
Findings of the Association for Computational Linguistics: ACL 2023, pages 2795–2809
July 9-14, 2023 ©2023 Association for Computational Linguistics

Subword Segmental Machine Translation:
Unifying Segmentation and Target Sentence Generation

Francois Meyer and Jan Buys
Department of Computer Science

University of Cape Town
MYRFRA008@myuct.ac.za, jbuys@cs.uct.ac.za

Abstract

Subword segmenters like BPE operate as a pre-
processing step in neural machine translation
and other (conditional) language models. They
are applied to datasets before training, so trans-
lation or text generation quality relies on the
quality of segmentations. We propose a de-
parture from this paradigm, called subword
segmental machine translation (SSMT). SSMT
unifies subword segmentation and MT in a sin-
gle trainable model. It learns to segment target
sentence words while jointly learning to gen-
erate target sentences. To use SSMT during
inference we propose dynamic decoding, a text
generation algorithm that adapts segmentations
as it generates translations. Experiments across
6 translation directions show that SSMT im-
proves chrF scores for morphologically rich
agglutinative languages. Gains are strongest
in the very low-resource scenario. SSMT also
learns subwords that are closer to morphemes
compared to baselines and proves more robust
on a test set constructed for evaluating morpho-
logical compositional generalisation.

1 Introduction

The continued success of neural machine transla-
tion (NMT) can be partially attributed to effective
subword segmenters. Algorithms like byte-pair en-
coding (BPE) (Sennrich et al., 2016) and Unigram
LM (ULM) (Kudo, 2018) are computationally ef-
ficient preprocessing steps that enable smaller vo-
cabularies and open-vocabulary models.

These methods have proved quite effective, but
fall short in certain contexts. For morphologically
complex languages they are sub-optimal (Klein
and Tsarfaty, 2020) and inconsistent (Meyer and
Buys, 2022). This is amplified in low-resource
settings (Zhu et al., 2019; Wang et al., 2021; Ács,
2019), where handling rare words is crucial. These
issues can be partially attributed to the fact that sub-
word segmentation is separated from model train-
ing. BPE and ULM are applied to the training

Train

I do understand. → Ndi-ya-qonda.
I am tired. → Ndi-diniwe.
Where are you from? → U-vela phi?
Are you busy? → Ingaba u-xakekile?

Test

Do you understand? → U-ya-qonda?
I am busy. → Ndi-xakekile.

Table 1: Parallel English-Xhosa sentences with mor-
phologically segmented Xhosa words. The train/test
split shows why its critical to accurately model mor-
phemes and morphological compositional generalisa-
tion i.e. novel combinations of known morphemes.

corpus before training starts, so models are reliant
on their output. This is not ideal, since these al-
gorithms do not learn segmentations that optimise
model performance.

He et al. (2020) address this issue by propos-
ing dynamic programming encoding (DPE), which
trains an NMT model that marginalises over target
sentence segmentations. After training they apply
their model as a subword segmenter by computing
the maximising segmentations. DPE is still a pre-
processing step (a separate vanilla NMT model is
trained on a corpus segmented by DPE), but since
its segmentations are trained on MT, they are at
least connected to the task at hand.

In this paper we go one step further by fully
unifying NMT and subword segmentation. We
propose subword segmental machine translation
(SSMT), an end-to-end NMT model that learns sub-
word segmentation during training and can be used
directly for inference. It is trained with a dynamic
programming algorithm that enables learning sub-
word segmentations that optimise its MT train-
ing objective. The architecture is a Transformer-
based adaptation of the subword segmental lan-
guage model (SSLM) (Meyer and Buys, 2022) for

2795

the joint task of MT and target-side segmentation.
We also propose dynamic decoding, a decod-

ing algorithm for subword segmental models that
dynamically adapts subword segmentations as it
generates translations. The fact that our model can
be used directly to generate translations sets it apart
from existing segmenters. SSMT is not a prepro-
cessing step in any sense — it is single model that
learns how to translate and how to segment words,
and it can be used to generate translations.

We evaluate on English → (Xhosa, Zulu, Swati,
Finnish, Tswana, Afrikaans). As shown in table 2,
these languages span 3 morphological typologies
and several levels of data availability, so they pro-
vide a varied test suite to evaluate subword methods
across different linguistic contexts. SSMT outper-
forms baselines on languages that are agglutinating
and conjunctively written (the highest morpholog-
ical complexity), but is outperformed on simpler
morphologies. SSMT achieves its biggest gains
on Swati, which is our most data scarce language.
We conclude that SSMT is justified for morpho-
logically complex languages and especially useful
when the languages are low-resourced.

We analyse the linguistic plausibility of SSMT
by applying it to unsupervised morphological seg-
mentation. SSMT subwords are closer to mor-
phemes than our baselines. Lastly, we adapt the
methods of Keysers et al. (2020) to construct an
MT test set for morphological compositional gen-
eralisation — the ability to generalise to previously
unseen combinations of morphemes. The perfor-
mance of all models degrade on the more challeng-
ing test set, but SSMT exhibits the greatest robust-
ness. We posit that SSMT’s performance gains on
morphologically complex languages are due to its
morphologically consistent segmentations and its
superior modelling of morphological composition.1

2 Related Work

Subword segmentation has been widely adopted
in NLP. Several algorithms have been proposed,
with BPE (Sennrich et al., 2016) and ULM (Kudo,
2018) among the most popular. BPE starts with an
initial vocabulary of characters and iteratively adds
frequently co-occuring subwords. ULM starts with
a large initial vocabulary and iteratively discards
subwords based on the unigram language model
likelihood. Both of these exemplify the dominant

1Our code and models are available at https://
github.com/francois-meyer/ssmt.

