
Findings of the Association for Computational Linguistics: ACL 2023, pages 2810–2823
July 9-14, 2023 ©2023 Association for Computational Linguistics

Measuring and Mitigating Local Instability in Deep Neural Networks

Arghya Datta† and Subhrangshu Nandi† and Jingcheng Xu†∗ and Greg Ver Steeg
and He Xie and Anoop Kumar and Aram Galstyan

Amazon Alexa
Seattle, WA, USA

{argdatta, subhrn, gssteeg, hexie, anooamzn, argalsty} @amazon.com
{xjc}@stat.wisc.edu

† Equal contribution, alphabetical order

Abstract
Deep Neural Networks (DNNs) are becoming
integral components of real world services re-
lied upon by millions of users. Unfortunately,
architects of these systems can find it difficult
to ensure reliable performance as irrelevant de-
tails like random initialization can unexpect-
edly change the outputs of a trained system
with potentially disastrous consequences. We
formulate the model stability problem by study-
ing how the predictions of a model change,
even when it is retrained on the same data, as
a consequence of stochasticity in the training
process. For Natural Language Understanding
(NLU) tasks, we find instability in predictions
for a significant fraction of queries. We formu-
late principled metrics, like per-sample “label
entropy” across training runs or within a single
training run, to quantify this phenomenon. In-
triguingly, we find that unstable predictions do
not appear at random, but rather appear to be
clustered in data-specific ways. We study data-
agnostic regularization methods to improve
stability and propose new data-centric meth-
ods that exploit our local stability estimates.
We find that our localized data-specific miti-
gation strategy dramatically outperforms data-
agnostic methods, and comes within 90% of
the gold standard, achieved by ensembling, at
a fraction of the computational cost.

1 Introduction
While training large deep neural networks on the
same data and hyperparameters may lead to many
distinct solutions with similar loss, we say that the
model is underspecified (D’Amour et al., 2022).
One tangible manifestation of underspecification is
that a model prediction on a single data point can
change across different training runs, without any
change in the training data or hyperparameter set-
tings, due to stochasticity in the training procedure.
This extreme sensitivity of model output, which has
been termed as model variance/instability or model
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jitter/churn (Hidey et al., 2022; Milani Fard et al.,
2016), is highly undesirable as it prohibits compar-
ing models across different experiments (Dodge
et al., 2019). We refer to this problem as local
instability 1, a term that highlights our focus on
the non-uniformity of instability across data points.
Local instability can lead to highly undesirable
consequences for deployed industrial systems, as
it can cause inconsistent model behavior across
time, eroding trust on AI systems (Dodge et al.,
2020; D’Amour et al., 2020a). The problem is fur-
ther exacerbated by the fact that industry models
are typically more complex and trained on diverse
datasets with potentially higher proportion of noise.

Utterance (gold
label)

p̂[min−max],
σm(p̂)

Label
predictions over

50 runs
funny joke (gen-
eral)

[0.98-0.99],
0.003 (low)

general:50

start house
cleanup (IOT)

[0.002-0.97],
0.17 (high)

lists:26, IOT:6,
general:6, play:5,
news:3, social:1,
calendar:1

search for gluten
free menus
(cooking)

[0.002-0.693],
0.06 (low)

lists:28, take-
away:18, social:1,
music:1, cook-
ing:1, play:1

Table 1: Variability in predictions of utterances from
Massive dataset. This shows different predictions over
50 model runs with different seeds. p̂ is the prediction
score on gold labels and σm is the standard deviation
over multiple model outputs p̂1, . . . , p̂50. For example,
start house cleanup with gold label IOT is predicted to
label lists 26 out of the 50 model runs. Its prediction
score on IOT ranges between 0.002 and 0.97. green:
low variability, predictions match gold label, red: high
predicted label flipping or switching.

Table 1 shows examples of local instability for
a domain classification problem, where we used
a pre-trained language model DistilBERT (Sanh
et al., 2019) to train 50 independent classifiers

1We use local instability to mean local model instability
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(with random initial conditions) on Massive dataset
(FitzGerald et al., 2022). It shows that a validation
set utterance start house cleanup with gold label
IOT gets assigned seven different predicted labels
over the 50 runs, with the predicted confidence on
gold label p̂ ranging between 0.002 and 0.97, with
high σm (the standard deviation of {p̂i}50i=1) of 0.17.
In comparison, search for gluten free menus gets 6
different predicted labels over 50 runs, with a rela-
tively low σm of 0.06. The differences in stability
across examples demonstrates that the phenomenon
is localized to certain data points. See Figures 4
and 5 in Appendix. Examples in table 1 also high-
light that variability in confidence is not perfectly
aligned with stability of predictions.

