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Abstract

The ability to converse with humans and follow
natural language commands is crucial for intel-
ligent unmanned aerial vehicles (a.k.a. drones).
It can relieve people’s burden of holding a con-
troller all the time, allow multitasking, and
make drone control more accessible for people
with disabilities or with their hands occupied.
To this end, we introduce Aerial Vision-and-
Dialog Navigation (AVDN), to navigate a drone
via natural language conversation. We build
a drone simulator with a continuous photore-
alistic environment and collect a new AVDN
dataset of over 3k recorded navigation trajecto-
ries with asynchronous human-human dialogs
between commanders and followers. The com-
mander provides initial navigation instruction
and further guidance by request, while the
follower navigates the drone in the simulator
and asks questions when needed. During data
collection, followers’ attention on the drone’s
visual observation is also recorded. Based
on the AVDN dataset, we study the tasks of
aerial navigation from (full) dialog history and
propose an effective Human Attention Aided
Transformer model (HAA-Transformer), which
learns to predict both navigation waypoints
and human attention. Dataset and code are re-
leased: https://sites.google.com/view/
aerial-vision-and-dialog/home.

1 Introduction

Drones have been widely adopted for many applica-
tions in our daily life, from personal entertainment
to professional use. It has the advantage of mobility
and observing large areas over ground robots. How-
ever, compared with ground robots, the control of
the aerial robot is more complex because an extra
degree of freedom, altitude, is involved. To control
a drone, people often need to hold a controller all
the time, so it is essential to create a hands-free
control experience for drone users and develop an
intelligent drone that can complete tasks simply
by talking to humans. It can lower the barrier of

Agent
(Follower) (Commander)

Past visual observation Past relative trajectory

Past visual observation Past relative trajectory

Agent begins navigation

User

I see multiple yellow buildings. Can I see 
the destination? How to get here?

Now I think I have arrived. Am I right?

Yes,The destination is next adjacent 
building at your position. Please go a little 
at 4 o'clock.

Yes. You have arrived!

Agent continues navigation

Agent stops navigation

Hey drone. Go directly east across one 
road then pass some parked cars
and empty land. Destination is a building 
with a yellow roof.

Figure 1: An example of Aerial Vision-and-Dialog Nav-
igation (AVDN). The user instructs the agent to fly to
a destination. During the navigation, the agent can ask
questions while showing the images of past visual obser-
vations and relative trajectory. The user will talk back
at a convenient time to provide further guidance to the
agent without having to monitor the agent all the time.

drone control for users with some disabilities and
who have their hands occupied by activities such
as taking photos, writing, etc.

Therefore, this work introduces Aerial Vision-
and-Dialog Navigation (AVDN), aiming to develop
an intelligent drone that can converse with its user
to fly to the expected destination. As shown in Fig-
ure 1, the user (commander) provides instructions,
and the aerial agent (follower) follows the instruc-
tion and asks questions when needed. The past
visual trajectories are also provided along with the
question, which frees the commander from monitor-
ing the drone all the time and minimizes the burden
of drone control. In this free-form dialog, potential
ambiguities in the instruction can be gradually re-
solved through the further instructions provided by
the commanders upon request.

To implement and evaluate the AVDN task, we
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build a photorealistic simulator with continuous
state space to simulate a drone flying with its on-
board camera pointing straight downward. Then
we collect an AVDN dataset of 3,064 aerial naviga-
tion trajectories with human-human dialogs, where
crowd-sourcing workers play the commander role
and drone experts play the follower role, as illus-
trated in Figure 1. Moreover, we also collect the
attention of human followers over the aerial scenes
for a better understanding of where humans ground
navigation instructions.

Based on our AVDN dataset, we introduce two
challenging navigation tasks, Aerial Navigation
from Dialog History (ANDH) and Aerial Naviga-
tion from Full Dialog History (ANDH-Full). Both
tasks focus on predicting navigation actions that
can lead the agent to the destination area, whereas
the difference is that ANDH-Full presents the agent
with full dialog and requires it to reach the final
destination (Kim et al., 2021), while ANDH eval-
uates the agent’s completion of the sub-trajectory
within a dialog round given the previous dialog
information (Thomason et al., 2020).

