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Abstract

It might reasonably be expected that running
multiple experiments for the same task using
the same data and model would yield very
similar results. Recent research has, however,
shown this not to be the case for many NLP
experiments. In this paper, we report extensive
coordinated work by two NLP groups to run
the training and testing pipeline for three neural
text simplification models under varying exper-
imental conditions, including different random
seeds, run-time environments, and dependency
versions, yielding a large number of results for
each of the three models using the same data
and train/dev/test set splits. From one perspec-
tive, these results can be interpreted as shedding
light on the reproducibility of evaluation results
for the three NTS models, and we present an in-
depth analysis of the variation observed for dif-
ferent combinations of experimental conditions.
From another perspective, the results raise the
question of whether the averaged score should
be considered the ‘true’ result for each model.

1 Introduction

Recently there has been a promising surge of in-
terest in reproducibility of NLP models, supported
by challenges (Pineau et al., 2021), shared tasks
(Belz et al., 2020), conference tracks (Carpuat et al.,
2022), and even the Reality Check theme at this
conference. The outcome of this surge in interest
has been a flurry of reproducibility studies and re-
lated investigations (Belz et al., 2022a; Arvan et al.,
2022a; Chen et al., 2022b). However, the collective
findings from these efforts have been alarming.

With interest in reproducibility growing, the ev-
idence is mounting that scores are substantially
affected by changes not only to arbitrary factors
like random seed and different data splits, but also
by incidental factors such as the type of GPU on
which an experiment is run, and the run-time envi-
ronment. In many cases, near-identical scores can
be guaranteed only when an experiment is re-run in

fully containerised form. In effect, this means that
even perfect sharing of information (once regarded
as the answer to all our reproducibility problems1

(Sonnenburg et al., 2007)) cannot guarantee identi-
cal results in all cases.

All this raises questions about reporting, experi-
mental design and the informativeness of scores
regarding the relative merits of different meth-
ods. Underlying these is the question of where
the boundary lies – seemingly between the two
extremes. On the one hand, exploration of method-
ological variations and reporting of separate scores
is part and parcel of method development. On the
other hand, arbitrary and incidental factors such as
random seed are not part of method development,
because they do not generalise to future applica-
tions of the same method. For the former, clearly,
comparing and reporting different scores is impor-
tant; for the latter, how to interpret, address or
report variation in scores is an open question.

In this paper, we tackle this question by con-
ducting a systematic and comprehensive investiga-
tion coordinated across two NLP groups to study
the variation of the results across three neural text
simplification (NTS) models under many different
experimental conditions. We experiment with dif-
ferent random seeds, run-time environments, and
dependency versions to ensure broad coverage of
our study. We observe that reporting average score
and its coefficient of variation is a more reliable
standard than reporting the maximum value, and
we urge researchers to record all methodological
conditions, control incidental ones, and abstract
away arbitrary factors to promote the reproducibil-
ity of their scientific contributions.

1"Reproducibility would be quite easy to achieve in ma-
chine learning simply by sharing the full code used for experi-
ments" (Sonnenburg et al., 2007).
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2 Task and Experimental Set-up

Our starting point for this exploration is the first
neural text simplification system reported by Nisioi
et al. (2017). This work was selected because it is
suitable for our purposes: the authors provided a
repository2 which contains comprehensive informa-
tion about the original work and the resources, thus
facilitating repeat runs of their experiments and
exploration of variation on their experimental con-
ditions, which is not often the case for NLP papers.
Moreover, the work has been reproduced before
(Cooper and Shardlow, 2020; Popović and Belz,
2021; Popović et al., 2022; Belz et al., 2022a; Ar-
van et al., 2022b) as part of the REPROLANG 2020
(Branco et al., 2020) and ReproGen 2021/2022
(Belz et al., 2021, 2022b) shared tasks, which rep-
resents another reference point to choose it.

In the following subsections we describe the four
different systems (§2.2), the single data set/split
and four text processing variants (§2.3), and the two
evaluation methods (§2.4) which were included in
our exploration, either because they were part of
the original study or because we added them. §2.5
provides an overview of the incidental and arbitrary
variation arising in our different runs which we also
analysed.

