pendix A.1. For all datasets, we train our model for
35 epochs and choose the checkpoint with the best
validation performance to test. See Appendix A.2
for more detailed settings.

2https://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2006T06
4http://www.geniaproject.org/genia-corpus
5https://catalog.ldc.upenn.edu/LDC2019T12
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Evaluation Metrics Setting. Span-level preci-
sion, recall, and Micro-F1 scores are used to mea-
sure the results in all experiments. Note that the
nested NER datasets also contain a certain propor-
tion of flat entities, then the standard metrics end
up confusing flat and nested results and, conse-
quently, are not able to reflect well the ability of
a model to detect nesting. To alleviate this issue,
we analyze the error rates for total entities etotal,
flat entities eflat, nested entities enested, the inner
entities einner and the outer entities eouter. See
Appendix A.3 for the calculation formulae.

4.3 Baselines
We use the following models as baselines for few-
shot nested NER: Locate and Label (Shen et al.,
2021), Unified Generative NER (Yan et al., 2021),
SEE-Few (Yang et al., 2022), SDNet (Chen et al.,
2022) and ESD (Wang et al., 2022b). The first
two baselines are fully supervised methods, and
the last three are designed for the few-shot setting.
It should be noted that since most few-shot NER
methods cannot handle few-shot nested NER, the
methods available to us are limited. Please refer to
Appendix A.4 for detailed information.

4.4 Experiment Results
Main Results. Table 1 illustrates the performance
of FIT and baselines on ACE2004, ACE2005, GE-
NIA and KBP2017. We can see that: 1) FIT consis-
tently outperforms all the baselines by a large mar-
gin. Especially in the 5-shot setting, the F1-scores
of our model advance previous models by +9.33%,
+6.17%, +9.40%, +5.12% on ACE2004, ACE2005,
GENIA, and KBP2017 respectively. In the abla-
tion study, we will investigate which components
bring improvement. 2) For fully supervised meth-
ods, both Locate and Label and Unified Generative
NER perform poorly. In particular, Unified Genera-
tive NER, as a generative-based method, performs
more poorly in a few-shot setting. These show that
fully supervised methods may inherently flaw in
few-shot NER. 3) For few-shot methods, they show
competitive performances as the shot rises, espe-
cially SEE-Few and ESD. SEE-Few shows compet-
itive performances under the 20-shot setting, but its
performance on the 5-shot setting is not satisfactory.
The reason may be the NLI task used in SEE-Few
has limitations in context utilization. ESD also
shows good performance, which we attribute to its
pre-training on the large-scale corpus Few-NERD
(Ding et al., 2021) and a significant part of the GE-

NIA dataset. ESD without pre-training has also
been evaluated, and its performance decreases by
15%-25% on the four datasets. The performance of
1-shot experiments can be found in Appendix B.1.

Error Rates for Nested Entities. Table 2 illus-
trates the error rates on the GENIA dataset under
few-shot settings. We can see that: Among all
methods, FIT significantly reduces the error rates
of nested entities. In particular, FIT significantly
reduces einner and makes it even lower than eouter,
which shows the effectiveness of FIT for inner enti-
ties. The error rates on other datasets can be found
in Appendix B.2.

4.5 Ablation Study

We conduct ablation experiments on four datasets.
The results on the GENIA dataset are shown in
Table 3. The results on other datasets can be found
in Appendix B.3.

W/o focusing. We directly enumerate all spans
in the sentence as candidate spans and filter them in
the bridging stage. A significant performance drop
in all settings is observed, which indicates that the
focusing stage filters out most of the low-quality
parts with only one binary classifier.

W/o filtering. The filtering module in the bridg-
ing stage is removed directly. The results show
that the filtering module has a positive effect un-
der the 5-shot setting. However, as the number
of training data increases, the effect of w/o filter-
ing becomes better. We think that is because the
prompting stage can acquire a stronger ability to
discriminate low-quality spans as the amount of
training data increases, while the filtering module
is relatively underfitting at this time. Consequently,
some true positives are discarded in advance at the
bridging stage, which causes performance loss.

W/o contrastive learning. The contrastive learn-
ing module is removed directly. The results show
that contrastive learning reduces the interference
caused by the soft prompt, and made the model
more stable, which is reflected in the reduction of
the standard deviation.