The proposed tasks open new challenges of se-
quential action prediction in a large continuous
space and natural language grounding on photo-
realistic aerial scenes. We propose a sequence-
to-sequence Human Attention Aided Transformer
model (HAA-Transformer) for both tasks. The
HAA-Transformer model predicts waypoints to re-
duce the complexity of the search space and learns
to stop at the desired location. More importantly, it
is jointly trained to predict human attention from
the input dialog and visual observations and learns
where to look during inference. Experiments on
our AVDN dataset show that multitask learning is
beneficial and human attention prediction improves
navigation performance. The main contributions
are concluded as follows:

• We create a new dataset and simulator for
aerial vision-and-dialog navigation. The
dataset includes over 3K aerial navigation tra-
jectories with human-human dialogs.

• We introduce ANDH and ANDH-Full tasks
to evaluate the agent’s ability to understand
natural language dialog, reason about aerial
scenes, and navigate to the target location in a
continuous photorealistic aerial environment.

• We propose an HAA-Transformer model as
the baseline for ANDH and ANDH-Full. Be-

sides predicting the waypoint navigation ac-
tions, HAA-Transformer also learns to pre-
dict the attention of the human follower along
the navigation trajectory. Experiments on our
AVDN dataset validate the effectiveness of the
HAA-Transformer model.

2 Related work

Vision-and-Language Navigation Vision-and-
Language Navigation (VLN) is an emerging multi-
modal task that studies the problem of using both
language instructions and visual observation to pre-
dict navigation actions. We compare some of the
works with our AVDN dataset in Table 1. Early
VLN datasets such as Anderson et al. (2018); Ku
et al. (2020) start with the indoor house environ-
ments in the Matterport3D simulator (Chang et al.,
2017), where the visual scenes are connected on
a navigation graph. To simulate continuous state
change as in the real world, Krantz et al. (2020)
built a 3D continuous environment by reconstruct-
ing the scene based on topological connections
where the agent uses continuous actions during the
navigation. Some other VLN studies focus on lan-
guage instructions. Nguyen et al. (2019); Nguyen
and Daumé III (2019); Thomason et al. (2020) cre-
ated datasets where the agent can interact with the
user by sending fixed signals or having dialogs.
There are also works on synthetic indoor environ-
ments, such as Shridhar et al. (2020b); Padmaku-
mar et al. (2021) that use an interactive simulation
environment with synthetic views named ALFRED,
where the agent needs to follow language instruc-
tions or dialogs to finish household tasks. Besides
the indoor environment, some VLN datasets work
on the more complex outdoor environment, such
as the Touchdown dataset (Chen et al., 2019) and
the modified LANI dataset (Misra et al., 2018).
Blukis et al. (2019) is similar to ours for both us-
ing drones. However, the synthetic environment
used has a gap from the realistic scene, and they
ignored the control of the drone’s altitude, where
such navigation is oversimplified and has a large
gap towards navigation in the real world in terms
of language and vision aspects. Our work absorbs
the advantage from previous works where we have
continuous environments and dialog instructions to
better approximate the real-world scenario.

Aerial Navigation Using both vision and lan-
guage for aerial navigation is a less studied topic,
whereas vision-only aerial navigation for drones is
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Dataset Env Photorealistic Continuous
Space Dialog Free

Form

R2R, RxR indoor ✓ ✗ ✗ ✓

VNLA, HANNA indoor ✓ ✗ ✓ ✗

VLN-CE indoor ✗ ✓ ✗ ✓

CVDN indoor ✓ ✗ ✓ ✓

ALFRED indoor ✗ ✗ ✗ ✓

DialFRED indoor ✗ ✗ ✓ ✗

TEACh indoor ✗ ✓ ✓ ✓

TouchDown street-view ✓ ✗ ✗ ✓

modified LANI aerial ✗ ✓ ✗ ✓

AVDN (ours) aerial ✓ ✓ ✓ ✓

Table 1: Example Vision-and-Language Navigation
Datasets. R2R (Anderson et al., 2018), RxR (Ku et al.,
2020), VNLA (Nguyen et al., 2019), HANNA (Nguyen
and Daumé III, 2019), VLN-CE (Krantz et al., 2020),
CVDN (Thomason et al., 2020), ALFRED (Shridhar
et al., 2020a), DialFRED (Gao et al., 2022), TEACh
(Padmakumar et al., 2021), TouchDown (Chen et al.,
2019), modified LANI (Blukis et al., 2019).