Measuring Local Model Instability While de-
tecting and quantifying local instability across mul-
tiple runs that is trivial for toy problems, it becomes
infeasible when dealing with much larger industrial
datasets. Previous research (Swayamdipta et al.,
2020) suggested the use of single-run training dy-
namics to estimate the variance in prediction scores
over multiple epochs for a model. However, as
shown in Table 1, low prediction variance does not
always lead to less label switching, which is the
defining feature of local instability. Instead, here
we introduced label switching entropy as a new
metric for characterizing local instability. Further-
more, we have demonstrated that label switching
entropy calculated over different training epochs
of a single run is a good proxy for label switching
over multiple runs, so that data points with high
prediction instability over time also exhibit high
instability across multiple training runs.

Mitigating Local Model Instability One
straightforward strategy of mitigating local
instability is to train an ensemble of N models
and average their weights or their predictions.
Unfortunately, ensembling neural networks such
as large language models is often computationally
infeasible in practice, as it requires multiplying
both the training cost and the test time inference
cost by a factor of N . Therefore, we proposed and
compared more economical and computationally
feasible solutions for mitigating local instability.

Here we proposed a more efficient smoothing-
based approach where we train a pair of models.
The first (teacher) model is trained using the one-
hot encoded gold labels as the target variable. Once
the model has converged and is no longer in the

transient learning regime (after N training or opti-
mization steps), we compute the temporal average
predicted probability vector over K classes after
each optimization step, which is then adjusted by
temperature T to obtain the smoothed predicted
probability vector. A student model is then trained
using these “soft” labels instead of the one-hot en-
coded gold labels. We call this Temporal Guided
Temperature Scaled Smoothing (TGTSS). TGTSS
allows local mitigation of local instability as each
datapoint is trained to its unique label in the stu-
dent model. In contrast to existing methods such
stochastic weight averaging (Izmailov et al., 2018)
or regularizing options such as adding L2-penalty,
TGTSS significantly outperforms existing methods
and reaches within 90% of the gold standard of
ensemble averaging.

We summarize our contributions as follows:

• We propose a new measure of local instability
that is computationally efficient and descrip-
tive of actual prediction changes.

• We introduce a data-centric strategy to miti-
gate local instability by leveraging temporally
guided label smoothing.

• We conduct extensive experiments with two
public datasets and demonstrate the effective-
ness of the proposed mitigation strategy com-
pared to existing baselines.

2 Related work
Sophisticated, real-world applications of Deep Neu-
ral Networks (DNNs) introduce challenges that re-
quire going beyond a myopic focus on accuracy.
Uncertainty estimation is increasingly important
for deciding when a DNN’s prediction should be
trusted, by designing calibrated confidence mea-
sures that may even account for differences be-
tween training and test data (Nado et al., 2021).
Progress on uncertainty estimation is largely or-
thogonal to another critical goal for many engi-
neered systems: consistency and reliability. Will
a system that works for a particular task today
continue to work in the same way tomorrow?
One reason for inconsistent performance in real-
world systems is that even if a system is re-trained
with the same data, predictions may significantly
change, a phenomenon that has been called model
churn(Milani Fard et al., 2016). The reason for
this variability is that neural networks are under-
specified (D’Amour et al., 2020b), in the sense
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that there are many different neural networks that
have nearly equivalent average performance for the
target task. While randomness could be trivially
removed by fixing seeds, in practice tiny changes
to data will still significantly alter stochasticity and
results. We will explore the case of altering training
data in future studies. Studying how stochasticity
affects model churn addresses a key obstacle in
re-training engineered systems while maintaining
consistency with previous results.

The most common thread for reducing model
churn focuses on adding constraints to a system so
that predictions for re-trained system match some
reference model. This can be accomplished by
adding hard constraints (Cotter et al., 2019) or dis-
tillation (Milani Fard et al., 2016; Jiang et al., 2021;
Bhojanapalli et al., 2021).