W/o series prompt setting. Three kinds of
experiments are designed: w/o soft prompt re-
places soft prompts with discrete prompts (The
three prompts are “,” “(” and “)” respectively);
w/o contextual prompt does not use context-based
prompts, but moves prompts to the end of the sen-
tence (with template “x . si is [MASK] .”). Note
that the appropriate template has been searched ;
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Datasets Methods
5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑

ACE2004

Locate and Label 51.59 3.93 7.20±3.34 65.31 14.12 22.88±6.81 67.74 29.45 41.02±2.79

Unified NER 18.18 5.86 8.87±3.47 29.59 9.71 14.19±6.23 43.84 21.74 28.73±10.83

SEE-Few 50.08 18.69 26.54±6.60 57.74 29.70 38.89±4.07 63.53 39.91 48.94±2.27

SDNet 61.40 12.45 20.55±4.64 65.73 23.81 34.82±4.71 67.18 31.52 42.87±2.13

ESD 34.51 13.69 19.25±5.74 53.95 35.44 42.75±5.11 56.94 48.27 52.17±3.76

FIT(ours) 46.87 29.31 35.87±4.92 51.43 40.18 44.88±4.82 60.14 48.93 53.92±2.99

ACE2005

Locate and Label 50.20 6.55 11.43±6.56 57.80 16.52 25.13±9.00 65.13 28.69 39.61±6.02

Unified NER 17.08 5.92 8.72±4.42 18.19 9.23 13.17±4.01 36.10 18.30 24.26±2.59

SEE-Few 49.42 17.69 25.58±6.61 55.92 27.45 36.36±6.63 61.37 44.19 51.31±2.27

SDNet 57.46 13.81 22.03±6.12 61.17 22.08 32.20±4.89 65.84 32.03 43.00±3.55

ESD 36.36 28.51 31.57±6.45 42.99 35.72 38.81±7.04 55.01 46.39 50.30±3.37

FIT(ours) 44.74 33.05 37.74±5.33 46.83 38.85 42.25±10.65 58.02 48.5 52.71±2.55

GENIA

Locate and Label 36.12 10.42 15.57±6.78 52.46 23.29 31.65±6.54 62.17 41.60 49.67±4.46

Unified NER 13.26 2.85 4.68±2.27 17.23 7.88 10.62±5.48 30.89 15.87 20.98±3.64

SEE-Few 30.92 14.41 19.31±6.95 52.35 29.84 37.78±5.04 59.36 45.10 50.93±4.66

SDNet 41.25 11.36 17.46±6.97 48.57 12.18 19.03±7.07 57.03 23.54 33.27±3.71

ESD 36.44 20.24 25.03±9.88 48.86 28.00 35.23±4.96 55.49 41.62 47.22±4.36

FIT(ours) 40.72 30.30 34.43±9.06 52.91 39.51 44.95±3.38 57.00 46.81 51.26±3.96

KBP2017

Locate and Label 69.95 9.57 16.52±7.67 68.33 17.54 27.17±9.90 69.36 36.40 47.35±7.29

Unified NER 21.13 5.47 8.49±7.94 27.66 12.08 16.00±8.28 35.17 15.62 21.30±8.20

SEE-Few 47.02 15.34 22.87±4.82 55.07 27.48 36.26±6.08 58.86 41.99 48.65±5.51

SDNet 62.28 12.24 20.25±3.88 65.11 21.03 31.57±4.55 64.92 33.98 44.48±4.34

ESD 34.27 24.39 28.38±9.02 49.13 38.61 42.99±4.20 54.64 51.00 52.54±3.76

FIT(ours) 44.68 27.20 33.50±4.37 50.69 39.43 44.21±4.64 56.39 52.70 54.27±5.07

Table 1: Performance comparison of FIT and baselines on four datasets under different shots.

w/o prompt directly abandons the prompt setting
and trains a multi-class classifier to classify the can-
didate nested spans. Experimental results show that
context-based soft prompts have a positive effect,
while directly training classifiers is less effective,
illustrating the importance of utilizing contextual
information in few-shot nested NER.