already an active topic in the field. Some inspiring
works (Loquercio et al., 2018; Giusti et al., 2015;
Smolyanskiy et al., 2017; Fan et al., 2020; Boz-
can and Kayacan, 2020; Majdik et al., 2017; Kang
et al., 2019) worked on using pre-collected real-
world drone data to tackle aerial vision navigation
problems. Due to the hardness of collecting data
and the risk of crashes, some other works applied
simulation for aerial navigation (Chen et al., 2018;
Shah et al., 2017; Chen et al., 2020), where rich
ground truths are provided without the need for
annotation. However, the modality of language is
missing in these prior works and as a result, the nav-
igation tasks only contain simple goals. As for the
aerial vision-and-language navigation task in this
work, the navigation is guided by natural dialog.
As a result, it allows more diverse and complex
navigation and also resolves ambiguities during
complicated navigation.

3 Dataset

The AVDN dataset includes dialogs, navigation tra-
jectories, and the drone’s visual observation with
human attention, where an example is shown in
Figure 2. With the help of a newly proposed simu-
lator, we record the AVDN trajectories created by
two groups of humans interacting with each other,
playing either the commander role or the follower
role. Our AVDN dataset is the first aerial navi-
gation dataset based on dialogs to the best of our
knowledge.

Starting position Destination

Follower’s trajectory

Follower’s position and direction

Follower’s view area

Commander: You are close to your 
destination, head north and you will reach the 
complex gray warehouse office.

Follower: Yes, I think I have arrived. Correct? 
Auto-hint: Nope, you haven't got there. Ask some 
more questions. 
Follower: I see some warehouses in my view. Am 
I near the destination? How to go to destination?

Follower: Yes, I think now I have arrived the 
destination. Am I right?  
Auto-hint: Yes you are there!

Follower’s
views

Human 
attention 

masks from 
follower

… 

… 

Trajectory overview at T = 0

Trajectory overview at T = 1

Trajectory overview at T = 2

T = 0 T = 1

Follower’s
views

… 

… 

T = 1 T = 2

Commander’s turn:

Follower’s turn:

Commander’s turn:

Follower’s turn:

Human 
attention 

masks from 
follower

Utterance at T=1 

Commander: Destination is a complex gray 
warehouse office at your three o'clock.  

Utterance at T=0

Utterance at T=1 

Utterance at T=2

Follower’s navigation

Follower’s navigation

Figure 2: Example of a trajectory in our AVDN dataset.
On the left, the commander’s turn and the follower’s turn
alternate in chronological order. In each turn, dialog
utterances are shown, and the follower’s turn also shows
the navigation process that spans from time step T to T+
1, including the follower’s observation and attention. On
the right, there are trajectory overviews at different time
steps. More examples can be found in the Appendix.

3.1 Simulator

We build a simulator to simulate the drone with
a top-down view area. Our simulation environ-
ment is a continuous space so that the simulated
drone can move continuously to any point within
the environment. The drone’s visual observations
are square images generated corresponding to the
drone’s view area by cropping from high-resolution
satellite images in the xView dataset (Lam et al.,
2018), an open-source large-scale satellite image
object detection dataset. In this way, our simula-
tor is capable of providing continuous frames with
rich visual features. We also design an interface for
our simulator, where the simulated drone can be
controlled with a keyboard and the drone’s visual
observation will be displayed in real-time with a
digital compass. During the control, users can also
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provide their attention over the displayed images
on the interface by clicking the region they attend
to. Last but not least, our simulator is capable of
generating trajectory overviews, i.e. commander’s
view, showing the starting positions, destination ar-
eas, current view area and past trajectory (if exists)
as in Figure 2.

3.2 Dataset Structure

In our AVDN dataset, each navigation trajectory in-
cludes time steps T = 0, 1, . . . ,M , where M ≥ 1.
At T = 0, an initial instruction is provided by the
commander. Between adjacent time steps, there
is a corresponding navigation sub-trajectory. At
every time step of 0 < T < M , there are questions
from the follower and the corresponding answers
from the commander. At T = M , the navigation
trajectory ends because the destination area Des
is reached and claimed by the follower. For de-
tails about when a trajectory ends, please refer to
Section 3.3 Success Condition.