Language Morphology Orthography Sentences

Xhosa

agglutinative conjunctive

8.7mil
Zulu 3.9mil
Finnish 1.6mil
Swati 165k

Tswana agglutinative disjunctive 5.9mil

Afrikaans analytic disjunctive 1.6mil

Table 2: Morphological typology and training data sizes
for the target languages used in our experiments.

paradigm in NLP: subword segmentation as a pre-
processing step. Segmenters are applied to datasets
before models are trained on the segmented text.

There are downsides to relegating subword seg-
mentation to the domain of preprocessing. The
algorithms are task-agnostic. BPE is essentially a
compression algorithm (Gage, 1994), while ULM
assumes independence between subword occur-
rences. Neither of these strategies are in any way
connected to the task for which the subwords will
eventually be used (in our case machine transla-
tion). Ideally subword segmentation should be part
of the learnable parameters of a model, so that it
can be adjusted to optimise the training objective.

There has been some research on unifying sub-
word segmentation and machine translation. Fol-
lowing recent character-based language models
(Clark et al., 2022; Tay et al., 2022), there has
been work on character-level NMT models that
learn latent subword representations (Edman et al.,
2022). However, Libovický et al. (2022) found
that subword NMT models still outperform their
character-level counterparts. Kreutzer and Sokolov
(2018) learn source sentence segmentation during
training and find that models prefer character-level
segmentations. DPE (He et al., 2020) learns target
sentence segmentation during training and is then
applied as a subword segmenter.

This line of work is related to a more general
approach known as segmental sequence modelling,
where sequence segmentation is viewed as a latent
variable to be marginalised over during training. It
was initially proposed for tasks like handwriting
recognition (Kong et al., 2016) and speech recogni-
tion (Wang et al., 2017). Subsequently segmental
language models (SLMs) have been proposed for
unsupervised Chinese word segmentation (Sun and
Deng, 2018; Kawakami et al., 2019; Downey et al.,
2021). This was adapted for subword segmentation
by Meyer and Buys (2022), who proposed subword
segmental language modelling (SSLM). This is the

2796

https://github.com/francois-meyer/ssmt
https://github.com/francois-meyer/ssmt

Figure 1: SSMT translates “How are you?” to the Zulu “Unjani?”, computing the probability for subword “ja”. A
Transformer encoder-decoder encodes the BPE-segmented source sentence and character-level target sentence. A
mixture between a character decoder and lexicon model (Equation 3) produces the next subword probability.

line of work we build on in this paper, adapting
subword segmental modelling for NMT.

Our model contrasts with DPE in a few ways.
Firstly, our lexicon consists of the V most frequent
character n-grams, so unlike DPE we don’t rely on
BPE to build the vocabulary. Secondly, we supple-
ment our subword model with a character decoder,
which is capable of generating out-of-vocabulary
subwords. Lastly, through our proposed dynamic
decoding we use SSMT directly to generate transla-
tions, instead of having to train an additional NMT
model from scratch on our segmentations.

3 Subword Segmental Machine
Translation (SSMT)

3.1 Architecture

SSMT is a Transformer-based encoder-decoder
(Figure 1). The encoder is that of a vanilla Trans-
former NMT model. Source language sentences
are pre-segmented with BPE. The decoder adapts
the subword segmental architecture of Meyer and
Buys (2022) to be Transformer-based (as opposed
to their LSTM-based model) and conditioned on
the source sentence. During training SSMT con-
siders all possible subword segmentations of the
target sentence and learns which of these optimise
its translation training objective.

Given a source sentence of BPE tokens x =
x1, x2, ..., x|x|, SSMT generates the target sentence
characters y = y1, y2, ..., y|y| as a sequence of sub-
words s = s1, s2, ..., s|s|. We introduce a condi-
tional semi-Markov assumption, whereby each sub-
word probability is computed as

p(si|s<i,x) ≈ p(si|π(s<i),x) (1)

= p(si|y<j,x), (2)

where π(s<i) is a concatenation operator that con-
verts the sequence s<i into the raw unsegmented
characters y<j preceding subword si. Condition-
ing on the unsegmented history enables efficiency
when we marginalise over subword segmentations.

The subword probability of Equation 2 is based
on a mixture (shown on the right in Figure 1),

p(si|y<j,x) = gjpchar(si|y<j,x)+

(1− gj)plex(si|y<j,x), (3)

which combines probabilities from a character
LSTM decoder (pchar) and a fully connected layer
that outputs a probability (plex) if si is in the lexi-
con. The lexicon contains the V most frequent char-
acter sequences (n-grams) up to some maximum
segment length in the training corpus (V is a pre-
specified vocabulary size). The lexicon models fre-
quent subwords (e.g. common morphemes), while
the character decoder models rare subwords and
previously unseen words (e.g. it can copy names
from source to target sentences). The mixture co-
efficient g (computed by a fully connected layer)
allows SSMT to learn, based on context, when the
next subword is likely to be in the lexicon and when
it should rely on character-level generation.

3.2 Training
We use this architecture to train a model that jointly
learns translation and target-side subword segmen-
tation. The subword segmentation of a target sen-
tence is treated as a latent variable and marginalised
over to compute the probability

p(y|x) =
∑

s:π(s)=y

p(s|x), (4)

where the probability of a specific subword seg-
mentation s is computed with the chain rule as

2797

Figure 2: Dynamic decoding for the first 2 characters of a translation (“-” are subword boundaries). Step (a) produces
candidate characters that continue and end the subword. Step (b) peaks one character ahead. Step (c) finalises the
segmentation decision. Green sequences are chosen ahead of red ones based on higher sequence probabilities.

a product of its individual subword probabilities
(each computed as Equation 3).