5 Time Complexity

Theoretically, the number of possible spans in a
sentence of length N is N(N+1)

2 . If we classify al-
most all spans into corresponding categories, it will
lead to a high computational cost with O(N2) time
complexity. However, the focusing stage makes
the model only focus on the entity-concentrated
part, reducing the time complexity. Although in
the worst case, the model keeps the whole sentence
as an entity-concentrated part, generating N(N+1)

2
candidate nested spans. The number of candidate
spans is reduced as some partial overlap spans are
discarded according to the boundary scores.

We also evaluate the efficiency of FIT. In the

5-shot setting of the ACE2004 dataset, compared
with few-shot span-based methods SEE-Few train-
ing that takes 159.39s, the FIT takes 122.37s for
the same 35 epochs, which leads to approximately
23.23% speedup. In the inference phase, FIT also
spends 31.99ms for each sample on average, which
is 15.50% faster than other results-competitive
methods. Time usage on four datasets can be found
in Appendix C.

6 Discussion

The F1 scores of 10 sets of 20-shot data sampled
on the ACE2005 dataset are compared in Figure 3.
The horizontal coordinate is sorted in ascending or-
der by the nested ratio (the lower bound is 22.86%,
and the upper bound is 42.14%). The nested ra-
tio of each set can be found in Appendix A.1. It
shows that under a single data set, the performance
of the model is more closely related to the quality
of the sampled data rather than the nested ratio.
Nevertheless, FIT works better than other methods.

To further explore the effect of the different
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Methods
5-shot 10-shot 20-shot

etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓
SEE-Few 85.58 86.07 83.84 83.73 84.10 70.17 69.11 73.97 74.39 73.58 54.90 52.20 64.62 65.84 63.49

SDNet 88.64 86.09 97.79 98.08 97.59 87.82 85.12 97.50 97.96 97.13 76.46 70.92 96.36 96.84 96.03
ESD 79.76 78.96 82.64 81.27 84.41 72.00 70.59 77.08 74.46 80.05 58.38 55.67 68.11 63.81 72.52

FIT(ours) 69.70 68.11 75.40 73.82 77.50 60.49 57.91 69.77 65.81 73.99 53.19 49.89 65.04 60.07 70.17

Table 2: The error rates comparison of FIT and baselines on the GENIA dataset under different shots. Orange
indicates that einner is smaller than eouter. Note that: 1) We follow Wang et al. (2022b) and pre-train ESD on part
of the GENIA dataset. 2) We did not mark SDNet’s einner because the values are too large to be informative.

Methods
5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑
Full model 40.72 30.30 34.43±9.06 52.91 39.51 44.95±3.38 57.00 46.81 51.26±3.96

-w/o focusing 33.57 9.80 14.21±8.54 49.90 13.25 19.57±7.44 57.22 14.40 22.74±4.23

-w/o filtering 33.62 22.11 26.56±7.97 52.79 37.52 43.58±4.85 57.47 48.63 52.42±4.03

-w/o contrastive learning 41.41 24.43 30.17±9.78 52.39 38.94 44.23±5.01 59.71 44.16 50.47±4.48

-w/o soft prompt 43.02 27.00 32.45±6.87 49.22 38.16 42.67±4.55 59.23 45.28 51.14±3.98

-w/o contextual prompt 36.93 21.74 26.94±8.04 53.51 31.90 39.63±7.08 59.19 44.09 50.35±4.54

-w/o prompt 18.05 9.20 10.99±6.02 29.81 21.30 23.94±4.80 40.61 35.06 37.39±2.68

Table 3: Ablation study of FIT and baselines on the GENIA dataset under different shots.
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Figure 3: Comparison of F1 scores of 10 sets of 20-shot
data sampled on the ACE2005 dataset.

nested ratios of the training sets on FIT, we ran-
domly sample 200 sets of 20-shot data from the
ACE2005 dataset and preserve sets that satisfy spe-
cific nested ratios. Finally, 50 sets are kept and
divided into 5 groups. (Note that each group con-
tains 10 sets and 5 groups corresponding to nested
ratios of 17-24%, 20-34%, 40-44%, 60-64%, and
70-74%.) As shown in Figure 4, the F1 score tends
to decrease as the nested ratio increases. However,
the enested maintains a decreasing trend while the
eflat increases. It can be seen that the increase in
the nested ratio may help the model learn nested
entities better, and most of the decrease in F1 is
due to the misjudgment of flat entities.