There are M follower’s view area sequences
< uT0 , u

T
1 , . . . , u

T
NT

>, NT is the length of T -th
sequence, where the view area’s center coordinate
cTi always falls on the trajectory. Therefore, based
on each view area, we could retrieve not only the
simulated drone’s location ci, but also direction di
and altitude hi. Last but not least, for each view
area u, there is a corresponding binary human at-
tention mask with the same size. The area in u that
corresponds to the white area on the mask is where
the follower attended.

3.3 Dataset Collection

We collect our dataset with the help of Amazon Me-
chanical Turk (AMT) workers and drone experts,
where AMT workers play the commander role to
provide instructions and drone experts play the fol-
lower role to control a simulated drone and carry
out the instruction. We pay the workers with wages
no less than $15/h, and the data collection lasts for
90 days. We adopt an asynchronous data collec-
tion method, where the followers and commanders
work in turns rather than simultaneously. This not
only lowers the cost of data collection but also
simulates how aerial vision-and-dialog navigation
would work in practice, where the commanders
will not monitor the follower’s actions all the time.

Pipeline Before the start of data collection, we
first sample objects in the xView dataset (Lam
et al., 2018) as the destination areas and pair them

with randomly selected initial follower’s view areas
within 1.5km distance. Then, using our simulator,
we generate the trajectory overview at time step
T = 0, as shown in Figure 2, which becomes the
initial commander’s view.

During data collection, the initial commander’s
view is presented to AMT workers for creating the
initial instructions. We instruct the AMT work-
ers to write instructions as if they are talking to a
drone pilot based on the marked satellite images.
Next, we let human drone experts play the follower
role, i.e. controlling the simulated drone through
our simulator interface, following the instructions
and asking questions if they cannot find the des-
tination area. When the experts stop the current
navigation, they can either enter questions into a
chatbox, claim the destination with a template sen-
tence or reject the instruction for bad quality. If the
destination is falsely claimed, the simulator will
generate an auto-hint to let the follower ask some
questions. For questions asked, AMT workers will
provide further instructions accordingly based on
given navigation information and dialog history.
Then, the same drone experts will continue playing
the follower role and again asking questions when
necessary. We iterate the process until the desti-
nation is successfully reached and claimed by the
follower.

Success Condition The navigation trajectory is
successful only when the destination is reached at
the time the follower claims it. We determine that
the destination is reached in view area uj by check-
ing the center cj and computing the Intersection
over Union (IoU) between uj and Des. If cj is
inside Des and the IoU of uj and Des is larger
than 0.4, the destination is regarded in uj .

3.4 Data Analysis

Our AVDN dataset includes 3,064 aerial naviga-
tion trajectories, each with multi-round natural lan-
guage dialog. There are two rounds of dialog on
average per trajectory, where the number of dia-
log rounds in a trajectory equals to the maximum
time step M . The most frequent words are shown
in Figure 3a. The recorded AVDN trajectory path
length has an average of 287m, and its distribution
is shown in Figure 3b. The trajectories and dialogs
can be further separated into 6,269 sub-trajectories
corresponding to the dialog rounds.

We split our dataset into training, seen-
validation, unseen-validation, and unseen-testing
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Split #dialogs #words
per dialog #areas destination

area-dim
#sub-
paths

sub-path
length

Training 2221 90 350 126m 4591 145m
Seen-val 197 79 197 120m 370 148m
Unseen-val 214 83 30 131m 411 144m
Unseen-test 432 91 65 117m 897 142m

Table 2: Dataset statistics. #dialogs is the number of
dialogs, and #words per dialog is the average number of
words in each dialog. #areas refers to the number of non-
overlapped satellite images used. Destination area-dim
is the average dimension of the sampled destination ar-
eas. #sub-paths is the number of sub-trajectories where
each sub-trajectory corresponds to one round of dialog.
Sub-path length is the average sub-trajectory length.

sets, where seen and unseen sets are pre-separated
by making sure the area locations of the visual
scenes are over 100km apart from each other. We
show some statistical analysis across the dataset
splits in Table 2. The visual scenes in our dataset
come from the xView dataset (Lam et al., 2018),
which covers both urban and rural scenes. The aver-
age covered area of the satellite images is 1.2km2.