2.1 Task Background

Briefly, text simplification aims to transform a spec-
ified text into a simpler form while retaining the
same meaning. This is potentially useful for a
broad range of real-world applications, because
it makes the text readable and understandable for
wider audiences and also easier to process by au-
tomatic NLP tools. The notion of simplicity it-
self may be tied to a variety of factors ranging
from lexical complexity to content coverage or
sentence/document structure. Automatic text simi-
plification (ATS) can be rule-based or data-based.
Many data-based techniques approach the task of
simplifying text by adopting methods from ma-
chine translation (MT), which is also the case for
our experiments. Our work does not seek to de-
velop innovations in ATS specifically, but rather
to use ATS models as a convenient case study for
studying variation of results. Nonetheless, we pro-
vide this background to facilitate fuller understand-
ing of the problem scope and goals of the repro-
duced systems.

2https://github.com/senisioi/NeuralTextSimpli
fication

2.2 Systems

Nisioi et al. (2017)’s original work is one of the first
which explored neural networks for ATS (neural
ATS, or NTS). They used Long Short-Term Mem-
ory (LSTM) recurrent neural networks with atten-
tion in an encoder-decoder architecture. Two mod-
els were trained: one standard neural MT model
(which we call LSTM), and one (LSTM-w2v) us-
ing external pre-trained word2vec word representa-
tions (Mikolov et al., 2013). All their experiments
were carried out using the openNMT tool3 (Klein
et al., 2017). The used version is the initial version
based on LuaTorch,4 released in December 2016.

The authors provided information about all nec-
essary external libraries and specific Python and
Lua dependencies, and also released the two mod-
els they trained (LSMT and LSTM-w2v). It is
worth noting that the source code uses Python 2.7
and Torch. The Python environment uses older
versions of openNMT, NLTK, and gensim. This
version of openNMT is no longer maintained and
most of the libraries and dependencies have be-
come obsolete, and it is therefore advised not to
use this version anymore but to switch to one of the
two newer ones (openNMT-py based on PyTorch
or openNMT-tf based on TensorFlow). Therefore,
it has become extremely challenging to recreate
the same environment to regenerate and retrain the
models using the released source code.

Other than variation in the libraries and environ-
ments, we conduct a random search for the LSTM
models using the original repository. In this sce-
nario, all the hyper-parameters are kept the same
except the random seed. Knowing that the random
seed affects the weight initialisation, the data order
used in training, and the sampling used in the gen-
eration, we suspected that we might observe a wide
range of results.

Given that LSTM models generally have been
superseded by transformer models (Vaswani et al.,
2017), we additionally trained a transformer model
on the data provided by the authors, using another
publicly available tool, Sockeye.5 We used two
versions of the tool: the first version, based on
MXNet (Hieber et al., 2018), and the newest (third)
version based on PyTorch (Hieber et al., 2022). We
treat these two versions as two different systems
using the same model type. Thus to summarise,

3https://opennmt.net/
4https://github.com/OpenNMT/OpenNMT
5https://awslabs.github.io/sockeye/index.html
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our systems are:

• LSTM/OpenNMT: Nisioi et al. (2017)’s
LSTM neural MT model implemented as the
first version of the OpenNMT tool.

• LSTM-w2v/OpenNMT: Nisioi et al. (2017)’s
LSTM neural MT model, using external
pre-trained word2vec representations imple-
mented as the first version of the OpenNMT
tool.

• Transformer/Sockeye v1 (MXNet): Our up-
dated version of the NTS model, using a trans-
former model instead of an LSTM, imple-
mented as the first version of the Sockeye tool
based on MXNet.

• Transformer/Sockeye v3 (PyTorch): Our
updated version of the NTS model, using a
transformer model instead of an LSTM im-
plemented as the newest (third) version of the
Sockeye tool based on PyTorch.

We report results achieved under numerous con-
ditions for each of these systems, ensuring broad
coverage and supporting the robustness of the in-
vestigation.

