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Abstract

Task-oriented dialogues often require agents to
enact complex, multi-step procedures in order
to meet user requests. While large language
models have found success automating these
dialogues in constrained environments, their
widespread deployment is limited by the sub-
stantial quantities of task-specific data required
for training. The following paper presents a
data-efficient solution to constructing dialogue
systems, leveraging explicit instructions de-
rived from agent guidelines, such as company
policies or customer service manuals. Our pro-
posed Knowledge-Augmented Dialogue Sys-
tem (KADS) combines a large language model
with a knowledge retrieval module that pulls
documents outlining relevant procedures from
a predefined set of policies, given a user-agent
interaction. To train this system, we introduce
a semi-supervised pre-training scheme that em-
ploys dialogue-document matching and action-
oriented masked language modeling with par-
tial parameter freezing. We evaluate the effec-
tiveness of our approach on prominent task-
oriented dialogue datasets, Action-Based Con-
versations Dataset and Schema-Guided Dia-
logue, for two dialogue tasks: action state
tracking and workflow discovery. Our results
demonstrate that procedural knowledge aug-
mentation improves accuracy predicting in-
and out-of-distribution actions while preserv-
ing high performance in settings with low or
sparse data.

1 Introduction

For many real-world applications, it is crucial for
task-oriented dialogue (TOD) systems to complete
user requests while strictly adhering to established
procedures. For example, consider a customer
service agent who must first verify a client’s de-
tails before changing their password. Although
large language models have demonstrated poten-
tial in modeling such dialogues, they require large

[agent] good afternoon, how 
can I help you?
[customer] I want to know what 
time my local store closes
[action] search faq
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Figure 1: The Knowledge-Augmented Dialogue System
(KADS) is composed of two modules: a knowledge re-
triever and a language model. The knowledge retriever
takes the inner product as a measure of similarity be-
tween an embedded dialogue and each document in a
provided knowledge base containing procedural instruc-
tions. The most similar document is then passed to a
language model which attends over both the dialogue
and retrieved document to generate the agent’s next
action.

amounts of data with consistent procedural rep-
resentations to implicitly store procedures in the
parameters of their underlying networks. In prac-
tical settings, such high-quality data is not always
readily available as some procedures may naturally
occur infrequently or change over time. In this pa-
per, we explore a solution to TOD modeling which
improves performance in low-data settings by ref-
erencing explicitly stored agent guidelines.

We outline a methodology of incorporating pro-
cedural knowledge (i.e., knowledge concerning the
requisite steps to address a user inquiry) into a
language model with the objective of predicting
agent actions in dialogue tasks. Our proposed sys-
tem, the Knowledge-Augmented Dialogue System
(KADS), consists of two modules: a knowledge
retriever which, given a dialogue between an agent
and user, retrieves the most pertinent instructions
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from a knowledge base of agent procedures and
a language model which considers the retrieved
instructions along with the ongoing dialogue to
inform an action prediction (see architecture in Fig-
ure 1).

In prior work, retrieval-enhanced language mod-
els have achieved success integrating external
knowledge from internet searches into conversa-
tional agents (Shuster et al., 2022; Thoppilan et al.,
2022). However, a more controllable approach is
necessary for instruction retrieval in task-oriented
dialogue. Rather than querying the open web, it’s
more suitable to perform retrieval over a closed set
of documents, like in (Guu et al., 2020; Lewis et al.,
2020). However, while the training schemes uti-
lized in these works sufficiently prime a model for
question-answering tasks, they are not as effective
for action prediction.

Following the lines of (Henderson and Vulić,
2021), which introduces a unique pre-training ob-
jective for slot-labeling, our method leverages cus-
tom objectives suited for action prediction tasks.
We employ a specialized warm-up task where dia-
logues are matched with corresponding procedural
instructions to ensure that the knowledge retrieval
module is initialized with reasonable dialogue and
document embeddings. Then, the system is trained
on an special case of masked language modeling in
which masked actions are predicted from customer-
agent dialogues. Finally, we found it necessary to
encourage our system to incorporate signal from
retrieved procedures by routinely freezing the lan-
guage model’s weights during training.

