X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents

Mehrad Moradshahi, Tianhao Shen, Kalika Bali, Monojit Choudhury, Gael de Chalendar, Anmol Goel, Sungkyun Kim, Prashant Kodali, Ponnurangam Kumaraguru, Nasredine Semmar, Sina Semnani, Jiwon Seo, Vivek Seshadri, Manish Shrivastava, Michael Sun, Aditya Yadavalli, Chaobin You, Deyi Xiong, Monica Lam


Abstract
Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language.X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset, code, and toolkit are released open-source.
Anthology ID:
2023.findings-acl.174
Volume:
Findings of the Association for Computational Linguistics: ACL 2023
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2773–2794
Language:
URL:
https://aclanthology.org/2023.findings-acl.174
DOI:
10.18653/v1/2023.findings-acl.174
Bibkey:
Cite (ACL):
Mehrad Moradshahi, Tianhao Shen, Kalika Bali, Monojit Choudhury, Gael de Chalendar, Anmol Goel, Sungkyun Kim, Prashant Kodali, Ponnurangam Kumaraguru, Nasredine Semmar, Sina Semnani, Jiwon Seo, Vivek Seshadri, Manish Shrivastava, Michael Sun, Aditya Yadavalli, Chaobin You, Deyi Xiong, and Monica Lam. 2023. X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents. In Findings of the Association for Computational Linguistics: ACL 2023, pages 2773–2794, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents (Moradshahi et al., Findings 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.findings-acl.174.pdf