2.3 Data Set and Text Processing

Nisioi et al.’s (2017) repository contains the pre-
processed data set, but not the original data nor the
pre-processing scripts. Their data set was a popu-
lar corpus of parallel English Wikipedia and Sim-
ple English Wikipedia (EW-SEW) articles (Hwang
et al., 2015), and we used the same data for our
experiments. The corpus statistics for the parallel
data in both the training and tests sets are presented
in Table 1. We report the number of sentences and
words and the overall vocabulary size for each par-
tition (original/simplified × train/test) of the data.

In the original paper, it is reported that Named
Entities were treated separately: they were first
identified, then replaced by an ‘unknown’ symbol
for the training, and for generating output, each
‘unknown’ symbol was replaced by the word with
the highest probability score from the attention
layer. However, no scripts or guidelines were pro-
vided for it. Also, it was not mentioned that the
words were segmented into sub-word units, which
is nowadays the standard for all state-of-the-art
neural systems. Word segmentation enables bet-
ter coverage of large vocabularies and treatment

original simplified
sentences 284,677

train words 7,401,589 5,635,507
vocabulary 212,292 165,170
sentences 360

test words 8,110 7,957
vocabulary 3,209 2,802

Table 1: Data set statistics showing the number of sen-
tence pairs in the training and test set, and the number
of words and vocabulary size for the non-simplified and
simplified versions of sentences separately.

of rare and unseen words. The standard word seg-
mentation method for the Sockeye tool is byte-pair
encoding (BPE) (Sennrich et al., 2016), which is
one of the most widely used segmentation methods.
According to the Sockeye guidelines, segmentation
is performed after the original text is tokenised. In
our experiments, we explored both original and
additionally tokenised data, both with BPE word
segmentation.

After generating outputs with our transformer
models, sub-word units are joined together to form
original words. This is usually followed by a deto-
kenisation step. However, since the outputs of the
original models are all tokenised, we evaluated both
versions: tokenised and detokenised. Finally, due
to lack of special treatment of named entities, the
transformer outputs contain a number of ‘unknown’
symbols, referring to unseen sub-word units. We
computed metric scores for two versions of the
output: with ‘unknown’ symbols left in place, and
with ‘unknown’ symbols removed.

2.4 Evaluation
We performed automatic evaluation of generated
outputs using the script provided by the authors
which calculates two metrics: BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016). Previous
work also explored differences arising from dif-
ferent BLEU implementations (Popović and Belz,
2021), but these are not relevant to present pur-
poses. BLEU is based on matching between the
generated text and a manually simplified reference
text, while SARI compares the generated text both
to the reference text as well as to the original text.

2.5 Methodological, Arbitrary and Incidental
Variations

Table 2 provides an overview of the experimental
conditions (first column) for which we explored
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Condition Explanation Range of values explored
Methodological variation
Model type different types of neural architectures LSTM, transformer
Implementation different implementations of same model two versions of the Sockeye tool
Preprocessing different types of text processing word segmentation, tokenisation,

treatment of named entities
Arbitrary variation
Random seed weights initialization, data order, and sam-

pling used in generation
36 different initialisations

Incidental variation
Dependency versions changes in external libraries/dependencies Python, Lua, NLTK
Run-time environment where/when the experiment was carried out evaluation, test, training

Table 2: Summary of different experimental conditions explored in our runs (see in text for explanation of three
broad categories).

variation. The conditions are grouped into three
categories: (i) methodological factors, i.e., varia-
tion in the methods used in a solution for a task
with the aim of improving performance, where bet-
ter performance can to some degree be expected
to generalise to similar types of tasks; (ii) arbitrary
factors where an arbitrary (often random) selection
is made with respect to a given parameter; and (iii)
incidental factors, where selection is not under the
direct control of the system creators, e.g., changes
from one version of a dependency to another. All
of these conditions may be reasonably expected to
vary during replication experiments.

Methodological factors may occur when the
group replicating a given model decides to update
some component of its design based on recent find-
ings. An example in our own work reported here
is the inclusion of the transformer-based model,
based on the recent success of these models for a
wide range of NLP tasks in the time since Nisioi
et al. (2017)’s publication.

Arbitrary factors may occur due to under-
reporting of necessary parameters in the original
work. For instance, if a hyper-parameter must be
specified in order for the model to run but no spec-
ifications are provided by the model creators, the
group replicating the work may select that hyper-
parameter randomly or using their own heuristic.