We evaluated this approach on two dia-
logue tasks— action state tracking and work-
flow discovery— using two task-oriented dialogue
datasets: Action-Based Conversations Dataset and
Schema-Guided Dialogue. Our results suggest
that KADS yields improved action prediction ac-
curacy against several baselines, including an un-
augmented language model and a language model
augmented with static guidelines, on both in- and
out-of-distribution procedures. Furthermore, we
demonstrate that knowledge augmentation bolsters
our system’s ability to predict actions that occur
infrequently in the training data.

2 Dialogue Tasks

TOD systems are employed for a variety of tasks
including action state tracking and workflow dis-
covery.

Action state tracking (AST) aims to predict
the next action performed by an agent during an
interaction with a customer (Chen et al., 2021).
Formally, we represent an interaction as a se-
quence of turns x belonging to one of three cate-
gories: agent utterances xa ([agent]), agent ac-
tions xb ([action]), or customer utterances xc

([customer]). The model receives an interac-
tion between a customer and agent up to turn
t where prefix tokens p indicate the turn cate-
gory: X = p0 x0 p1 x1 ... pt xt with
p ∈ [agent], [action], [customer]. See Ap-
pendix B for an example. The model then predicts
the following agent action xbt+1 which consists of a
button, or b-slot, and any corresponding slot values
if they are present: xbt = b0t : v

00
t , v01t .

The goal of workflow discovery (WD) is to re-
cover the workflow— the set of ordered actions
taken by an agent— given a complete dialogue be-
tween a customer and agent (Hattami et al., 2022).
Formally, we represent a dialogue as a sequence
of turns belonging to one of two categories: agent
utterances or customer utterances. The model re-
ceives a dialogue of length T between a customer
and agent where prefix tokens indicate the turn cat-
egory: X = p0 x0 p1 x1 ... pT xT with p ∈
[agent], [customer]. The model then predicts
the corresponding agent actions xb0;x

b
1; ...;x

b
T .

3 Approach

3.1 Architecture

The end goal of KADS is to learn a distribution
p(y|X) over possible action sequences y given an
interaction or dialogue X . Our approach utilizes
a knowledge retriever module to produce a rele-
vance score between a given procedural document
z and X . We calculate the relevance score accord-
ing to (Devlin et al., 2019) as the inner product of
the BERT vector embeddings of X and z. A re-
trieval distribution p(z|X) is obtained by taking the
softmax over the relevance scores corresponding
to each available document and the given interac-
tion or dialogue. Finally, we train a T5 language
model (Raffel et al., 2020), conditioned on both
the retrieved document z and the interaction X ,
to generate an action sequence y, where the likeli-
hood of generating y is obtained by treating z as a
latent variable and marginalizing over all possible
documents: p(y|X) =

∑
z∈Z p(y|X, z)p(z|X).
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3.2 Training

To train KADS we follow a three-step procedure:
first, we warm-up the knowledge retriever’s embed-
ding modules with a dialogue-document matching
task; then, we pre-train the full model with action-
oriented masked language modeling (MLM); fi-
nally, we train on one of two downstream dialogue
tasks— AST or WD. For all tasks except dialogue-
document matching, our training objective is to
maximize the log-likelihood logp(y|X) of the cor-
rect output action sequence y. However, calculat-
ing the marginal probability over documents in a
knowledge corpus can become costly as the num-
ber of documents grows, so we approximate this
probability by summing over the top 5 documents
with the highest probability under p(z|X). We then
compute the gradient of the log-likelihood with re-
spect to the model parameters of both the knowl-
edge retriever and language model and optimize
using stochastic gradient descent.

We first perform the dialogue-document match-
ing warm-up routine to ensure that the knowledge
retriever is initialized with reasonable dialogue and
document embeddings. The embedding modules
are pre-trained using a semi-supervised training
procedure with the objective of retrieving the doc-
ument that most likely corresponds to a specific
dialogue. This label is determined according to
which document has the highest action overlap with
the dialogue or, when provided, which document
corresponds to the user’s ground-truth intent.