We can compute this marginal efficiently with
a dynamic programming algorithm, where at each
character position k in the raw target sentence y
the forward probability is,

αk =

k∑

j=f(y,k)

αkp(s = yj:t|y<j,x), (5)

with α0 = 1. The function f(y, k) outputs the
starting index of the longest possible subword end-
ing at character k. This will either be k−m, where
m is the maximum segment length (a pre-specified
hyperparameter) or it will be the starting index of
the current word (if character k −m precedes the
start of the current word).

This last constraint is critical, since it limits the
model to learn segmentation of words into sub-
words. The function f(y, k) ensures that our model
cannot consider segments that cross word bound-
aries; the only valid segments are those within
words. Characters that separate words (e.g. spaces
and punctuation) are treated as 1-character seg-
ments. In this way we also implicitly model the
beginning and end of words, since these are the
boundaries of valid segments.

4 Dynamic decoding

For standard subword models, beam search over
the subword vocabulary is the de facto approach.
However, the SSMT mixture model (Equation 3)
has two vocabularies, a character vocabulary and
a subword lexicon. Beam search can be applied
to either one. However, to approximate finding
the highest scoring translation, subword prediction
should be based on the full mixture distribution.

During training SSMT considers all possible seg-
mentations of the target sentence with dynamic
programming. We would like to consider different
segmentations during decoding as well, instead of
being limited to the subword boundaries dictated
by greedy prediction. Doing this requires retain-
ing part of the dynamic program during decoding,
similar to Yu et al. (2016) who modelled the latent
alignment between (multi-word) segments. In this
section we outline dynamic decoding, an algorithm
that (1) incorporates both the character and lexi-
con models and (2) dynamically adjusts subword
segmentation during generation.

4.1 Next character prediction

Dynamic decoding generates one character at a
time and computes next-character probabilities
with the full mixture model. Since we generate
characters we also explicitly model subword bound-
ary decisions, i.e., when we generate a character we
consider whether the character ends a subword (it is
the last character in the subword) or whether it con-
tinues a subword (more characters will follow in
the subword). The mixture model’s next-character
probability calculation is different, depending on
whether we compute the probability of the next
character ending the current subword (denoted end)
or continuing the current subword (denoted con).

Similarly, at each character generation step we
have to consider whether the preceding character
ends or continues a subword. If it ends a subword,
then the next character starts a new subword. If the
preceding character continues a subword, then the
next character is the latest addition to the current
subword. These considerations also affects the
next-character probability.

Given this setup, we have 4 possible cases for

2798

Algorithm 1: Dynamic decoding
Input: x is a source sentence of BPE tokens
Output: y∗ is the generated translation, a character

sequence concluding with <eot> (end-of-translation)
Notation: C is a character vocabulary
yend: partial translation, last char ends subword
ycon: partial translation, last char continues subword

ycon = argmax
y∈C

pend-con(y|x),ycon = [ycon]

yend = argmax
y∈C

pend-end(y|x),yend = [yend]

while yend[−1] ̸= <eot> do
ycon-con = argmax

y∈C
pcon-con(y|ycon,x)

yend-con = argmax
y∈C

pend-con(y|yend,x)

ycon = argmax p(y)
y∈{[ycon,ycon-con],[yend,yend-con]}

ycon-end = argmax
y∈C

pcon-end(y|ycon,x)

yend-end = argmax
y∈C

pend-end(y|yend,x)

yend = argmax p(y)
y∈{[ycon,ycon-end],[yend,yend-end]}

end
y∗ = yend
return y∗

next-character generation:
1. con-end – the preceding character continues

a subword that the next character ends,
2. end-con – the preceding character ends a sub-

word and the next character starts a new one,
3. end-end – both preceding and next characters

end subwords,
4. con-con – both preceding and next characters

continue the same subword.
Each case requires different calculations to ob-
tain next-character probabilities with the SSMT
mixture model. We present and motivate prob-
ability formulas for all 4 cases in Appendix A,
defining the probabilities used in algorithm 1
(pcon-end, pend-con, pend-end, pcon-con).

4.2 Dynamic segmentation

One could use next-character probabilities to greed-
ily generate translations one character at a time,
inserting subword boundaries when pcon-end >
pcon-con or pend-end > pend-con. However, this would
amount to a greedy search over the space of possi-
ble subword segmentations, which might be sub-
optimal given characters that are generated later. A
naive beam search would not distinguish between
complete and incomplete subwords, which intro-
duces a bias towards short subwords during decod-
ing. Ideally the decoding algorithm should make
the final segmentation decision based on characters

to the left and right of a potential subword bound-
ary, without directly comparing complete and in-
complete subwords. To achieve this we design a
decoding algorithm that retains part of the dynamic
program during generation (see algorithm 1).

For simplicity we explain dynamic decoding for
a beam size of 1. Figure 2 demonstrates the gen-
eration of the first few characters of a translation.
The key is to hold out on finalising segmentations
until subsequent characters have been generated.
We compute candidates for the next character, but
do so separately for candidates that continue the
current subword and those that end the current sub-
word (step (a) in Figure 2). The segmentation de-
cision is postponed until after the next character
has been generated. We now essentially have two
“potential” beams — one for continuing the cur-
rent subword and another for ending it. For each
of these potential beams, we repeat the previous
step: we compute candidates for the next character,
keeping separate the candidates that continue and
end the subword (step (b) in Figure 2).