Incidental factors may occur due to library or
package updates, rendering the versions reported in
the original publication obsolete. It also may occur
in different run-time environments, for example
running experiments on different computers.

By including each of these factors in our study,

we sought to ensure broad coverage of the range of
results variation that may realistically occur when
attempting to replicate a previously reported model.

3 Results

We report the results from both team A and team
B, for each of the studied conditions. While both
teams struggled to get the original repository to
a working state, team A failed to install all the re-
quired dependencies as many are deprecated. Team
B reported similar concerns about reproducing and
reusing the original source code; however, ulti-
mately, they managed to get the repository to a
running state.

Table 3 shows the two automatic scores gen-
erated by the evaluation script provided by the
authors for all explored variations (see Table 2),
grouped together by system: LSTM, LSTM-w2v,
Transformer Sockeye v1 and Transformer Sock-
eye v3. Where they exist, results provided by the
authors of the original paper are included as well.
For random seed search, we included two worst
and best-performing models in this table, while full
results of this search can be found in Appendix.

Averaged scores for each of the three models to-
gether with the standard deviations and coefficients
of variation (Belz et al., 2022a) are presented in
Table 4. For each of the models, ‘all’ refers to
the average value of all scores for this model pre-
sented in Table 3. For the LSTM model, ‘random
seed’ is averaged only over the random seed scores,
and ‘other’ is averaged over all scores except the
random seed scores. For the transformer model,
‘v1’ means only the scores from version 1, and ‘v3’
means only the scores from version 3.
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Training Outputs Scores (original script)
System trained by on data set generated by post-processing SARI BLEU run by
LSTM/ N et al, 2017 original N et al, 2017 original 30.65 84.51 N et al, 2017
OpenNMT N et al, 2017 original N et al, 2017 original 30.65 85.60 team A, 2022

N et al, 2017 original N et al, 2017 original 30.65 84.51 team B, 2022
N et al, 2017 original team A, 2021 original 29.96 86.61 team A, 2022
N et al, 2017 original team B, 2022 original 29.96 86.53 team B, 2022
team B, 2022 original team B, 2022 original 30.23 88.81 team B, 2022
team B, 2022 original team B, 2022 original 28.68 84.47 ‡ team B, 2022
team B, 2022 original team B, 2022 original 29.76 89.59 † team B, 2022
team B, 2023 original team B, 2023 original 29.53 88.68 team B, 2023

LSTM-w2v/ N et al, 2017 original N et al, 2017 original 31.11 87.50 N et al, 2017
OpenNMT N et al, 2017 original N et al, 2017 original 31.11 89.36 team A, 2022

N et al, 2017 original N et al, 2017 original 31.11 87.50 team B, 2022
N et al, 2017 original team A, 2021 original 29.12 89.64 team A, 2022
N et al, 2017 original team B, 2022 original 29.12 89.40 team B, 2022
team B, 2022 original team B, 2022 original 29.70 87.04 team B, 2022
team B, 2023 original team B, 2023 original 29.74 88.56 team B, 2023

Transformer/

team A, 2022 original+BPE team A, 2022

BPE joined 32.67 84.66

team A, 2022Sockeye v1 +‘unk’ removed 32.67 89.75
(MXNet) +detokenised 32.64 84.00

+detok+‘unk’ 32.70 88.45

team A, 2022 tokenise+BPE team A, 2022

BPE joined 32.54 80.32

team A, 2022+‘unk’ removed 32.54 86.15
+detokenised 32.86 83.52
+detok+‘unk’ 32.90 88.55

Transformer/

team A, 2022 original+BPE team A, 2022

BPE joined 28.41 91.82

team A, 2022Sockeye v3 +‘unk’ removed 28.40 93.74
(PyTorch) +detokenised 32.66 90.95

+detok+‘unk’ 32.70 92.45

team A, 2022 tokenise+BPE team A, 2022

BPE joined 29.50 88.30

team A, 2022+‘unk’ removed 29.49 89.97
+detokenised 32.94 91.00
+detok+‘unk’ 32.94 91.72

Table 3: BLEU and SARI scores for different experimental variations. † is the best-performing model in the random
seed search, ‡ is the worst performing model in the random seed search.