For the MLM pre-training task, we randomly
mask action sequences from dialogue transcripts
such that the system learns to retrieve relevant doc-
uments in order to better predict the actions corre-
sponding to each [MASK] token. To prevent KADS
from learning to ignore retrieved documents we
employ several tricks during MLM training. First,
we filter out dialogues with action sequences that
are not detailed in the agent guidelines. This is
done to ensure that only examples in which the
knowledge retriever may be useful are present. Ad-
ditionally, we freeze the language model weights
with 0.9 probability to encourage updates to the
knowledge retriever parameters which minimize
the MLM loss.

4 Data

We evaluate KADS on two TOD datasets: Action-
Based Conversations Dataset and Schema-Guided
Dialogue. Both consist of multi-domain customer

service interactions that loosely follow a set of pre-
defined company policies which specify the actions
to be taken by an agent to satisfy a particular cus-
tomer inquiry. The core differences between these
two datasets are their action and document struc-
tures.

In Action-Based Conversations Dataset
(ABCD) (Chen et al., 2021), actions are composed
such that the b-slot belongs to a predefined set
of b-slots which describe the action being taken
(e.g., "pull up account") and slot values consist
of any corresponding information provided by
the user (e.g., "johndoe@gmail.com"). In a given
interaction, an average of 4 actions are taken. The
documents provided within ABCD are composed
of a plain text description of a possible customer
inquiry followed by an ordered set of action b-slots
that should be performed by the agent.

In Schema-Guided Dialogue (SGD) (Rastogi
et al., 2020), we take action b-slots to be the de-
scription of how the agent will interact with a piece
of information (e.g., "inform", "confirm", or "re-
quest") and values as the type of information in
question (e.g., "departure times"). In this dataset,
the average number of actions per interaction is
significantly longer at 21 actions, and the docu-
ments corresponding to SGD consist of a customer
inquiry followed by all of the information types,
or values, that can be acquired to fulfill the given
inquiry.

We use the train/dev/test splits presented
in the original datasets (8034/1004/1004 and
16142/2482/4201 interactions per split for ABCD
and SGD respectively), and hold out a randomly-
selected subset of 10% of actions during training
for out-of-distribution testing. See Appendix B for
more details, including dialogue and corresponding
document examples.

5 Results

The evaluation of our TOD system begins with b-
slot and value prediction accuracy for both known
and novel actions. We also examine the data effi-
ciency of our approach by reporting these metrics
for progressively reduced training pools. We com-
pare our model’s performance against a base T5
model and T5 with static guidelines— a compre-
hensive list of agent actions— appended to the
input sequence (T5 + guide)1. Then, we assess

1Appending static guidelines is not possible for SGD,
where the potential action space is too large to fit within the
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Table 1: B-Slot and value prediction accuracy on in-distribution actions.

Model
AST WD

ABCD SGD ABCD SGD
B-Slot Value B-Slot Value B-Slot Value B-Slot Value

T5 79.5 82.2 51.8 31.6 65.9 66.8 58.7 28.3
T5 + guide 81.3 82.5 NA NA 56.8 58.4 NA NA
KADS 85.2 83.1 63.2 39.5 72.5 73.0 53.1 23.8

the efficacy of our knowledge retriever in selecting
relevant documents. Finally, an ablation study of
our pre-training routine highlights the importance
of our custom training procedure. See Appendix A
for details of our experimental setup.

5.1 In-Distribution Performance

We first observe b-slot and value prediction accu-
racy on procedures observed during training (Ta-
ble 1).

On ABCD, KADS achieves higher b-slot pre-
diction accuracy than our baselines for both tasks.
The inclusion of a static guideline offers slightly
improved accuracy on AST but is not nearly as
effective as the dynamic guide provided by the
knowledge retriever. We attribute the performance
boost in part to KADS’s ability to predict actions
that are less represented during training.