We adopt a subtly different goal which is to train
at the outset in a way that reduces variability in
predictions due to stochasticity in training. Previ-
ous research (Hidey et al., 2022) have suggested
a co-distillation procedure to achieve this. Label
smoothing, which reduces over-confidence (Müller
et al., 2019), has also been suggested to reduce vari-
ance, with a local smoothing approach to reduce
model churn appearing in (Bahri and Jiang, 2021).

A distinctive feature of our approach is a focus
on how properties of the data lead to instability. In-
spired by dataset cartography (Swayamdipta et al.,
2020) which explored variance in predictions over
time during training of a single model, we investi-
gate how different data points vary in predictions
across training runs. Non-trivial patterns emerge,
and we use sample-specific instability to motivate
a new approach to reducing model churn.

Our work draws connections between model
stability and recent tractable approximations for
Bayesian learning (Izmailov et al., 2018; Maddox
et al., 2019). Recent Bayesian learning work fo-
cuses on the benefits of Bayesian model ensem-
bling for confidence calibration, but an optimal
Bayesian ensemble would also be stable. Bayesian
approximations exploit the fact that SGD train-
ing dynamics approximate MCMC sampling, and
therefore samples of models over a single train-
ing run can approximate samples of models across
training runs, although not perfectly (Fort et al.,
2019; Wenzel et al., 2020; Izmailov et al., 2021).
We have studied connections between prediction
variability within a training run and across training
runs, and used this connection to devise practical

metrics and mitigation strategies.
Similar to BANNs (Furlanello et al., 2018), our

teacher and corresponding student models use the
same model architecture with same no. of pa-
rameters rather than using a high-capacity teacher
model, however, unlike BANNS, our work is
geared towards addressing model instability. Ar-
chitecturally, our methodology (TGTSS) uses a
temperature scaled temporally smoothed vector
that is obtained from the last N checkpoints from
the teacher model instead of the finalized teacher
model and not use the annotated labels for the ut-
terances.

3 Model instability measurement
The examples in Table 1 show that re-training a
model with different random seeds can lead to
wildly different predictions. The variance of predic-
tions across models, σ2

m, is intuitive, but is expen-
sive to compute and does not necessarily align with
user experience since changes in confidence may
not change predictions. A changed prediction, on
the other hand, may break functionality that users
had come to rely on. Hence we want to include
a metric which measures how often predictions
change.

Therefore, we computed the label switching en-
tropy. Given a setup with training data {xi, yi} ∈
X where X are utterances, y ∈ {1, ...,K} are
the corresponding gold labels, the multi-run Label
Entropy (LEm) over N independent runs for an
utterance xi can be computed as,

LE(i)
m =

K∑

k=1

− n
(i)
k

N
log(

n
(i)
k

N
) (1)

where, nk is the number of times utterance i was
predicted to be in class k across N models trained
with different random seeds. For example, if an
utterance gets labeled to three classes A, B and
C for 90%, 5% and 5% of the time respectively,
then its multi-run label entropy (LE(i)

m ) will be
−(0.9∗log(0.9)+0.05∗log 0.05+0.05 log 0.05) =
0.39. Similarly, an utterance that is consistently
predicted to belong to one class over N runs will
have a LE

(i)
m of 0 (even if it is consistently put

in the wrong class). We can compute the overall
LEm by averaging LE

(i)
m for all the utterances.

Empirically, we also observed a relatively strong
linear relationship between LEm and σm (Figure
1).
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Figure 1: LEm vs σm for Massive dataset shows a
strong linear relationship. Each data point is an utter-
ance with LE

(i)
m vs σ(i)

m values.

Since computing LEm is computationally expen-
sive due to training N independent models, we pro-
pose using single-run Label Entropy (LEs) that can
be computed over a single model run. Mathemati-
cally, the formula for label entropy stays consistent
for both multi-run and single-run, however, LEs

is computed across different model checkpoints.
In our analyses, we computed LEs by accumulat-
ing the predicted class after each optimization step,
where as LEm was computed by accumulating the
final predicted class across N models on the vali-
dation set.

Figure 2: LEs vs LEm for Massive dataset shows a
strong linear relationship. Each data point is an utter-
ance with LE

(i)
s vs LE(i)

m values. Zero entropy corre-
sponds to utterances with confidence scores close to 1
for a class with very low variability.