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 3 4 5 6 7 8 9 10

F1

set

Locate and Label
Unified NER
SEE-Few
FIT

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 3 4 5 6 7 8 9 10
F1

set

Locate and Label
Unified NER
SEE-Few
FIT

34.5

39.5

44.5

49.5

54.5

59.5

17-24% 30-34% 40-44% 60-64% 70-74%

F1

nested ratio

total
flat
nested
inner
outer
F1

34.5

39.5

44.5

49.5

54.5

59.5

17-24% 30-34% 40-44% 60-64% 70-74%
nested ratio

total
flat
nested
inner
outer
F1

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 3 4 5 6 7 8 9 10

F1

set

Locate and Label
Unified NER
SEE-Few
FIT

44

46

48

50

52

54

56

34.5

39.5

44.5

49.5

54.5

59.5

17-24% 30-34% 40-44% 60-64% 70-74%

F1

Er
ro

r R
at

e

nested ratio

total
flat
nested
inner
outer
F1

Figure 4: Comparison of F1 scores and error rates of
different nested ratios.

7 Conclusion

In this work, we propose a span-based method for
few-shot nested NER without using source domain
data. First, the candidate nested spans are gen-
erated by the focusing and bridging components.
Then the adversarial prompt-based span classifi-
cation method is proposed to classify candidate
spans into the corresponding categories. Our pro-
posed method, FIT, can make full use of the unique
features of nested entities while reducing the com-
putational cost and the impact of low-quality can-
didate spans. Experimental results show that our
method achieves state-of-the-art performance con-
sistently on the four benchmark datasets (ACE2004,
ACE2005, GENIA, and KBP2017), and outper-
forms several competing baseline models on F1-
score and the error rates of nested entities.
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Limitations

Although our method achieves state-of-the-art
performance consistently on the four benchmark
datasets, it suffers from the following limitations:

• No optimization for the verbalizer. The ver-
balizer we use in the prompting stage is just
a simple 1-to-1 mapping, This simple design
does not fully exploit the capabilities of MLM.

• No explicit modeling of the relationship infor-
mation between nested entities. We consider
that in some other scenarios, the relationship
information between nested entities is not very
significant. Consequently, explicitly modeling
the relationship may introduce new biases. So
we just utilize the potential information. But
in practice, it is worth exploring how to model
such a relationship from a novel perspective.
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A Experiment Settings on Nested NER

A.1 Statistics of Nested Datasets
We conduct experiments on four nested NER
datasets: ACE20046, ACE20057, GENIA8 and
KBP20179. GENIA dataset is available under the li-
cense of CC-BY 3.0, whereas ACE2004, ACE2005,
and KBP2017 require a license from LDC. The de-
tails are as follows:

ACE 2004 and ACE 2005 (Doddington et al.,
2004; Walker et al., 2005) are two nested datasets,
each of them containing 7 entity categories. The
two nested datasets also contain more than two
layers of nesting and the proportion of long entities
is relatively large. Following (Katiyar and Cardie,
2018; Lin et al., 2019; Shen et al., 2021), we split
them into the train, dev, and test sets by 8:1:1.

GENIA (Ohta et al., 2002) is a biology nested
named entity dataset and contains five entity types,
including DNA, RNA, protein, cell line, and cell
type categories. We use the original division pro-
vided by the official10, which is nearly 8/1/1 for the
train/dev/test set.

KBP2017 (Ji et al., 2017) has 5 entity categories,
including GPE, ORG, PER, LOC, and FAC. We
randomly split them into train, dev, and test sets by
6:2:2.

In Table 4, We report the number of sentences,
the number of sentences containing nested enti-
ties, the average sentence length, the total num-
ber of entities, the number of nested entities, and
the nested ratio on the ACE2004, ACE2005, GE-
NIA, and KBP2017 datasets. In Table 5, We report
the nested ratio of our randomly sampled train-
ing sets on the ACE2004, ACE2005, GENIA, and
KBP2017 datasets.