Rather than providing a target hint in the begin-
ning as in Thomason et al. (2020), the destination
must be inferred from the human instructions given
by the commander. For example, the commander
may give a detailed description of the destination
initially or write a rough instruction first and then
describe the destination later in the dialog. We also
find that there are two ways of describing the direc-
tions for navigation: egocentric direction descrip-
tion, such as “turn right”, and allocentric direction
description, such as “turn south”. By filtering and
categorizing words related to directions, we find
that 82% of the dialog rounds use egocentric di-
rection description and 30% of the dialog rounds
include allocentric direction description. There are
17% dialog rounds that have mixed direction de-
ceptions, making the instruction complex. This
opens a new challenge for developing a language
understanding module that can ground both the ego-
centric and allocentric descriptions to navigation
actions.

4 Task

Following indoor dialog navigation (Thomason
et al., 2020; Kim et al., 2021), we introduce an
Aerial Navigation from Dialog History (ANDH)
task and an Aerial Navigation from Full Dialog
History (ANDH-Full) task based on our AVDN
dataset and simulator.

(a) Frequent words
0

50

150

200

250

300

350

400

Co
un
t

path-length (m)

450

200 400 600 800 1000 1200 1400

(b) Path length distribution

Figure 3: (a) displays the frequent words that appear in
the dialogs and (b) shows the path length distribution of
our AVDN dataset.

4.1 Aerial Navigation from Dialog History

The goal of the task is to let the agent predict
aerial navigation actions that lead to goal areas
G, following the instructions in the dialog history.
Specifically, to predict one action âj of an action
sequence between navigation time step Ti and Ti+1,
the inputs are dialogs from navigation time step 0
to Ti and images from a sequence of view areas
< û0, û1, . . . , ûj−1 >. A new view area ûj will be
generated after âj takes place.1 The goal area G
depends on the current navigation time step,

G =

{
u
Ti+1

0 , if Ti+1 ̸= M

Des, otherwise
, (1)

The predicted view area sequence will be recorded
for evaluation with regard to the ground truth view
area sequence < uTi

0 , . . . , uTi
NTi

>.

4.2 Aerial Navigation from Full Dialog
History

Compared with the ANDH task, the major differ-
ence of the ANDH-Full task is that it adopts the
complete dialog history from navigation time step
T = 0, 1, . . . ,M as input. With the full dialog
and visual observation, the agent needs to predict
the full navigation trajectory from the starting view
area u00 to the destination area Des. ANDH-Full
provides complete supervision for agents on a navi-
gation trajectory with a more precise destination de-
scription and includes longer utterances and more
complex vision grounding challenges.

4.3 Evaluation

Since the agent in both tasks, ANDH and ANDH-
Full, needs to generate predicted view area se-
quences, the evaluation metrics for both tasks are
the same. In the evaluation, the center points of ev-
ery view area are connected to form the navigation
trajectory, and the last view area is used to deter-
mine whether the predicted navigation successfully

1û0 is known as it is the initial view area at time step Ti.
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leads to the destination area. The predicted naviga-
tion is successful if the IoU between the predicted
final view area and the destination area is greater
than 0.4. We apply several metrics for evaluation.
Success Rate (SR): the number of the predicted
trajectory being regarded as successful, i.e., the fi-
nal view area of the predicted trajectory satisfies
the IoU requirement, over the number of total tra-
jectories predicted.
Success weighted by inverse Path Length (SPL)
(Anderson et al., 2018): measuring the Success
Rate weighted by the total length of the navigation
trajectory.
Goal Progress (GP) (Thomason et al., 2020): eval-
uating the distance of the progress made towards
the destination area. It is computed as the Eu-
clidean distance of the trajectory, deducted by the
remaining distance from the center of the predicted
final view area ĉN to the center of goal area G.