Empirically, we found that there exists a strong
linear relationship between LEs and LEm (Figure
2). This demonstrates that utterances which suffer
from local instability across multiple independent
runs exhibit similar instability across multiple opti-

mization steps for a single model. This finding sup-
ports our hypothesis that LEs is a suitable proxy
for LEm in real world production settings for NLU
systems.

4 Model instability mitigation
In our study, we have explored 3 baseline miti-
gation strategies to address model instability: en-
sembling, stochastic weight averaging (SWA) and
uniform label smoothing. These methodologies
have been used in numerous other works to im-
prove generalization as well as predictive accu-
racy across a diverse range of applications. Per-
formance of the ensembling strategy serves as our
upper bound in reducing model instability. We pro-
pose a novel model instability mitigation strategy,
temporal guided temperature scaled label smooth-
ing, that is able to recover 90% of the reduction
in model instability as ensembling at a fraction of
model training time and computational cost. We
describe all the mitigation strategies below.

4.1 Ensemble averaging and regularizing

In this setting, we trained N independent models,
initialized with different random seeds, using the
standard cross-entropy loss, computed between
the ground truth labels and the predicted proba-
bility vector. For every utterance in the test set, we
recorded the mean predicted probability of the gold
label, the predicted label and our proposed local
instability metric, label entropy, across N models.
We also trained another baseline by leveraging L2
regularization. No other mitigation strategies were
used in the process since our aim was to emulate
the current model training scenario in natural lan-
guage understanding(NLU) production settings.

4.2 Stochastic Weight Averaging

Stochastic weight averaging(SWA) (Izmailov et al.,
2018) is a simple yet effective model training
methodology that improves generalization perfor-
mance in deep learning networks. SWA performs
an uniform average of the weights traversed by
the stochastic gradient descent based optimization
algorithms with a modified learning rate. In our
implementation, we equally averaged the weights
at the end of the last two training epochs. We also
explored equal averaging of weights from two ran-
domly selected epochs out of the final 3 epochs but
that strategy did not yield better results. We left the
work of using a modified learning rate to a future
study with a significantly larger training dataset.
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4.3 Label Smoothing

Label smoothing (Szegedy et al., 2016) is a popu-
lar technique to improve performance, robustness
and calibration in deep learning models. Instead of
using “hard” one-hot labels when computing the
cross-entropy loss with the model predictions, label
smoothing introduces “soft” labels that are essen-
tially a weighted mixture of one-hot labels with the
uniform distribution. For utterances {xi, yi} where
y ∈ {1, ...,K} for K classes, the new "soft" label
is given by yLS = (1− α) ∗ y + α/K where α is
the label smoothing parameter. The "soft" labels
are then used in the softmax cross-entropy loss.

4.4 Ensemble baseline

To obtain consistent predictions with low local in-
stability, ensembling is often utilized as the default
mitigation strategy. Given a problem setup with
training data {xi, yi} ∈ X where X are utterances,
y ∈ {1, ...,K} are the corresponding gold labels,
then intuitively, ensembling over N independent
models,where N is sufficiently large, will converge
to the average predicted probability by the law of
large numbers. Hence, using a sufficiently large
ensemble of independently trained models would
give stable predictions in general.

In our study, we used ensembling to aggregate
(uniform average) predictions for each utterance
across N independently trained models. Each
model was trained using the softmax cross-entropy
loss between the predicted logit vector zi over K
classes and the one-hot encoded vector represent-
ing the gold label. For an utterance xi, the uniform
average predicted probability vector p̄i across N
models over all class K (softmax probability vec-
tor of length K) is adjusted by a temperature T , to
obtain the smoothed predicted probability vector
qi:

qi =
p̄i

T

∑K
k=1 p̄k

T
(2)

The temperature T can be used to control the en-
tropy of the distribution. The smoothed probability
vector q is now used as the "soft" labels to train a
model instead of the "hard" one hot encoded gold
labels and the resultant model is robust to local
instability. One challenge for ensembling is that it
requires training, storing and running inference on
a large number of models which is often infeasible
for large scale NLU systems.

4.5 Temporal Guided Temperature Scaled
Smoothing (TGTSS)

Since ensembling is infeasible for large models in
practice, we propose temporal guided label smooth-
ing that does not require training large ensembles
to compute the soft labels.