According to the averaged SARI score, the trans-
former model performs best; however, the newest
version performs worse than the old one. Accord-
ing to the averaged BLEU score,6 LSTM-v2w and
Transformer have very similar performance, but the
newest version of the transformer is the best of all
while the first version is the worst.

We used the R package cvequality (Version 0.2.0;
(Marwick and Krishnamoorthy, 2019)) to test for
significant differences of coefficients of variation
(CV). This package implements two of the most
widely used statistical significance tests, proposed
by Feltz and Miller (1996) and Krishnamoorthy
and Lee (2014). The null hypothesis for each of the
two automatic metrics is that there is no difference
in CV between the three models.

We use the results reported in the Table 4 cor-
responding to the row ‘all’ for the three model

6The reason for slightly different scores on original outputs
is yet another source of variation which we did not explore
here, namely incidental variations of BLEU scores related to
dependencies and run-time environment.

variants. Conducting the two tests resulted in the
statistical significance values shown in Table 5. We
observe that neither test statistics nor p-value sug-
gest statistical significance when setting α = 0.05.
Therefore, we cannot reject the null hypothesis.

4 Discussion

Nisioi et al. (2017) reported that using pre-trained
word embeddings improves the model’s perfor-
mance. Results in Table 3 and Table 4 suggest
that while this may be true, the differences are too
small to draw clear conclusions. For one model
alone, the LSTM variant, we have observed BLEU
scores ranging from 84.47 to 89.59; the average,
on the other hand, is 87.90 with the CV of 1.36.
Compared to LSTMs, transformer models have a
higher variance in their performance. This can be
attributed to the transformer’s complexity and the
fact that they are harder to train. Also, variations in
tokenisation were included only in the transformer
models. The performance difference between the
best and worst transformer models is even higher
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SARI BLEU
model avg. dev. CV avg. dev. CV
LSTM all 29.38 0.48 1.66 87.64 1.39 1.59

random seed 29.24 0.31 1.07 87.90 1.18 1.36
other 30.23 0.51 1.74 86.07 1.66 2.00

LSTM-w2v all 30.14 0.98 3.35 88.43 1.12 1.31
transformer all 31.78 1.75 5.58 88.47 3.83 4.40

v1 32.69 0.13 0.43 85.71 3.32 3.99
v3 30.88 2.18 7.29 91.24 1.69 1.91

Table 4: Average SARI and BLEU scores, standard deviations and coefficients of variation (CV) for the three
models.

test BLEU SARI
Feltz & Miller 3.54 / 0.16 2.98 / 0.22
Krishnamoorthy
& Lee 1.72 / 0.42 1.59 / 0.44

Table 5: Test statistics / p-value are reported for dif-
ferences between coefficients of variation (CVs) of the
three models reported in Table 4, for both BLEU and
SARI.

than LSTM variants. With a 13.42 BLEU score dif-
ference, assessing true performance of the model
is a challenging task. Judging the results by the
average BLEU score (Table 4), we can observe that
the transformer model trained using v3 of the Sock-
eye tool outperforms the rest of the models. This
model achieves an average BLEU of 91.24 with a
CV of 1.91. To put the CV into context, this value
is higher than three other LSTM variants but lower
than the rest of the transformer models. As it can
be expected, using an averaged performance met-
ric and CV enables a better comparison between
models in different conditions.

Besides the mentioned analysis, we found it hard
to provide distinct and unique observations from
the results. This is likely due to the fact that the
results are not conclusive and the variance is high.
We do not believe this is a flaw in our experimen-
tal design but rather a good representation of the
complexities of comparing different models across
varying conditions. The number of experiments
conducted in this study is more than 60, a number
that exceeds the number of experiments conducted
in most other studies by a large margin.

One of the concerning issues we encountered is
the issue of software deprecation. While this is not
a new problem, and it is as old as software itself,
it is becoming more and more prevalent. This is

due to extreme reliance on empirical results and
the complexity of publications that utilise neural
networks. Often source codes use several exter-
nal libraries and dependencies, any of which may
become deprecated at any time. Increased availabil-
ity of source code and the abundance of tools are
signs of a healthy research community. Seeing new
tools and libraries developed and improved daily
is encouraging. At the same time, we believe re-
searchers should practice caution when introducing
new tools and libraries into their experiments, as
doing so may shorten the usability of their source
code.