5 Model

We proposed a Human Attention Aided (HAA-
Transformer) model for the ANDH and ANDH-
Full tasks as shown in Figure 4, where it takes as
input multimodal information and generates multi-
modal predictions, including human attention pre-
diction and navigation prediction.
Multimodal Encoding The input has three modal-
ities, the drone’s direction, images from the drone’s
visual observation, and history dialogs. At the start
of a prediction series, our model uses a BERT en-
coder (Devlin et al., 2018) to get the language em-
beddings of the input dialog history, hl1:L, where
special language tokens such as [INS] and [QUE]
are added in front of each instruction and question
in the dialog. Then, at every time step, all previ-
ous drone directions and images from the drone’s
visual observation are input to the model. A fully
connected direction encoder is used to generate di-
rection embeddings hx1:t and an xView-pretrained
Darknet-532 (Redmon and Farhadi, 2018) with an
attention module is used to extract and flatten the vi-
sual features to get visual embeddings hv1:t. Finally,
similar to the Episodic Transformer (Pashevich
et al., 2021), all embeddings from the languages,
images and directions, are concatenated and input
into a multimodal transformer (FMT ) to produce
output multimodal embeddings {zl1:L, zv1:t, zx1:t} as
in Equation 2.
{zl1:L, zv1:t, zx1:t} = FMT ({hl1:L, hv1:t, hx1:t}) (2)

2https://github.com/ultralytics/xview-yolov3

Navigation Prediction and Waypoint Control
The navigation outputs from our model come from
a fully connected navigation decoder (FND) tak-
ing as input the transformer’s output embeddings
{zl1:L, zv1:t, zx1:t} and generating predicted waypoint
actions ŵ and predicted navigation progress ĝ as in
Equation 3.

(ŵ, ĝ) = FND({zl1:L, zv1:t, zx1:t}) (3)
The predicted waypoint action ŵ is a 3-D coordi-
nate (x̂, ŷ, ĥ), where (x̂, ŷ) corresponds to an posi-
tion in the current view area u and ĥ corresponds
to an altitude. The predicted waypoint also con-
trols the drone’s direction, where the direction is
kept towards the direction of movement. There-
fore, ŵ controls the drone’s movement, and as a
result, the center, width and rotation of the next
view area center are determined by ŵ. As for the
navigation progress prediction ĝ, it is to generate a
one-dimension navigation progress indicator for de-
ciding when to stop (Xiang et al., 2019). If the pre-
dicted navigation progress is larger than a thresh-
old, the drone navigation will be ended without
executing the predicted waypoint action.

Human Attention Prediction A human attention
decoder is proposed to predict the human attention
mask using the output embeddings, zv1:t, from the
multi-layer transformer that corresponds to the vi-
sual inputs. We build the decoder based on He
et al. (2019), where the input to the decoder will be
decoded to an 8 ∗ 8 representation through a fully
connected layer and then linearly interpolated to a
mask with the same shape as the input image. The
greater the values in the mask means more likely
the human follower attends the corresponding pix-
els.

Training We first train our HAA-Transformer
model on the ANDH task and then fine-tuned it
on the ANDH-Full task because the ANDH task
is relatively easier with a shorter path length. For
each task, we conduct the training alternately in
teacher-forcing (Williams and Zipser, 1989) and
student-forcing modes, where the main difference
is whether the model interacts with the simulator
using ground truth actions or the predicted actions.
Our model is trained with a sum of losses from
both navigation prediction and human attention
prediction. First, the predicted waypoint action
ŵ and predicted navigation progress ĝ are trained
with Mean Square Error (MSE) loss, supervised
by the ground truth w and g computed based on
the recorded trajectory in our dataset. The naviga-
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Figure 4: Our Human Attention Aided (HAA) model. The output of the model will interact with our simulator for
generating the input for next time step.

tion prediction loss (Lnav) is shown in Equation 4,
where Rot(.) is computing the rotation change as
a result of the waypoint action.

Lnav =MSE (Rot(ŵ),Rot(w))

+MSE (ŵ ,w) +MSE (ĝ , g)
(4)

Second, for human attention prediction training,
we apply the modified Normalized Scanpath Score
loss (NSS) (He et al., 2019). Given a predicted
human attention mask P and a ground-truth human
attention mask Q,

NSS (P,Q) =
1

N

∑

i

Pi ×Qi,

where N =
∑

i

Qi and P̄ =
P − µ(P )

σ(P )

(5)

Since human attention may not exist in certain view
areas, the human attention loss is only computed
for view areas with recorded human attention.