In this setup, we train a pair of models as op-
posed to training a large ensemble of models. The
first (teacher) model is trained using the one-hot en-
coded gold labels as the target. Once the model has
converged and is no longer in the transient training
state (after N training or optimization steps), we
compute the uniform average predicted probabil-
ity vector (p̄i) after each optimization step of the
model, which is then adjusted by temperature T to
obtain the smoothed predicted probability vector
qi using eqn.(2). A suitable N can be chosen by
looking at the cross-entropy loss curve for the vali-
dation dataset. The second (student) model is now
trained using qi as the "soft" label instead of the
one-hot encoded gold labels.

The significant advantage of TGTSS over ensem-
bling is that it does not require training, storing, or
inferring over large ensembles. A key feature of
TGTSS is that it uniformly averages predictions
over numerous training steps instead of averag-
ing predictions over numerous independent models.
This saves the cost of training multiple models.
Moreover, we never need to store multiple models
for TGTSS since we can store a running average of
the predictions over time. Finally, at inference time
we only need to call a single model (the trained
student model), as opposed to N models for the
ensemble.

5 Experimental setup and results for
mitigation

5.1 Base model architecture

For all our experiments, we used DistilBERT (Sanh
et al., 2019) as the pre-trained language model.
We used the implementation of DistilBERT-base-
uncased from the Huggingface library by leverag-
ing AutoModelForSequenceClassification. The pre-
trained language model is then fine-tuned on the
benchmark datasets by using the training set. Distil-
BERT is a widely used pre-trained language model
that is currently used in production in many large
scale NLU systems. One key advantage of using
DistilBERT is that it is able to recover more than
90% performance of the larger BERT-base-uncased
model while using 40% less parameters on the
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GLUE language understanding benchmark (Wang
et al., 2018). Using other BERT models as the pre-
trained language model was outside the scope of
this study.

5.2 Datasets
To study local instability and compare different mit-
igation strategies, we used two open source bench-
mark datasets (Table 2): Massive and Clinc150.

• Massive: Massive (FitzGerald et al., 2022)
dataset is an open source multilingual NLU
dataset from Amazon Alexa NLU system con-
sisting of 1 million labeled utterances span-
ning 51 languages. For our experiments, we
only used the en-US domain utterances for
domain classification task across 18 domains
(alarm, audio, general, music, recommenda-
tion, etc.).

• Clinc150 DialoGLUE: Clinc150 (Larson
et al., 2019) is an open source dataset from
DialoGLUE (Mehri et al., 2020), a conver-
sational AI benchmark collection. We uti-
lized Clinc150 for intent classification task
across 150 intents (translate, transfer, time-
zone, taxes, etc).

Attribute MASSIVE CLINC150

Source Amazon
Alexa AI

DialoGLUE

Domains 18 -
Intents 60 150

Train 11,514 15,000
Holdout(Unseen) 2974 3,000

Balanced? No. Yes. 100
per intent

Classification task Domain Intent

Table 2: Benchmark dataset statistics

5.3 Training and Evaluation Protocol
We compared the performance of our proposed
mitigation strategy, temporal guided temperature
scaled smoothing (TGTSS), with other baseline
mitigation strategies such as ensembling averaging,
L2 regularization, uniform label smoothing, SWA
and ensembling. We trained 50 independent mod-
els with the same hyper-parameters for each mitiga-
tion strategy using different random initialization
seeds. We reported the Mean ± SD of domain
classification accuracy for the Massive dataset and

Mean ± SD of intent classification accuracy for the
Clinc150 dataset. For both the datasets, we also
reported the percentage reduction in LEm when
compared to the control baseline over 50 indepen-
dent model runs for all the utterances as well as for
high label entropy utterances whose label entropy
was over 0.56 in the control baseline. For each
method, we computed the sum of LEm over all the
N utterances in the test set as

∑N
i=1 LEmi . The

∆LEm is then computed as the percentage reduc-
tion among these values for each method and the
control baseline. We did similar computations for
∆LEs in Table 4.