This characteristic is evidenced by the model’s
performance in low-data settings (Figure 2). We
observe that the difference in action prediction ac-
curacy between our model and the unaugmented
baseline increases when training on progressively
fewer dialogues. Additionally, we find that, for the
base and static guide models, the correlation be-
tween a b-slot’s level of occurrence in the training
data and the model’s accuracy in predicting that b-
slot is notably higher (0.27 and 0.24 respectively)
than in the knowledge-augmented model (0.18).
We conclude from these results that KADS is more
robust to low-data settings where the quantity of
individual action occurrences is low or inconsistent.
2

On SGD, we see similar trends for the AST task.
However, for the WD task, which concerns recov-
ering the entire action sequence from a dialogue at
once, we see that knowledge augmentation does not

maximum input sequence length.
2Value prediction accuracy is improved despite values not

being included in the provided documents. This is likely a
result of the model learning patterns between action b-slots
and their corresponding values.
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Figure 2: B-Slot accuracy on AST task trained with
varying numbers of ABCD dialogues. Error bars repre-
sent 95% confidence interval.

provide substantial improvement in performance.
This may be due to the nature of SGD dialogues,
which contain multiple client requests, while the
model is augmented with a singular document pro-
viding instructions for a singular customer request.

5.2 Out-of-Distribution Performance

Next, we evaluate the ability of KADS to gen-
eralize to novel procedures by assessing perfor-
mance on actions not seen during training (Table 2).
Both tasks, AST and WD, show knowledge aug-
mentation to improve novel b-slot prediction accu-
racy over the baselines, coming only second to T5
trained on the full dataset (“full data”) including
“out-of-distribution” actions. These results demon-
strate that KADS is able to relatively accurately
predict new actions in a zero-shot fashion by mak-
ing use of documents containing information about
the action.

5.3 Document Selection Accuracy

We use document selection accuracy to assess how
well our knowledge retriever selects documents
that correspond to a customer’s inquiry. On ABCD,
we define the correct document as the document
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Table 2: B-Slot and value prediction accuracy on out-of-
distribution actions.

Model ABCD SGD
B-Slot Value B-Slot Value

T5 0.0 11.6 46.2 25.8
T5 + guide 2.7 17.9 NA NA
KADS 11.6 21.4 49.8 32.2
full data 94.6 85.7 61.3 38.1

Table 3: Document retrieval accuracy for the ABCD
and SGD datasets after training with dialogue-document
matching (DDM), MLM, and AST.

Dataset Accuracy
DDM MLM AST

ABCD 98.0 82.3 85.4
SGD 66.2 74.9 63.9

with the most action b-slots overlapping with the
full customer-agent interaction. On SGD, where
calls often consist of multiple customer inquiries,
the correct document is instead defined as the docu-
ment corresponding to the labeled customer intent
for any given step of the interaction. In Table 3,
we see that approximate document selection accu-
racy for ABCD is near 90% while SGD is only
slightly above 50%. This is likely due to the sig-
nificant overlap in procedures for similar customer
inquiries on the latter dataset. For example, making
an appointment with a doctor, dentist, or hairstylist
requires similar values to be filled, which results
in related documents being somewhat interchange-
able for these inquiries.

Furthermore, we measure document selection ac-
curacy on our pre-training tasks (Table 3): dialogue-
document matching and MLM. Notably, the knowl-
edge retriever’s document selection accuracy de-
creases between pre-training with the dialogue-
document matching task and fine-tuning on the
final task. This is likely due to the objective chang-
ing from maximizing document selection accuracy
to predicting correct action sequences, resulting
in some drift from the selection of approximated
"correct" documents.

5.4 Pre-training Scheme Ablations

Our full training scheme is a multi-step process en-
suring optimal performance from our Knowledge-
Augmented Dialogue System. First, the knowledge

Table 4: AST task b-slot and value prediction accuracy
for the ABCD dataset after training with several abla-
tions of our pre-training scheme.

Model B-Slot Value
none 82.7 79.4
MLM only 81.5 79.0
DDM only 82.6 78.5
full 85.2 83.1

retrieval module is tuned on a dialogue-document
matching task to ensure that the model is initialized
with sensible dialogue and document embeddings.
Next, the full system is trained on an MLM task
which acts as the simpler in-between before our
final task. Finally, we train the model for one of
our two downstream dialogue tasks. Removing any
step from this procedure results in decreased perfor-
mance on the final task. In Table 4, we share b-slot
and value prediction accuracy on AST after pre-
training with several ablations of our full scheme.
These results show that the elimination of either
the dialogue-document matching or MLM task re-
sults in lower accuracy. These tasks, which allow
our model to effectively harness the knowledge
retrieval module, are crucial to our pre-training
procedure.