6 Results

We conduct experiments to study our AVDN
dataset and our HAA-Transformer model on the
ANDH and ANDH-Full tasks.
Results on the ANDH task and ANDH-Full
task As shown in Table 3, we evaluate our HAA-
Transformer model along with multiple baseline
models on both ANDH and ANDH-Full tasks.
We first create a multimodal Episodic Trans-
former (E.T.) model (Pashevich et al., 2021) by
removing the human attention decoder from our
HAA-Transformer, and then build vision-only and
language-only uni-modal models by ablating on
the multimodal E.T. model. For uni-modal models,
direction inputs are maintained while either vision
input or language input is discarded. A multimodal
LSTM-based model is also included as a sequence-

to-sequence baseline model, which has the same
input and output as the multimodal E.T.model. All
models, including our HAA-Transformer model are
trained with random initialization. The batch size
is 4 for the ANDH task, while for the ANDH-Full
task. Based on the result, our HAA-Transformer
model outperforms the baseline models in both
tasks by a large margin. Also, compared with uni-
modal baseline models and a random model out-
putting random waypoint actions, the multimodal
E.T. model achieves overall higher performance,
which indicates the importance of learning mul-
timodal information in order to succeed in the
ANDH task. Last but not least, we find that the
language-only uni-modal model achieves much bet-
ter performance than the vision-only uni-modal
model showing that the language instructions play
a more important role in guiding the navigation in
our AVDN dataset.

Impact of Human Attention Prediction Training
We then evaluate the impact of human attention pre-
diction training for multimodal learning by ablation
not only on our HAA-Transformer model but also
on a Human Attention Aided Multimodal LSTM-
based (HAA-LSTM) model developed by adding
the human attention decoder module to the multi-
modal LSTM-based model (detailed in Appendix
B). We apply the same human attention prediction
training process and training loss as in our HAA-
Transformer model. As the result shown in Table. 3,
we find that the human attention prediction train-
ing significantly boosts both transformer-based and
LSTM-based models across all evaluated metrics.

We further evaluate the benefit of human at-
tention prediction training on different trajectory
lengths. The sub-trajectories in the validation set
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ANDH ANDH-Full

Seen Validation Unseen Validation Unseen Testing Seen Validation Unseen Validation Unseen Testing
Model SPL↑ SR↑ GP↑ SPL↑ SR↑ GP↑ SPL↑ SR↑ GP↑ SPL↑ SR↑ GP↑ SPL↑ SR↑ GP↑ SPL↑ SR↑ GP↑
Random 0.5 1.6 -84.1 0.2 1.0 -81.4 0.5 1.1 -86.6 0.0 0.0 -176.6 0.0 0.0 -162.4 0.2 0.1 -158.4
Vision-only E.T. 3.1 3.8 0.2 6.5 7.3 0.2 3.2 3.9 0.2 0.0 0.0 -1.1 1.9 1.9 -5.2 0.2 0.2 -1.6
Language-only E.T. 9.2 11.6 48.9 13.9 17.0 50.6 9.7 12.7 49.1 1.4 2.0 54.8 2.3 3.7 54.5 1.8 2.2 58.2

E.T. 12.1 14.1 50.1 14.3 16.6 51.9 11.3 13.3 51.7 2.2 3.1 51.3 2.5 3.7 48.9 1.9 2.8 60.7
HAA-Transformer 14.7 17.3 56.3 16.5 20.4 55.2 12.9 15.7 53.7 3.7 5.1 54.6 3.2 4.7 50.9 4.1 6.3 63.2

LSTM 9.0 10.3 31.9 13.3 14.1 35.9 9.7 10.8 40.4 1.0 1.0 43.8 3.2 3.7 48.7 1.8 1.9 56.4
HAA-LSTM 11.6 13.0 50.3 18.3 20.0 54.4 12.6 14.1 54.6 3.8 4.1 52.2 3.4 3.7 56.1 1.9 2.6 66.5

Table 3: Main results on both ANDH and ANDH-Full tasks including ablation results on human attention prediction
training. Both the Human Attention Aided Multi-modal LSTM (HAA-LSTM) model and our HAA-Transformer
model are benefited from the human attention prediction training based on the performance comparison.

for ANDH task are split into four subsets based on
the ground truth length. In Figure 5, we compare
the number of successful sub-trajectory in differ-
ent subsets among models with and without hu-
man attention prediction training. As a result, both
our HAA-Transformer model and the HAA-LSTM
model achieves significant performance improve-
ments for subsets of longer trajectory. It leads to the
conclusion that human attention prediction training
benefits navigation prediction, especially for long
trajectories for both two models that are based on
LSTM and Transformer.