The LEm value 0.56 for an utterance indicates
that if the utterance was assigned to 2 different
labels over 50 independent model runs, then its
membership is split 75%-25% between the two
labels. A lower value of label entropy indicates
better model robustness and consequently, lower
local instability. An utterance will have LEm = 0
if it is consistently predicted to be the same label
across 50 independent model runs. All the results
for both the benchmark datasets have been reported
on an unseen holdout set. A model having high
overall accuracy and low label entropy is usually
preferred.

5.3.1 Hyper-parameters
In our empirical analyses, all the models across
different mitigation strategies were trained using
the ADAM (Kingma and Ba, 2014) optimizer with
a learning rate of 0.0001. For both the benchmark
datasets, all the models were trained for 5 epochs
with a batch size of 256. For the control baseline
with L2 regularization, we selected a weight de-
cay value of 0.001. For the ensemble baseline, we
selected N as 200 i.e. the pre-temperature scaled
"soft" labels were computed after uniformly averag-
ing outputs from 200 independent models for each
utterance in the training set. In the uniform label
smoothing mitigation strategy, we used α as 0.5
for the Clinc150 dataset and α as 0.1 for the Mas-
sive dataset. For SWA, we equally averaged the
model weights after the last 2 epochs. For exper-
iments using temporal guided temperature scaled
smoothing on the Clinc150 dataset, we used N as
200 where as for the Massive dataset, we set N as
180. This indicates that model outputs after first
200 training or optimization steps were recorded
for the Clinc150 dataset and uniformly averaged
for each utterance before temperature scaling. Sim-
ilarly, for the Massive dataset, model outputs were
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recorded after 180 training steps. For both the en-
semble guided and temporal guided temperature
scaled smoothing mitigation strategies, we set the
temperature T at 0.5.

5.4 Results & Discussion
We compared the proposed mitigation strategy with
other baselines described in Section 4.1. We high-
light the effectiveness of our proposed local in-
stability metric, label entropy, in capturing local
instability over 50 independent model runs as well
as a single model run.

Ensemble is the best mitigation strategy
In our empirical analyses, we found that ensemble
baseline is often the best performing mitigation
strategy in terms of both model accuracy and LEm

for both the benchmark datasets(Table 3).

TGTSS is comparable to ensembing at a
fraction of computation cost
We found that TGTSS is able to recover about
91% of the performance of ensembling in the multi-
run experiments. TGTSS trains only one teacher-
student pair and drastically reduces the computa-
tional cost of ensembling. Hence, it is much more
feasible to deploy TGTSS in production NLU sys-
tems. We also found that TGTSS is significantly
better than model-centric local instability mitiga-
tion strategies such as SWA and L2 regularization.

However, as mentioned in Section 4.5, TGTSS
computes “soft” labels across multiple optimiza-
tion steps which leads to multiple inference cycles.
In our experiments, we ran inference after each op-
timization step once the model is no longer in the
transient training state. However, it may be possi-
ble to further reduce the number of inference cycles
by running inference after every X optimization
steps and this is left for future studies.

Efficacy of single run label entropy (LEs) as a
local instability metric
In Table 3, we demonstrated how TGTSS is able
to reduce local instability in terms of our proposed
metric LEm over multiple independent runs of the
model and recover 91% of the performance of en-
sembling. We proposed LEs as a more practical
metric for local instability. We showed that TGTSS
is still able to recover more than 90% of the per-
formance of ensembling for the Clinc150 and the
Massive datasets (Table 4). For high LEm utter-
ances in the control baseline, TGTSS was able to
considerably reduce LEs (Appendix Table 6).

In figure 3, we can observe that TGTSS signifi-
cantly reduces variation in prediction scores com-
pared to the control baseline. In the top panels, we
see utterances that are easy to learn and the classi-
fier converged to the gold label within 2 epochs. In
bottom panels, we see utterances that exhibit high
variation in prediction scores through the training
process, and consequently, high LEs. Post miti-
gation by TGTSS, the bottom right panel shows
the significant reduction in prediction score varia-
tion and LEs. Figure 8 in Appendix shows more
examples of reduction in LEs over the course of
training.

Global label smoothing is not as effective
In our empirical analyses, we found that uniform
label smoothing reduces local instability by 7-9%
compared to the control baseline but falls short of
ensembling and TGTSS. Label smoothing involves
computing a weighted mixture of hard targets with
the uniform distribution, where as both ensembling
and TGTSS uses the model’s average predictions
over multiple runs and multiple optimization steps,
respectively. Tuning the smoothing factor(α) did
not improve model stability in terms of label en-
tropy.