A.2 Detailed Parameter Settings
We implement FIT with Huggingface Transform-
ers 4.11.3 and PyTorch 1.7.1. In most exper-

6https://catalog.ldc.upenn.edu/LDC2005T09
7https://catalog.ldc.upenn.edu/LDC2006T06
8http://www.geniaproject.org/genia-corpus
9https://catalog.ldc.upenn.edu/LDC2019T12

10http://www.geniaproject.org/genia-corpus/
relation-corpus
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Dataset Statistics ACE2004 ACE2005 GENIA KBP2017

Train Dev Test Train Dev Test Train Dev Test Train Dev Test
# sentences 6202 745 812 7299 971 1060 15023 1669 1854 2126 722 720
# sent. nested entities 2712 294 388 2799 352 340 3197 325 446 622 208 217
avg sentence length 22.50 23.02 23.05 19.94 19.71 17.90 25.43 24.63 25.99 24.11 25.41 25.10
# total entities 22202 2514 3035 24708 3218 3030 46142 4367 5506 7515 2630 2564
# nested entities 10148 1092 1417 9940 1189 1184 8265 799 1199 2145 725 726
nested ratio (%) 45.71 43.44 46.69 40.23 36.95 39.08 17.91 18.30 21.78 28.54 27.57 28.32

Table 4: Statistics of the four datasets used in the experiments.

Groups ACE2004 ACE2005 GENIA KBP2017

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot 5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
# 1 40.00 33.33 35.34 22.86 25.71 42.14 8.00 8.00 11.00 8.33 42.86 23.08
# 2 6.45 32.79 34.51 31.43 25.71 26.43 8.00 16.00 6.00 27.27 5.26 34.21
# 3 19.35 33.33 38.14 20.00 41.43 35.71 8.00 26.00 12.00 21.74 28.95 25.97
# 4 19.36 21.31 40.17 34.29 30.00 31.43 0.00 14.00 15.00 34.78 23.26 12.82
# 5 25.81 24.59 40.65 25.71 25.71 28.57 16.00 10.00 12.00 24.00 20.93 21.62
# 6 25.82 20.97 34.45 34.29 54.29 30.71 16.00 20.00 18.00 8.33 24.39 30.14
# 7 29.03 32.79 38.46 45.71 38.57 26.43 16.00 6.00 13.00 12.50 14.29 18.57
# 8 19.35 36.07 33.06 31.43 28.57 22.86 0.00 14.00 7.00 16.00 30.00 27.03
# 9 6.06 29.51 31.30 34.29 40.00 33.57 0.00 12.00 16.00 13.64 24.39 30.14
# 10 38.71 33.85 27.12 11.43 31.43 41.43 16.00 18.00 10.00 9.09 21.74 18.57
avg nested ratio 22.99 29.85 35.32 29.14 34.14 31.93 8.80 14.40 12.00 17.57 23.61 24.22

Table 5: Nested ratio(%) of the few-shot training datasets used in the experiments.

iments, we use BERT (Devlin et al., 2019) as
PLM. For the GENIA dataset, we replace BERT
with BioBERT (Lee et al., 2019). In the experi-
mental details, we use bert-base-uncased11 for
ACE2004, ACE2005 and KBP2017 datasets and
dmis-lab/biobert-base-cased-v1.212 for GE-
NIA dataset (the two model sizes: all about 110M).
The soft prompts are initialized by the embedding
of “,” “(” and “)”. The verbalizer is just a simple
1-to-1 mapping as shown in Table 6, that is, only
the word corresponding to the semantics of the tag
is used as a mapping. We use the Adam Optimizer
with a linear warmup-decay learning rate schedule,
a dropout before the tag, left boundary and right
boundary classifiers with a rate of 0.1. Please see
Table 7 for details. We train our model on a single
NVIDIA 3090 GPU with 24GB memory.

All baselines follow the settings of their orig-
inal work. Among them, Locate and Label,
SEE-Few, and ESD all uses bert-base-uncased
for ACE2004, ACE2005 and KBP2017 datasets,
and uses dmis-lab/biobert-base-cased-v1.2
for GENIA dataset. While Unified NER uses
facebook/bart-large13 (Lewis et al., 2019)
(model size: about 406M), and SDNet uses
t5-base14 (Raffel et al., 2020) (model size: about

11https://huggingface.co/bert-base-uncased
12https://huggingface.co/dmis-lab/

biobert-base-cased-v1.2
13https://huggingface.co/facebook/bart-large
14https://huggingface.co/t5-base

Tags ACE2004 ACE2005 GENIA KBP2017
# WEA weapon weapon - -
# GPE geography geography - geography
# PER person person - person
# FAC facility facility - facility
# ORG organization organization - organization
# LOC location location - location
# VEH vehicle vehicle - -
# DNA - - DNA -
# RNA - - RNA -
# cell_type - - cell -
# protein - - protein -
# cell_line - - group -
# No Entity none none none none

Table 6: Verbalizer used in the prompting stage.