6 Conclusion

While large language models make for effective
TOD systems in constrained settings, real-world
applications often present insufficient data to train
these models. KADS offers a method of learning
workflows with minimal or sparse supporting data
and presents a more controllable and performant
solution to low-resource TOD automation. While
our results offer a promising outlook for action pre-
diction given dynamic guidance from structured
procedural documents, future work should inves-
tigate the use of unstructured company guidelines
and multi-document retrieval.

7 Limitations

Our paper assesses procedural knowledge augmen-
tation using a limited number of highly structured
instructional documents. Naturally, the results pre-
sented may vary for unstructured guidelines. Ad-
ditionally, due to the limited size of publicly avail-
able TOD datasets, we have not tested how our
method may scale to settings with larger document
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spaces (> 100 documents). For larger document
sets, more efficient methods of computing similar-
ity such as Maximum Inner Product Search (MIPS)
algorithms may be necessary to approximate docu-
ments with the highest relevance scores.
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Data-efficient and few-shot slot labeling.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. Proceedings of the
AAAI Conference on Artificial Intelligence, 34:8689–
8696.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza
Behrooz, William Ngan, Spencer Poff, Naman Goyal,
Arthur Szlam, Y-Lan Boureau, Melanie Kambadur,
and Jason Weston. 2022. Blenderbot 3: a deployed
conversational agent that continually learns to respon-
sibly engage.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

2900

https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2205.11690
https://doi.org/10.48550/ARXIV.2205.11690
http://arxiv.org/abs/2010.11791
http://arxiv.org/abs/2010.11791
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
http://arxiv.org/abs/2208.03188
http://arxiv.org/abs/2208.03188
http://arxiv.org/abs/2208.03188
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


Table 5: Example AST input and output sequences.

ABCD
Input [agent] hello! how can i help you today? [customer] i’m thinking about buying an item

but first i would like to get some more info on the product [agent] sure. i can help you
with that. what item are you looking for more information on? [customer] the tommy
hilifiger shirt [agent] and what would you like to know about it? [customer] i would
like to know how long is the arm length [agent] sure give me one second and i can find
that out for you [customer] ok [action] search faq

Output search shirt
Document get shirt info [SEP] search faq; search shirt; select faq

SGD
Input [customer] i am interested to know how the weather is going to be on 7th of march in

san diego.
Output offer temperature; offer precipitation
Document get the weather of a certain location on a date [SEP] [required] city [optional] date

[result] precipitation; humidity; wind; temperature; city; date

A Experimental Details

Our implementations are based on the Hugging
Face Transformer models (Wolf et al., 2019). Each
embedding module in the knowledge retriever is
a small BERT model with 4 layers and a hidden
size of 512, and the language model used is a pre-
trained T5 model, t5-base. All models were trained
with a learning rate of 0.00001 using the AdamW
optimizer and an effective batch size of 32. We
used an NVIDIA TITAN X GPU for all experi-
ments.

B Data Details

We evaluate on two TOD datasets: Action-
Based Conversations Dataset (ABCD) and Schema-
Guided Dialogue (SGD)— each with a slightly dif-
ferent composition.

ABCD contains over 10,000 human-to-human
customer service dialogues across multiple do-
mains. The agent’s actions are constrained to a
set of 30 action b-slots and unrestricted, free-form
slot values. There are a total of 55 structured docu-
ments relating recommended sequences of action
b-slots to various customer inquiries.

SGD contains over 20,000 multi-domain conver-
sations between a human and a virtual assistant.
There are 8 possible action b-slots and 132 possi-
ble slot values. There are a total of 53 documents
containing the required and optional slot values to
collect in order to fulfill a specific customer intent.
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Figure 3: Distribution of action B-slots and values for
the ABCD and SGD datasets.

Example AST input and output sequences for
both datasets are provided in Table 5: these include
the input interaction between a customer and agent,
the output next agent action, and the correspond-
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ing document. The distribution of actions (b-slots
and slot values for ABCD and SGD respectively)
indicate an imbalance in both datasets with some
actions being significantly more represented than
others (Figure 3).
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The datasets we use do not include PII, and any further information about licensing that readers
might want can be found in our citations

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
3.1 (we use a well-known model and provide a citation that would offer any architectural details a
reader might want to know), A (appendix)

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
3, A (appendix)

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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