Now we reconsider past segmentations. We com-
pare sequence probabilities across the two poten-
tial beams of the character generated one step back
(comparisons are visualised by arcs under step (c)).
We select the best potential beam that continues
the current subword and the best potential beam
that ends the current subword. We then repeat the
process on these new potential beams. Essentially
we are retrospectively deciding whether the previ-
ous character should end a subword. Since we have
postponed the decision, we are able to consider how
it would affect the generation of the next character.
For example, in step (2.c) of Figure 2, the subword
boundary after character “n” is reconsidered and
discarded, given that it leads to lower probability
sequences when we generate one character ahead.

During training, we consider all possible sub-
word segmentations of a target sentence. During
decoding, at each generation step we consider all
possible segmentations of the two most recently
generated characters. In this way we retain part of
the dynamic program for subword segmentation.

5 Machine Translation Experiments

We train MT models from English to 6 languages.
As shown in table 2, the chosen languages allow
us to compare how effective SSMT is across 3
different morphological typologies - agglutinat-
ing conjunctive, agglutinating disjunctive, and an-

2799

Model → BPE ULM DPE SSMT

English to ↓ BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Xhosa 14.3 53.2 15.0 53.3 14.9 53.3 15.0 53.5
Zulu 13.5 53.2 13.7 53.0 14.2 53.7 14.2 53.7
Finnish 15.0 50.1 15.0 49.6 15.4 50.0 14.4 50.1
Swati 0.2 23.4 0.4 23.7 0.3 23.5 0.7 26.2

Tswana 10.2 36.9 10.1 35.5 9.1 34.6 9.7 36.5

Afrikaans 33.4 64.2 33.5 64.3 34.6 65.0 32.0 63.6

Table 3: MT test set performance (FLORES devtest). Underline indicates best BLEU and chrF scores, while bold
indicates scores with differences from the best that are not statistically significant (p-value of 0.05)

Model chrF

2 models to segment + translate with beam search

+BPEvocab –char (DPE) 23.3
+lexicon –char (SSMT –char) 23.7
+lexicon +char (SSMT) 23.1

1 model with dynamic decoding

+lexicon –char (SSMT –char) 26.2
+lexicon +char (SSMT) 26.4

Table 4: English → Swati validation set performance.

alytic. Most of the languages are agglutinating
conjunctive, since prior work has highlighted the
importance of subword techniques for morphologi-
cally complex languages (Klein and Tsarfaty, 2020;
Meyer and Buys, 2022). For English to Finnish we
train on Europarl2, while for the other directions
we train on WMT22_African.3 The parallel dataset
sizes are given in table 2. We use FLORES dev and
devtest as validation and test sets, respectively.

Each probability in the SSMT dynamic program
(Equation 5) requires a softmax computation, so
SSMT takes an order of magnitude (10×) longer
to train than pre-segmented models. For exam-
ple, English to Zulu with BPE trained for 1 day,
while SSMT trained for 10 days (both on a single
A100 GPU). SSMT training times are comparable
to those of the DPE segmentation model. On our
test sets it takes on average 15 seconds to trans-
late a single sentence (as opposed to our baselines,
which take 0.05 seconds per sentence). We did
experiment with naive beam search over the com-
bined lexicon and character vocabularies of SSMT,
but this results in much worse validation perfor-

2https://www.statmt.org/europarl/
3https://huggingface.co/datasets/

allenai/wmt22_african

mance than dynamic decoding (49.8 vs 53.8 chrF
on the English to Zulu validation set; see table 7 in
the Appendix). We use a beam size of 5 for beam
search with our baselines and for dynamic decod-
ing, since this optimised validation performance
(table 7). Further training and hyperparameter de-
tails are provided in Appendix B.

5.1 MT Results

We evaluate our models with BLEU and chrF. The
chrF score (Popović, 2015) is a character-based
metric that is more suitable for morphologically
rich languages than token-based metrics like BLEU
(Bapna et al., 2022). MT performance metrics on
the full test sets are shown in table 3. We perform
statistical significance testing through paired boot-
strap resampling (Koehn, 2004). In terms of chrF,
SSMT outperforms or equals all baselines on all
4 agglutinating conjunctive languages. The same
holds for BLEU on 3 of the 4 languages.

These results prove that SSMT is an effective
subword approach for morphologically complex
languages. They also corroborate the findings of
Meyer and Buys (2022) that subword segmental
modelling leads to greater consistency across dif-
ferent morphologically complex languages. On
Xhosa, Zulu, and Finnish, SSMT and DPE exhibit
comparable performance. However, DPE requires
multiple training steps: a DPE segmenter model,
applying that to a corpus, and then training a NMT
model on the segmented corpus. SSMT has the
notable benefit of being a single model for segmen-
tation and generation.

On the languages with simpler morphologies
(Tswana and Afrikaans), SSMT is outperformed by
baselines. There is a sharp contrast between the rel-
ative performance of SSMT on the morphologically

2800

https://www.statmt.org/europarl/
https://huggingface.co/datasets/allenai/wmt22_african
https://huggingface.co/datasets/allenai/wmt22_african

Xhosa Zulu Swati

Model P R F1 P R F1 P R F1

BPE 37.16 25.42 30.19 51.57 29.62 37.62 19.57 16.17 17.71
ULM 61.22 34.65 44.25 63.70 31.72 42.35 52.48 45.26 48.61
DPE 51.52 44.24 47.60 59.66 41.64 49.05 16.96 17.00 16.98
SSMT 49.55 72.60 58.90 52.87 66.41 58.87 47.47 61.89 53.73

Table 5: Morpheme boundary identification performance across all words in the morphologically annotated dataset.

complex and morphologically simple languages.
SSMT does not seem to be justified for languages
that are not agglutinating and conjunctive.