4.1 Addressing Experimental Variation in
Experimental Design

Many factors can affect the results of an experi-
ment. Some of these factors are under the exper-
imenter’s control, and some are not. Before we
address these variations, we highlight that scien-
tific experiments are developed as a counterpart
to abstraction of real-world problems. Data sets
are created with this in mind, consisting of training,
validation, and test sets of which the latter, in partic-
ular, is created to represent unseen real-world data.
Research on improving the generalisation of ma-
chine learning algorithms is another good example
of leveraging scientific experiments to understand
real-world challenges.

We can use another analogy to explore these vari-
ations further. Bogosort is a sorting algorithm that
generates random permutations of the input until
the input is sorted. While in the best case, it may
take O(n) steps to sort the input, its worst-case
performance is unbounded, making it impractical
to use. Theoretically, it is possible to find the ran-
dom seed that achieves best-case performance for a
specific input; nonetheless, the slightest change in
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hardware, environment, or even the input itself will
render this seed useless. Although neural networks
are far more complicated than a simple sorting al-
gorithm, the basis of reliance on the evidence is
the same. Similar to Bogosort, recording all the
random numbers used in an experiment is possible
(Chen et al., 2022a), but the question is: should
we? We do not think so. Instead of optimising the
random seed or other arbitrary factors, researchers
should focus on the methods that minimize the im-
pact of these variables. Ultimately, we believe the
correct approach for conducting scientific experi-
ments is to thoroughly report methodological vari-
ations, control incidental variations, and abstract
away arbitrary variations.

5 Conclusions

In this work, we conducted a series of experiments
for a single task using the same data under differ-
ent experimental conditions. We categorized these
conditions into three different categories: method-
ological, arbitrary, and incidental. We report the
results of our experiments to demonstrate the wide
results variation that can occur due to these factors.

We propose that researchers should record all
methodological conditions, control incidental ones,
and abstract away arbitrary factors. Lastly, we ob-
served that using average score and its coefficient
of variation (CV) instead of the maximum value
provides far more reliable results. We recommend
that researchers adopt this practice when document-
ing the findings from their own studies.

We are aware that this is easier said than done.
We are, however, optimistic that the field can move
closer to this ideal over time. In the meantime, it
is our hope that this recommendation highlights
the contrast between what is currently a common
practice (unfortunately, inadequate recording and
reporting that do not address necessary factors for
reproducibility) and what is needed to support suc-
cessful, reproducible research in our field.

Limitations

Our work is limited by several factors. First, our
findings are supported only by experiments on a
single NLP task (neural text simplification). We
selected this task because it offered an intriguing
sandbox for studying varying experimental condi-
tions, ranging from differences in random seeds to
modifications in compile-time and run-time envi-
ronments and dependency versions. Comparing the

multifaceted outcomes arising from these experi-
ments facilitated greater quantified estimations of
the degree of reproducibility for the selected NTS
systems. However, the dimensions of variation that
we explored in this work are common to many NLP
tasks; none are unique only to text simplification.
Because of this, we believe that our findings would
generalise broadly across NLP tasks.

We used a single data set, the same as in the
original paper by Nisioi et al. (2017), to foster con-
trolled study of our other experimental variables.
The data set comprises aligned sentences between
English Wikipedia and Simple English Wikipedia.
Thus, it is unclear whether our findings would be
similar if the study was conducted using data from
other languages, including those with richer mor-
phology such as Czech or Arabic.

Finally, although we conducted a robust set of
experiments for the selected models across two
research groups, our experiments are limited to a
small set of NTS models due to the extensive set of
conditions tested for each model. Although these
models vary in their architecture, we do not know
if other NTS models may be more or less stable
across experimental conditions. Taken together,
the limitations accompanying our findings suggest
compelling avenues for future research.

Ethics Statement

This research was guided by a broad range of ethi-
cal considerations, taking into account factors asso-
ciated with environmental impact, equitable access,
and reproducibility. We summarize those that we
consider most critical in this section. It is our hope
that by building a holistic understanding of these
factors, we develop improved perspective of the
challenges associated with reproducibility studies
and the positive broader impacts that improved re-
producibility standards may promote.