P ACE2004 ACE2005 KBP2017 GENIA

lr 3e-05 3e-05 3e-05 3e-05

Focus&Bridge batch size 1 1 1 1

Prompt batch size 8 8 8 8

α 1.0

β 1.0

γ 1.0

η 1.0

λ 1.0

drop out rate 0.1

lr_warmup 0.1

weight_decay 0.01

Table 7: Detailed Parameter(P) Settings

220M).

A.3 Error Rates Calculation

We analyze the error rates for total entities etotal,
flat entities eflat, nested entities enested, the inner
entities einner, and the outer entities eouter. Specif-
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ically, we calculate these metrics by dividing the
total number of misjudged entities belonging to that
entity type by the total number of that entity type.
For example, enested can be calculated by dividing
the total number of nested entities misjudged by
the total number of nested entities. All the metrics
are calculated in the test set. The formulae are as
follows:

etotal =
nmisjudged_entities

nall_entities
(16)

eflat =
nmisjudged_flat_entities

nall_flat_entities
(17)

enested =
nmisjudged_nested_entities

nall_nested_entities
(18)

einner =
nmisjudged_inner_nested_entities

nall_inner_nested_entities
(19)

eouter =
nmisjudged_outer_nested_entities

nall_outer_nested_entities
(20)

A.4 Baselines

We use the following models as baselines for few-
shot nested NER. The first two are models under
the fully supervised setting, and the last three are
models under the few-shot setting. It should be
noted that since most few-shot NER methods can-
not handle few-shot nested NER, the methods avail-
able to us are limited.

• Locate and Label (Shen et al., 2021) gener-
ates candidate spans by filtering and boundary
regression on the seed spans, and then labels
the boundary-adjusted candidate spans with
the corresponding categories. The two-stage
method achieves good results on fully super-
vised nested NER.

• Unified Generative NER (Yan et al., 2021)
formulates the NER task as an entity span
sequence generation task, which can directly
generate nested entity categories.

• SEE-Few (Yang et al., 2022) is a span-based
method applied to the few-shot flat NER,
which extracts spans with seeding and expand-
ing, then classifies them via natural language
inference. It can be naturally extended to few-
shot nested NER.

• SDNet (Chen et al., 2022) is a self-describing
generation model for few-shot NER. In the
pre-training stage, the external data is used
to jointly train mention describing and entity
generation tasks. In the fine-tuning stage, SD-
Net first conducts mention describing to sum-
marize type concept descriptions, and then
conducts entity generation based on the gen-
erated descriptions.

• ESD (Wang et al., 2022b) formulates the
few-shot sequence labeling task as a span-
level similarity matching problem between
test query and supporting instances to solve
few-shot NER. Wang et al. (2022b) mentions
that their approach can be extended to few-
shot nested NER by modifying pre-training
datasets. Specifically, they sample from Few-
NERD (Ding et al., 2021) dataset and GE-
NIA dataset in a certain proportion to form
the FewNERD-nested dataset, and then pre-
trained on it. In our experiments, we control
the sampling ratio of the two at 6:4 (FewN-
ERD:GENIA).

B Experiment Results on Nested NER

B.1 1-shot Experiments
We show the performance of 1-shot experiments
on ACE2004, ACE2005, and KBP2017 datasets in
Table 8. We can see that FIT significantly outper-
forms all methods.

B.2 Error Rates
We show the error rates on ACE2004, ACE2005,
and KBP2017 datasets in Table 9. We can see that
FIT significantly reduces the error rates of nested
entities among all methods.

B.3 Ablation Studys
We conduct ablation experiments to elucidate the
main components of our proposed method FIT.
The results on ACE2004, ACE2005 and KBP2017
datasets are shown in Table 10.