5.2 Low-resource translation analysis

SSMT improves performance most drastically on
Swati, which is distinct among the translation di-
rections in being extremely data scarce. We con-
firm that this is not simply because of particular
hyperparameter choices, because the finding holds
across different settings during hyperparameter tun-
ing (see Figure 4 in the Appendix). To investigate
the factors behind SSMT’s success, we perform
an ablation analysis of the different components of
SSMT (shown in table 4) compared to DPE.

Learning a subword vocabulary with BPE (the
approach of DPE) does not improve performance
over the frequency-based lexicon of SSMT. Our
results also show that when the goal is to use
the model as a segmenter, supplementing the sub-
word model with a character model worsens perfor-
mance. Dynamic decoding is the most important
factor in the success of SSMT. The largest gains
do not come from learning subword segmentation
during training, but from using the same model
directly during inference with dynamic decoding.
Having a single model for segmentation, MT, and
generation leads to the best performance overall.

6 Unsupervised Morphological
Segmentation

Morphemes are the primary linguistic units in ag-
glutinative languages. We can analyse to what
extent SSMT subwords resemble morphemes by
applying it as a segmenter to the task of unsuper-
vised morphological segmentation. The task is
fully unsupervised, since our baselines and SSMT
models are tuned to optimise validation MT per-
formance and never have access to morphological
annotations (they are trained on raw text). The task

amounts to evaluating whether these subword seg-
menters “discover” morphemes as linguistic units.

We evaluate our models on data from the
SADiLaR-II project (Gaustad and Puttkammer,
2022). The dataset contains 146 parallel sentences
in English and 3 of the agglutinating conjunctive
languages for which we train MT models (Xhosa,
Zulu, Swati). The dataset provides morphologi-
cal segmentations for all words in the parallel sen-
tences. We apply the preprocessing scripts of Mo-
eng et al. (2021) to extract surface segmentations.
To apply SSMT as a segmenter we use the Viterbi
algorithm to compute the highest scoring subword
segmentation of a target sentence given the source
sentence. We compare SSMT subwords to the base-
line segmenters from our MT experiments.

Table 5 reports precision, recall, and F1 for mor-
pheme boundary identification. SSMT has greater
F1 scores than any of the baselines across all 3
languages, indicating that generally SSMT learns
subword boundaries that are closer to morphologi-
cal boundaries. SSMT also has the highest recall
for all 3 languages, but lower precision. This show
that SSMT sometimes over-segments words, which
Meyer and Buys (2022) also found to be the case
for SSLM. Table 6 in the Appendix shows similar
results for the same task using morpheme identifi-
cation as metric.

7 Morphological Compositional
Generalization

SSMT learns morphological segmentation better
than standard segmenters, but is it also learning to
compose the meanings of words from their con-
stituent morphemes? To investigate this we design
an experiment aimed at testing morphological com-
positional generalisation.

Compositional generalisation is the ability to
compose novel combinations from known parts
(Partee, 1984; Fodor and Pylyshyn, 1988). Recent
works have investigated whether neural models are

2801

able to achieve such generalisation (Lake and Ba-
roni, 2018; Hupkes et al., 2020; Kim and Linzen,
2020). For example, Keysers et al. (2020) test
whether models can handle novel syntactic combi-
nations of known semantic phrases. They construct
train/test splits with similar phrase distributions,
but divergent syntactic compound distributions. We
adapt their approach to construct a test set with a
similar morpheme distribution to the train set, but a
divergent word distribution. This evaluates whether
models can handle novel combinations of known
morphemes (previously unseen words consisting
of previously seen morphemes). Table 8 in the Ap-
pendix categorises our experiment according to the
generalisation taxonomy of Hupkes et al. (2022).

7.1 Compound divergence
Keysers et al. (2020) propose compound diver-
gence as a metric to quantify how challenging it is
to generalise compositionally from one dataset to
another. We use it to sample a subset of a test set
that requires morphological compositional general-
isation from a training set.

To compute morpheme distributions we segment
our train and test sets into morphemes with the
trained morphological segmenters of Moeng et al.
(2021). Following Keysers et al. (2020), we refer
to morphemes as atoms and words as compounds.
For a dataset T , we compute the distribution of its
compounds FC(T) as the relative word frequen-
cies and the distribution of its atoms FA(T) as the
relative morpheme frequencies. For a train set V
and test set W we compute compound divergence
DC(V ||W) and atom divergence DA(V ||W), re-
spectively quantifying how different the word and
morpheme distributions of the train and test sets
are (larger divergence implies greater difference).
We use the definitions of compound and atom di-
vergence proposed by Keysers et al. (2020) and
include these in Appendix C. We implement a pro-
cedure (also outlined in Appendix C) for extracting
a subset of the test set such that DC can be specified
and DA is held as low as possible, producing a test
set that requires models trained on V to generalise
to new morphological compositions.

7.2 Results
For this experiment we focus on English → Zulu
translation. We extract 2 test subsets of 300 sen-
tences each from Zulu FLORES devtest. For the
first subset we specified Dtarget

C = 0.2, while for
the second Dtarget

C = 0.3. We settled on these val-

Figure 3: MT performance of our English → Zulu mod-
els on test subsets that are easier (left) and harder (right)
in terms of morphological compositional generalisation.

ues since it was not possible to extract test subsets
outside this range with equal atom divergence to
the train set (around 0.07 for both). The result is 2
test subsets that require varying degrees of morpho-
logical generalisation. The subset with DC = 0.3
is more challenging than the DC = 0.2 subset, pro-
vided the model is trained on the same train set as
ours (English-Zulu WMT22 dataset).