Importance of temperature scaling for TGTSS
We conducted ablation studies to understand how
temperature scaling affects the performance of
TGTSS. Temperature scaling uses a parameter
T < 1 for all the classes to scale the uniformly
averaged predictions. We found that the proposed
methodology reduces label entropy by 17.5% over
the control baseline without temperature scaling
for the Massive dataset on the validation set (31.5%
reduction with temperature scaling). This also indi-
cates that temporal uniform averaging is indepen-
dently able to significantly reduce label entropy.

6 Conclusion
In this work, we studied the problem of model insta-
bility/churn in deep neural networks in the context
of large scale NLU systems. Assigning different la-
bels to the same training data over multiple training
runs can be detrimental to many applications based
on DNNs. We noticed that the instability of model
predictions are non-uniform over the data, hence
we call it local instability. We proposed a new met-
ric, label switching entropy, that is able to quantify
model instability over multi-runs as well as a single
training run. We also introduced Temporal Guided
Temperature Scaled Smoothing that reduces model
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Massive Clinc150

Methods Accuracy(%) ∆LEm(%) ↑ % of Eb Accuracy(%) ∆LEm(%) ↑ % of Eb

Control baseline 90.6 ± 0.6 - - 95.1 ± 0.8 - -
Ensemble baseline (Eb) 91.3 ± 0.5 34.5 - 95.4 ± 0.6 31.1 -

L2 Regularization 90.3 ± 0.5 -2.3 -7 94.9 ± 0.7 -0.6 -2
SWA 91.0 ± 0.5 17.6 51 95.2 ± 0.7 7.3 23
Label Smoothing 90.8 ± 0.5 5.7 17 95.2 ± 0.8 6.1 20

TGTSS (Ours) 91.3 ± 0.6 31.4 91 95.3 ± 0.8 26.7 86

Table 3: Reduction of multi-run entropy LEm across 50 independent model runs for different methods. ∆LEm(%)
is calculated as percentage reduction between the sum of per-utterance LEm for each method and that of the control
baseline. A higher percentage indicates greater reduction in LEm over control baseline and thus better performance.
The values for % of Eb indicates the reduction in LEm as a percentage of the gold standard ensemble baseline. A
negative sign in label entropy reduction indicates an increase in LEm. Our method TGTSS shows the best results
among the competing methods, coming within 91% of gold standard ensemble baseline.

Pr
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d 
pr

ob
ab

ilit
ie

s

Control baseline (pre-mitigation)

Optimization steps Optimization steps

TGTSS (post-mitigation)

Figure 3: Training trajectories between pre-mitigation and post-mitigation stages show that TGTSS was able to
significantly reduce the variability of raw confidence scores on the gold labels as well as reduce model churn in
Massive dataset. [Top] shows some utterances where the model predictions are stable (no label switching), [Bottom]
shows some utterance where TGTSS significantly reduced model churn as measured using LEs.

∆LEs (%) ↑
Methods Massive Clinc150

Label Smoothing 37.9 40.5
Ensemble baseline 55.5 61.7

TGTSS (Ours) 53.4 55.9

Table 4: Empirical analyses highlights Temporal guided
temperature scaled smoothing (TGTSS) reduces LEs

with respect to the single run control baseline model
across different optimization steps when a single model
is trained. ∆LEs (%) is computed as percentage re-
duction between the sum of per-utterance LEs for each
method and that of the control baseline. A −ve sign
indicates an increase in label entropy over the control
baseline.

churn by a considerable margin. We have shown
in experiments that TGTSS is able to recover up to
91% of the performance of ensembling at a frac-
tion of computational cost for training and storing,
thereby providing a viable alternative to ensem-
bling in large scale production systems. Future
directions of research include expanding our analy-
ses to multi-modal datasets and further dissecting
the root causes behind local model instability.