Environmental Impact. In this work, we seek
to study the complex and murky relationship be-
tween experimental conditions and experimental
outcomes. To address research questions surround-
ing this relationship, we conduct many experimen-
tal runs to replicate the same models across an
extensive set of variable conditions. Although nec-
essary for justifying our claims, a downside of
this process is that it may produce environmen-
tal harm. One might argue that the advantages of
assurance that the ‘true’ evaluation score is found
do not outweigh the disadvantages of repeatedly
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running models that are known to produce large car-
bon footprints (Strubell et al., 2019). We attenuate
this risk by controlling for as many variables al-
lowable (e.g., data set and architectural variations)
while still fostering robust study of our core ques-
tion, to minimize the number of experimental runs
required.

Equitable Access. A concern closely related to
environmental impact is that of equitable access
to this line of research. By studying a problem
that requires many repeated experimental runs with
subtle variations, we may exclude disadvantaged
researchers from performing meaningful follow-up
studies, since they may not have the requisite re-
source bandwidth (Bommasani et al., 2021, §5.6).
However, although reproducibility studies them-
selves may pose a barrier to entry for researchers
with limited access to compute hardware, the in-
novations resulting from these studies (e.g., im-
proved community standards for reproducibility
of reported results) may stand to greatly benefit
marginalised researchers, by minimising the po-
tential for bottlenecks in attempting to perform
impossible and costly replications to establish per-
formance baselines.

Reproducibility. To ensure reproducibility of our
own work, we report all experimental parameters,
computational budget, and computing infrastruc-
ture used. We discuss our experimental setups in
depth, as they are the primary focus of this study.
We report descriptive statistics about our results to
enhance transparency of our findings, and we report
all implementation settings (e.g., package version
number) needed to successfully replicate our work.
Although reproducibility studies are not specified
as an intended use of the referenced systems (Nisioi
et al., 2017), this use is compatible with the original
access conditions and the authors have consented to
the paper’s use in numerous reproducibility studies
since its publication (Belz et al., 2022b).
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A LSTM Random Seed Search

We provide the full experimental results from the
random seed search in this appendix. For each
variant, we include its perplexity, SARI, and BLEU
score.

Variant Perplexity SARI BLEU

nts_search_3 10.30 28.68 84.47
nts_search_14 10.49 28.62 85.04
nts_search_24 10.25 28.94 85.28
nts_search_10 10.26 28.88 86.69
nts_search_16 10.45 29.60 86.81
nts_search_20 10.22 29.02 86.95
nts_search_4 10.63 29.78 87.14
nts_search_2 10.27 29.34 87.19
nts_search_31 10.34 29.31 87.21
nts_search_17 10.13 29.40 87.42
nts_search_23 10.31 29.19 87.51
nts_search_0 10.37 28.95 87.75
nts_search_15 10.33 28.96 87.77
nts_search_25 10.21 29.62 87.81
nts_search_39 10.24 28.83 87.81
nts_search_38 10.32 29.28 87.84
nts_search_36 10.29 29.11 87.86
nts_search_33 10.39 28.99 87.94
nts_search_22 10.32 29.02 88.28
nts_search_37 10.20 29.24 88.36
nts_search_29 10.33 29.31 88.42
nts_search_26 10.16 29.18 88.42
nts_search_1 10.32 29.17 88.58
nts_search_32 10.24 29.15 88.59
nts_search_19 10.43 29.29 88.61
nts_search_18 10.49 29.50 88.64
nts_search_11 10.30 28.98 88.68
nts_search_12 10.24 29.55 88.69
nts_search_21 10.30 29.89 88.75
nts_search_41 10.38 29.32 88.83
nts_search_13 10.12 29.59 88.98
nts_search_35 10.39 29.14 89.01
nts_search_34 10.34 29.30 89.03
nts_search_28 10.34 29.15 89.14
nts_search_30 10.16 29.71 89.42
nts_search_27 10.21 29.76 89.59

Table 6: Results of the full random seed search, with
perplexity, SARI, and BLEU scores reported for each
variant.
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