The results are shown in Figure 3. On the
less challenging subset (DC = 0.2), DPE slightly
ouperforms SSMT, while the average chrF score
of the 4 models is 54.1. On the more challenging
subset (DC = 0.3), the average chrF score drops to
51.5, which shows that models cannot maintain the
same level of performance when more morpholog-
ical generalisation is required. This points to the
fact that neural MT models are not reliably learn-
ing morphological composition, instead sometimes
relying on surface-level heuristics (e.g. learning
subword-to-word composition that is not morpho-
logically sound). SSMT proves to be most robust
to the distributional shift, achieving the best chrF
score on the more challenging subset. This shows
that SSMT is learning composition more closely re-
sembling true morphological composition. SSMT
and DPE comfortably outperform BPE and ULM,
indicating more generally that learning subword
segmentation during training improves morpholog-
ical compositional generalisation.

8 Conclusion

SSMT unifies subword segmentation, MT train-
ing, and decoding in a single model. Our results
show that it improves translation over existing seg-
menters when the target language is agglutinative
and conjunctively written. It also produces sub-
words that are closer to morphemes and learns

2802

subword-to-word composition that more closely
resembles morphological composition. In future
work our dynamic decoding algorithm could be
used to generate text with subword segmental mod-
els for text generation tasks other than MT.

Limitations

The main downside of SSMT (compared to pre-
segmentation models like BPE and ULM) is its
computational complexity. Our architecture (Fig-
ure 1) introduces additional computation in 2 way.
Firstly, the decoder conditions on the character-
level history of the target sentence, so it has to pro-
cess more tokens than a standard subword decoder.
Secondly, the dynamic programming algorithm
(Equation 5) requires more computations than
standard MT models training on pre-segmented
datasets. In practice, SSMT takes an order of mag-
nitude (10×) longer to train than models training
on a pre-segmented dataset. Dynamic decoding
also adds computational complexity to testing, al-
though this is less of an issue since test set sizes
usually permit run times within a few hours.

It would depend on the practitioner to decide
whether the performance boosts obtained by SSMT
justify the longer training and decoding times.
However, since SSMT is particularly strong for
data scarce translation, the computational complex-
ity might be less of an issue. For translation direc-
tions like English to Swati, training times are quite
short for all models (less than a day for SSMT on
subpartitions of the A100 GPU), so the increased
training times are manageable.

Acknowledgements

This work is based on research supported in part by
the National Research Foundation of South Africa
(Grant Number: 129850). Computations were per-
formed using facilities provided by the University
of Cape Town’s ICTS High Performance Comput-
ing team: hpc.uct.ac.za. Francois Meyer is
supported by the Hasso Plattner Institute for Digital
Engineering, through the HPI Research School at
the University of Cape Town.

References
Ali Araabi and Christof Monz. 2020. Optimizing trans-

former for low-resource neural machine translation.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 3429–3435,

Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
rat, Daan van Esch, Aditya Siddhant, Mengmeng Niu,
Pallavi Nikhil Baljekar, Xavier Garcia, Wolfgang
Macherey, Theresa Breiner, Vera Saldinger Axelrod,
Jason Riesa, Yuan Cao, Mia Chen, Klaus Macherey,
Maxim Krikun, Pidong Wang, Alexander Gutkin,
Apu Shah, Yanping Huang, Zhifeng Chen, Yonghui
Wu, and Macduff Richard Hughes. 2022. Building
machine translation systems for the next thousand
languages. Technical report, Google Research.

J.K Chung, P.L Kannappan, C.T Ng, and P.K Sahoo.
1989. Measures of distance between probability dis-
tributions. Journal of Mathematical Analysis and
Applications, 138(1):280–292.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

C. M. Downey, Fei Xia, Gina-Anne Levow, and Shane
Steinert-Threlkeld. 2021. A masked segmental lan-
guage model for unsupervised natural language seg-
mentation. arXiv:2104.07829.

Lukas Edman, Antonio Toral, and Gertjan van Noord.
2022. Subword-delimited downsampling for better
character-level translation.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analysis.
Cognition, 28(1):3–71.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23–38.

Tanja Gaustad and Martin J. Puttkammer. 2022. Lin-
guistically annotated dataset for four official south
african languages with a conjunctive orthography:
Isindebele, isixhosa, isizulu, and siswati. Data in
Brief, 41:107994.

Xuanli He, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic programming encoding
for subword segmentation in neural machine transla-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3042–3051, Online. Association for Computational
Linguistics.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? (extended abstract).
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20,
pages 5065–5069. International Joint Conferences on
Artificial Intelligence Organization. Journal track.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,

2803

hpc.uct.ac.za
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/https://doi.org/10.1016/0022-247X(89)90335-1
https://doi.org/https://doi.org/10.1016/0022-247X(89)90335-1
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
http://arxiv.org/abs/2104.07829
http://arxiv.org/abs/2104.07829
http://arxiv.org/abs/2104.07829
https://doi.org/10.48550/ARXIV.2212.01304
https://doi.org/10.48550/ARXIV.2212.01304
https://doi.org/https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/https://doi.org/10.1016/j.dib.2022.107994
https://doi.org/https://doi.org/10.1016/j.dib.2022.107994
https://doi.org/https://doi.org/10.1016/j.dib.2022.107994
https://doi.org/https://doi.org/10.1016/j.dib.2022.107994
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708

Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2022. State-of-the-art gen-
eralisation research in NLP: a taxonomy and review.
CoRR.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.
2019. Learning to discover, ground and use words
with segmental neural language models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6429–6441, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Stav Klein and Reut Tsarfaty. 2020. Getting the ##life
out of living: How adequate are word-pieces for mod-
elling complex morphology? In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 204–209, Online. Association for Computa-
tional Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016.
Segmental recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Julia Kreutzer and Artem Sokolov. 2018. Learning to
segment inputs for NMT favors character-level pro-
cessing. In Proceedings of the 15th International
Conference on Spoken Language Translation, pages
166–172, Brussels. International Conference on Spo-
ken Language Translation.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In International Conference on Machine Learning.