C Time Usage

The time usage on ACE2004, ACE2005, and
KBP2017 datasets is shown in Table 11.
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Datasets Methods
1-shot

P R F1 ↑

ACE2004

SEE-Few 37.65 2.27 4.15±2.65

SDNet 55.26 7.54 12.98±5.39

ESD 10.70 3.71 5.24±9.62

FIT(ours) 30.21 11.99 16.67±8.94

ACE2005

SEE-Few 38.64 3.01 5.35±5.83

SDNet 48.62 6.21 10.85±4.59

ESD 7.18 2.50 3.52±7.31

FIT(ours) 28.92 9.77 13.76±7.36

GENIA

SEE-Few 14.63 0.97 1.77±1.53

SDNet 32.26 6.53 10.72±3.89

ESD 4.63 3.81 4.14±7.63

FIT(ours) 25.20 14.12 17.74±6.74

KBP2017

SEE-Few 39.45 0.55 1.08±1.28

SDNet 54.65 6.77 11.90±4.15

ESD 10.60 3.39 5.04±9.07

FIT(ours) 32.19 10.43 15.30±8.52

Table 8: Performance comparison of FIT and baselines on four datasets under 1-shot setting.

Datasets Methods
5-shot 10-shot 20-shot

etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓

ACE2004

SEE-Few 81.31 77.71 85.42 89.26 83.40 70.30 64.81 76.58 81.73 74.06 60.09 51.91 69.43 75.71 66.18
SDNet 87.54 77.31 99.24 98.99 99.55 76.19 56.89 98.23 98.03 98.66 68.48 43.05 97.51 97.38 97.96
ESD 86.31 82.39 90.78 94.44 88.78 64.56 57.89 72.17 76.53 70.41 51.73 42.13 62.68 65.22 62.16

FIT(ours) 70.69 63.81 78.53 78.30 78.99 59.83 51.73 69.07 71.43 68.24 51.07 41.57 61.91 64.26 61.58

ACE2005

SEE-Few 82.31 78.95 87.55 89.37 86.82 72.55 66.68 81.70 83.84 80.53 55.81 45.86 71.33 76.21 68.64
SDNet 86.19 78.17 98.71 98.63 98.97 77.92 65.22 97.71 98.00 97.83 67.97 49.61 96.59 97.50 96.39
ESD 71.50 65.36 81.06 82.47 80.57 64.28 56.84 75.87 77.37 75.25 53.61 45.11 66.86 67.37 67.41

FIT(ours) 66.95 60.77 76.59 77.39 76.42 61.15 53.22 73.51 74.85 73.06 51.50 43.04 64.68 63.83 66.25

KBP2017

SEE-Few 84.42 83.54 86.67 91.63 81.72 72.35 69.54 79.42 89.25 70.76 57.87 53.31 69.44 79.22 60.32
SDNet 87.75 83.23 99.19 99.04 99.44 78.88 71.14 98.47 98.32 98.82 65.89 53.43 97.44 97.14 98.06
ESD 75.43 72.36 83.20 90.73 76.47 61.25 54.91 77.30 87.59 68.53 48.88 41.59 67.36 76.39 59.73

FIT(ours) 72.63 68.88 82.12 88.87 76.05 60.43 55.06 74.04 84.95 64.83 47.19 40.11 65.37 74.76 57.52

Table 9: The error rates comparison of FIT and baselines on the three datasets under different shots. Orange
indicates that einner is smaller than eouter. Note that: We did not mark SDNet’s einner because the values are too
large to be informative.
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Datasets Methods
5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑

ACE2004

Full model 46.87 29.31 35.87±4.92 51.43 40.18 44.88±4.82 60.14 48.93 53.92±2.99

-w/o focusing 57.11 15.26 23.39±5.17 58.45 24.63 34.39±5.01 67.56 27.85 39.28±3.35

-w/o filtering 47.69 28.22 35.03±7.65 53.55 38.35 44.56±3.58 62.10 52.51 56.76±1.97

-w/o contrastive learning 44.73 28.39 34.60±8.27 52.41 39.18 44.71±5.70 58.67 49.48 53.58±3.11

-w/o soft prompt 45.27 28.90 34.83±8.28 51.02 37.42 43.11±4.18 58.94 48.37 53.00±3.38

-w/o contextual prompt 48.35 27.29 33.82±5.07 52.13 38.43 43.94±4.75 57.63 44.29 49.97±4.00