Limitations
Even though our proposed methodology, TGTSS,
was able to significantly reduce model instability,
there is still a gap in performance with the gold
standard ensembling techniques. More work needs
to be done to bridge this gap. In our empirical anal-
ysis, we used two open source datasets, Massive
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and Clinc150. Both these datasets are small and
may not represent the complexity in real world pro-
duction datasets which may contain substantially
large noise. In our proposed methodology, we train
a pair of models successively, a teacher and a stu-
dent, which is significantly better than ensembling
in terms of computational cost. However, this setup
may still be challenging in many sophisticated real
world production NLU systems. More work needs
to be done to reduce the computational complexity
of training and inference for these systems.
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A Appendix

A.1 Variance confidence plots
We have plotted the mean confidence and the variance of ut-
terances in the validation dataset for both the Massive (Figure
4) and Clinc150 (Figure 5) datasets. From our analysis, we
see that there are utterances that exhibit high variance and
medium confidence (around 0.5) which often leads to pre-
dicted label flips or model churn over multiple training runs of
the model. We also see that there are utterances that possess
low confidence corresponding to the gold label and has very
low variance. These utterances are probably annotation errors.
The bulk of the utterances have high confidence on average
corresponding to the gold label and low confidence which
signifies that the model predictions are mostly consistent on
these utterances.

Figure 4: Plot of multi-run confidence(µm) and standard
deviations(σm) of prediction scores for Massive data
(validation dataset), from the domain classifier model

Figure 5: Plot of multi-run confidence(µm) and standard
deviations(σm) of prediction scores for Clinc150 data
(validation dataset), from the intent classifier model

A.2 Relationship between LEs, LEm and µm

As shown earlier in the massive dataset, there is a strong
relationship between LEm and µm. We observe a similar
trend in the Clinc150 dataset as well (Figure 7). We also
observe a similar relationship between single run and multiple
run label entropy (LE) for Clinc150 dataset (Figure 6). This
finding supports our analysis that label entropy is a suitable
proxy for model churn.

A.3 LEm & LEs reduction for high entropy
samples

We computed the percentage reduction in LEm and LEs post
mitigation for utterances that have high LEm in the control
baseline. In our empirical studies, we showed that TGTSS
was able to considerably reduce LEm and LEs across multi-
run and single-run experiments when compared to the gold
standard ensembling (Appendix Tables 5, 6).

A.4 Label entropy over optimization steps
We have used LEs as a suitable proxy for LEm. In Figure 8,
we provide empirical evidence that our proposed methodol-
ogy, TGTSS, was able to reduce label entropy as the model is
trained over multiple optimization steps. We computed cumu-
lative label entropy till optimization step T and observed that
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Figure 6: LEs vs LEm for Clinc150 dataset (validation
set) shows a strong linear relationship. Each data point is
an utterance with LE

(i)
s vs LE(i)

m values. Zero entropy
corresponds to utterances with confidence scores close
to 1 for a class with very low variability.

Figure 7: LEm vs σm for Clinc150 dataset (validation
set) shows a strong linear relationship. Each data point
is an utterance with LE

(i)
m vs σ(i)

m values.

∆LEm (%) ↑
Methods Massive Clinc150

Control baseline - -
Ensemble baseline 27.4 24.1

L2 Reg. 3.8 4.2
SWA 11.3 4.3
Label Smoothing 5.4 8.1

TGTSS (Ours) 26 22.4

Table 5: Empirical analyses highlights TGTSS reduces
LEm for high LEm samples of the control baseline by
a considerable margin in multi-run experiments. The
column ∆LEm(%) ↑ is computed as percentage reduc-
tion between the sum of per-utterance LEm for each
method and that of the control baseline. A higher value
indicates greater reduction in LEm over control base-
line.

∆LEs (%) ↑
Methods Massive Clinc150

Label Smoothing 14.9 20.7
Ensemble baseline 36.4 40.7

TGTSS (Ours) 31.5 33.6

Table 6: Empirical analyses highlights TGTSS reduces
LEs for high LEm samples of the control baseline by a
considerable margin in single-run experiments. The col-
umn ∆LEs (%) ↑ is computed as percentage reduction
between the sum of per-utterance LEs for each method
and that of the control baseline.

as the model was being trained, the label entropy of some of
the utterances dropped closer to 0.
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Figure 8: Training trajectories between pre-mitigation and post-mitigation stages show that TGTSS was able to
significantly reduce label entropy as the model is trained. [Top] shows some utterances where the model predictions
are stable as label entropy is always 0, [Bottom] shows some utterance where TGTSS significantly reduced model
churn as measured using LEs.
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