Jindřich Libovický, Helmut Schmid, and Alexander
Fraser. 2022. Why don’t people use character-level
machine translation? In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages
2470–2485, Dublin, Ireland. Association for Compu-
tational Linguistics.

Francois Meyer and Jan Buys. 2022. Subword seg-
mental language modelling for nguni languages.
arXiv:2210.06525.

Tumi Moeng, Sheldon Reay, Aaron Daniels, and Jan
Buys. 2021. Canonical and surface morphological
segmentation for nguni languages. In Proceedings of
the Second Southern African Conference for Artifi-
cial Intelligence Research (SACAIR), pages 125–139,
Online. Springer.

Barbara Partee. 1984. Compositionality. Varieties of
formal semantics, 3:281—-311.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Zhiqing Sun and Zhi-Hong Deng. 2018. Unsupervised
neural word segmentation for Chinese via segmental
language modeling. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4915–4920, Brussels, Belgium.
Association for Computational Linguistics.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Chong Wang, Yining Wang, Po-Sen Huang, Abdelrah-
man Mohamed, Dengyong Zhou, and Li Deng. 2017.
Sequence modeling via segmentations. In Proceed-
ings of the 34th International Conference on Machine
Learning - Volume 70, page 3674–3683. JMLR.org.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2021. Multi-view subword regularization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
473–482, Online. Association for Computational Lin-
guistics.

2804

https://arxiv.org/abs/2210.03050
https://arxiv.org/abs/2210.03050
https://doi.org/10.18653/v1/P19-1645
https://doi.org/10.18653/v1/P19-1645
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
http://arxiv.org/abs/1511.06018
https://aclanthology.org/2018.iwslt-1.25
https://aclanthology.org/2018.iwslt-1.25
https://aclanthology.org/2018.iwslt-1.25
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/2022.findings-acl.194
https://doi.org/10.18653/v1/2022.findings-acl.194
https://arxiv.org/pdf/2210.06525.pdf
https://arxiv.org/pdf/2210.06525.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-95070-5_9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-95070-5_9.pdf
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
http://proceedings.mlr.press/v70/wang17j/wang17j.pdf
https://doi.org/10.18653/v1/2021.naacl-main.40

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online seg-
ment to segment neural transduction. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1307–1316, Austin,
Texas. Association for Computational Linguistics.

Yi Zhu, Benjamin Heinzerling, Ivan Vulić, Michael
Strube, Roi Reichart, and Anna Korhonen. 2019. On
the importance of subword information for morpho-
logical tasks in truly low-resource languages. In
Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
216–226, Hong Kong, China. Association for Com-
putational Linguistics.

Judit Ács. 2019. Exploring bert’s vocabulary.

A Next-character probabilities

Here we present the formulas to compute next-
character probabilities with the SSMT mixture
model. The probability computations depend on
whether the preceding character and next character
continue or end subwords, so we provide defini-
tions for all possible subword boundary conditions.
We consider the simplest case first. Given that the
previously generated character at position j − 1
concludes a subword, the probability of the next
subword being a single character y is

pend-end(y|y<j,x) = gjpchar(y,<eos> |y<j,x)+

(1− gj)plex(y|y<j,x), (6)

where <eos> is a special end-of-subword token. We
can compute this for all y in the character vocabu-
lary and return the top candidates for next character.
We modify this for the case where character j − 1
does not conclude a subword, but character j still
does. Then character j constitutes the last charac-
ter in a subword that started at an earlier character.
The probability of next character is then

pcon-end(y|y<j,x)

= gjpchar(y,<eos> |yk:j−1,y<k,x)+

(1− gj)plex(y|yk:j−1,y<k,x), (7)

where k is the starting position of the current sub-
word (concluding at j) and yk:j−1 are the charac-
ters generated so far in the current subword.

These cases still only give us candidates for
when the next character concludes a subword. We
can modify equation 6 to compute the probabil-
ity of the next character starting and continuing a

subword as

pend-con(y|y<j,x) = gjpchar(y|y<j,x)+ (8)

(1− gj)
∑

s:s1=y,s̸=y

plex(s|y<j,x).

where the first mixture component is simply
the probability of the next character under the
character-level model (without the <eos> token).
The second component marginalises over all sub-
words starting with y. This considers all the pos-
sible ways in which the next subword could start
with character y. It excludes the 1-character sub-
word y (s ̸= y), since this constitutes a subword
ending with character j (covered by equation 6).
Like equation 6, this covers the case in which the
previous character concludes a subword. Similarly
to how we generalised equation 6 to equation 7, we
can generalise equation 8 to the case where char-
acter j continues a subword started at any given
previous character. This produces

pcon-con(y|y<j,x) = gjpchar(y|yk:j−1,y<k,x)+

(1− gj)
∑

s:s1=y,s̸=y

plex(s|yk:j−1,y<k,x). (9)

B Training details

SSMT is implemented as a sequence-to-sequence
model in the fairseq library. For all our MT models
we used the training hyperparameters of the fairseq
transformer-base architecture4 (6 encoder layers, 6
decoder layers). We extensively tuned the vocab-
ulary sizes of our models on both English-Xhosa
and English-Zulu (including separate vocabularies).
Validation performance peaked for both at a shared
vocabulary of 10k subwords for the baselines. For
SSMT it peaked at 5k BPE subwords for the source
language and 5k subwords in the target language
lexicon. We applied these vocabulary settings to
the remaining languages (excluding Swati, which
we tuned separately).