-w/o prompt 23.55 9.82 12.64±4.08 34.65 22.66 26.06±5.85 43.45 34.12 37.65±3.88

ACE2005

Full model 44.74 33.05 37.74±5.33 46.83 38.85 42.25±10.65 58.02 48.5 52.71±2.55

-w/o focusing 44.85 19.13 26.27±10.72 55.20 24.38 33.11±6.11 68.60 31.95 43.52±2.81

-w/o filtering 39.96 26.13 31.40±10.17 52.36 41.32 45.93±4.27 58.26 51.72 54.67±2.52

-w/o contrastive learning 41.56 30.92 35.35±7.52 45.87 35.09 39.53±11.51 53.90 49.97 51.82±2.79

-w/o soft prompt 40.86 30.23 34.32±6.92 48.88 35.80 40.53±8.66 55.42 49.25 52.46±4.16

-w/o contextual prompt 39.73 27.46 32.25±10.21 51.49 36.31 41.87±10.25 55.57 47.80 51.31±3.19

-w/o prompt 22.02 12.37 13.59±8.54 34.05 19.86 24.09±7.54 46.02 35.69 39.88±3.48

KBP2017

Full model 44.68 27.20 33.50±4.37 50.69 39.43 44.21±4.64 56.39 52.70 54.27±5.07

-w/o focusing 52.21 24.08 32.59±7.89 60.27 33.99 43.24±7.55 59.75 42.31 48.79±4.75

-w/o filtering 41.18 21.37 27.14±6.96 52.24 33.21 40.38±7.48 57.06 51.26 53.73±5.33

-w/o contrastive learning 46.21 25.35 32.45±4.54 51.53 38.53 44.04±4.75 54.94 51.59 52.99±5.65

-w/o soft prompt 47.76 25.77 33.16±6.00 52.11 41.64 45.87±5.28 54.97 51.56 53.16±5.45

-w/o contextual prompt 46.13 26.04 32.86±6.21 55.75 36.00 43.32±4.79 55.21 50.28 52.41±3.53

-w/o prompt 13.55 7.74 9.34±4.36 20.21 14.65 16.33±9.35 24.60 20.73 22.05±7.41

Table 10: Ablation study of FIT and baselines on the three datasets under different shots.

Methods
ACE2004 ACE2005 GENIA KBP2017

train test train test train test train test
Locate and Label 88.41s 39.28ms 88.95s 24.97ms 89.57s 35.28ms 65.30s 39.12ms

SEE-Few 159.39s 61.82ms 207.70s 36.14ms 160.18s 37.00ms 150.72s 52.44ms
SDNet 58.04s 37.86ms 71.86s 46.66ms 121.05s 50.97ms 40.04s 31.63ms

FIT(ours) 122.37s 31.99ms 147.40s 26.94ms 156.24s 36.89ms 105.15s 42.57ms

Table 11: Time usage on the 5-shot setting. Note that: 1) Locate and Label is a fully supervised method, and the
other three are few-shot setting methods. 2) For SDNet, the time usage for training does not include the time usage
for validation while others include it. 3) The ESD in the baseline is not included in the discussion because the
method needs to be pre-trained on a large-scale dataset in advance.

2635



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8 (Limitations)

�7 A2. Did you discuss any potential risks of your work?
We do not discuss them due to the space limitation, but we believe our study does not involve these
potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract; 1 Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4 Experiments

�3 B1. Did you cite the creators of artifacts you used?
4.1 Datasets; 4.2 Experiment Settings; 4.3 Baselines; A.1 Statistics of Nested Datasets; A.2 Detailed
Parameter Settings; A.4 Baselines

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
A.1 Statistics of Nested Datasets;

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We do not discuss them due to the space limitation, but the artifacts we have used are consistent with
their intended use.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The data we use are from datasets commonly used in the previous work, and sensitive information
has been handled in the previous work.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
A.1 Statistics of Nested Datasets

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
A.1 Statistics of Nested Datasets

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2636

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
4 Experiment

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
A.2 Detailed Parameter Settings; 5 Time Complexity

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
A.2 Detailed Parameter Settings

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.2 Experiment Settings; 4.4 Experiment Results; 4.5 Ablation Study; 6 Discussion

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
A.2 Detailed Parameter Settings

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2637