Our SSMT subwords have a maximum segment
length of 5 characters, since this was computation-
ally feasible and validation performance did not
improve with longer subwords. We trained all our
models for 25 epochs initially and then continued
training until validation performance stopped im-
proving for 5 epochs. We trained our DPE segmen-
tation models for 20 epochs (following He et al.

4https://github.com/facebookresearch/
fairseq/blob/main/fairseq/models/
transformer/transformer_legacy.py

2805

https://doi.org/10.18653/v1/D16-1138
https://doi.org/10.18653/v1/D16-1138
https://doi.org/10.18653/v1/K19-1021
https://doi.org/10.18653/v1/K19-1021
https://doi.org/10.18653/v1/K19-1021
http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html
https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/transformer/transformer_legacy.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/transformer/transformer_legacy.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/transformer/transformer_legacy.py

Xhosa Zulu Swati

Model P R F1 P R F1 P R F1

BPE 18.04 14.23 15.91 24.51 17.52 20.43 9.13 3.77 5.33
ULM 31.59 22.51 26.29 31.47 20.88 25.10 32.31 13.72 19.26
DPE 28.82 26.16 27.43 33.01 26.36 29.31 7.97 3.72 5.08
SSMT 31.58 41.50 35.87 33.81 39.57 36.46 27.57 15.49 19.83

Table 6: Morpheme identification performance across all words in the morphologically annotated dataset. Morpheme
identification measures how much overlap their is between the subwords in a particular segmentation and the
morphemes of a word.

Mixture beam search Dynamic decoding

Beam size BLEU chrF BLEU chrF

1 11.8 49.7 13.6 52.2
3 11.5 49.2 14.1 53.6
5 11.2 49.4 14.5 53.8
7 11.4 49.6 14.3 53.8
10 11.5 49.8 14.4 53.8

Table 7: English → Zulu validation set performance of
SSMT with dynamic decoding compared to standard
beam search over the lexicon and character distributions
of the SSMT mixture model. Applying standard beam
search to SSMT results in poor performance, which
justifies the introduction and added computational com-
plexity of dynamic decoding.

(2020)), so DPE required 20 epochs of training for
the segmentation model, followed by 25+ epochs
for the translation model. We tried sampling ULM
segmentations during training for regularisatiion,
but initial experiments showed that maximising
segmentations led to better validation performance.

Since models are more sensitive to hyperparam-
eter settings in the data scarce setting (Araabi and
Monz, 2020), we performed more extensive hyper-
parameter tuning for the extremely low-resource
case of English → Swati. We tuned the number
of layers and the vocabulary size (see Figure 4).
We found that smaller models (less layers) greatly
improved validation performance for all models.

C Morphological compositional
generalisation test subset extraction

For a train set V and test set W we compute the
compound divergence and atom divergence, respec-
tively as

DC(V ||W) = 1− C0.1(FC(V)||FC(W)), (10)

DA(V ||W) = 1− C0.5(FA(V)||FA(W)), (11)

Figure 4: English → Swati validation performance.

where Cα(P ||Q) is the Chernoff coefficient
(Chung et al., 1989). This is a measure of the
similarity of 2 distributions P and Q computed as

Cα(P ||Q) =
∑

k

pαk q
1−α
k , (12)

where α is a parameter that weights the importance
of the distributions in the similarity metric. We
follow Keysers et al. (2020) in setting α = 0.1 for
compound divergence (more important to measure
whether or not compounds occur in train than to
measure how close the distributions are) and α =
0.5 for atom divergence (atom distributions should
match as far as possible).

We implement a procedure that, given a train
set V , extracts a prespecified number of sentences
from a test set W , such that DC(V ||W) = Dtarget

C

(where Dtarget
C is the desired compound diver-

gence) and DA(V ||W) is held as low as possible.
The procedure starts with the empty test subset and
iteratively adds one sentence from the test set. At
each step, it randomly samples k sentences from
the test set (we set k = 100) and adds the sentence

2806

Motivation
Practical Cognitive Intrinsic Fairness

V V

Generalisation type
Compositional Structural Cross-task Cross-language Cross-domain Robustness

V V

Shift type
Covariate Label Full Assumed

V

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

V

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

V

Table 8: GenBench evaluation card (https://genbench.org/) categorising our morphological compositionl
generalisation experiment according to the generalisation taxonomy of Hupkes et al. (2022).

that minimises

|DC −Dtarget
C |+DA, (13)

where Dtarget
C is the prespecified compound diver-

gence target for the experiment. Iteratively adding
sentences that minimise equation 13 results in a
test subset containing atoms (morphemes) that the
model was exposed to during training, but com-
pounds (words) that it was not. We can control the
degree of compositional novelty in the test subset
compounds by setting Dtarget

C in our procedure.

2807

https://genbench.org/

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Unnumbered section after section 8.

�7 A2. Did you discuss any potential risks of your work?
We do not believe that there are significant risks to the code or models we plan to release,

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Sections 5 and 7

�3 B1. Did you cite the creators of artifacts you used?
Sections 5 and 6

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The artifacts we use and release are all open-source and publicly available.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The data we used was released for the WMT22 shared task, so we trust that this has already been
done.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Sections 1, 5, 7

C �3 Did you run computational experiments?
Sections 5, 6, 7

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Sections 3, 4, 5, limitations sections, and appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2808

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Sections 5 and appendix

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2809