Besides improving task performance, human at-
tention prediction also benefits the interpretability
of the model by generating visualizable attention
predictions paired with navigation predictions. We
evaluate the human attention prediction result us-
ing the Normalized Scanpath Saliency (NSS) score,
which measures the normalized saliency prediction
at the ground truth human attention. Our HAA-
Transformer model receives NSS scores of 0.84,
0.62 and 0.68, respectively, in seen validation, un-
seen validation, and test set, indicating the human
attention prediction is effective.

Comparison for Different Input Dialog Length
Comparing with the ANDH task, the ANDH-Full
task requires the model to predict actions that cor-
respond to longer dialogs with more dialog rounds.
As a result, more challenges are involved and
longer training time is needed compared with the
results in the ANDH task. During training, we add
a prompt of the drone’s direction that corresponds
to the dialog, e.g., “when facing east” to clarify the
instructions in dialogs that happened in different
time steps, especially when egocentric direction
descriptions exist. In Table 4, we show our HAA-
Transformer model’s performance on trajectories
with different dialog lengths, i.e. different numbers
of dialog rounds, and we find the model’s SR and
SPL are diminished for trajectories with the num-
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Figure 5: The impact of human attention prediction
training on the success of trajectories of different
lengths. Human attention prediction significantly im-
proves navigation performance for longer trajectories.

Seen
Validation

Unseen
Validation

Unseen
Testing

Dialog rounds SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑
1 3.7 4.7 1.7 2.2 4.3 7.0
2 4.3 6.2 4.8 7.3 6.8 10.3
≥ 3 2.7 4.3 3.8 6.1 1.6 2.0

All 3.7 5.1 3.2 4.7 4.1 6.3

Table 4: Result of our HAA-Transformer on ANDH-
Full task regarding different dialog lengths. The more
rounds in dialog, the longer the trajectory is and the
more challenging the task is.

ber of dialog rounds less or greater than average,
where they either containing too less or too much
information. It shows a big room for improvement
in understanding dialog with various lengths.

7 Conclusion

In this work, we introduce a dataset and a simu-
lator for Aerial Vision-and-Language Navigation
(AVDN). Challenging tasks are proposed based
on our dataset focusing on navigation. A Human
Attention Aided Multimodal Transformer (HAA-
Transformer) model is designed for both tasks. Our
work provides the possibilities for further studies
to develop stronger models on AVDN that not only
focus on navigation prediction but also on question
generation. Furthermore, based on our results, fu-
ture works may investigate using human attention
prediction training to help solve VLN problems.
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Limitation

This work proposed a dataset, a simulator, tasks,
and models for Aerial Vision-and-Language Navi-
gation. Since satellite images are needed to simu-
late the drone’s observation, risks of privacy leak-
ing may exist. By using the open-source satellite
dataset xView (Lam et al., 2018), we mitigate the
risks while also being able to develop a simulator
for training our model. Additionally, using satellite
images for simulating top-down visual observation
of the drone introduces the shortcoming of having
only 2D static scenes while adopting the strength
of the satellite images where rich labels and visual
features are included.

Broader Impact

We recognize the potential ethical problems during
the dataset collection, where human annotators are
involved. The data collection of this project is
classified as exempt by Human Subject Committee
vis IRB protocols. As a result, we utilized the
Amazon Mechanical Turk (AMT) website to find
workers willing to participate in the project. With
AMT, our data collection is constrained by legal
terms, and the data collection protocol is under
AMT’s approval. The agreement signed by both
requesters and workers on AMT also ensures a
transparent and fair data annotation process and
that privacy is well protected.
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A HAA-Transformer Model Details

There are around 120m parameters in our HAA-
Transformer model. Our model uses a BERTBASE
encoder (Devlin et al., 2018) with pretrained
weights that open-sourced on Hugging Face (Wolf
et al., 2020) to extract language feature of the input
dialog history. For ANDH task, We extract two
sets of language embeddings in ANDH task, where
the input is either all the previous and current di-
alog rounds, or only the current dialog round for
the target sub-trajectory. The language embeddings
that include all previous dialog are used to attend
to the image feature extracted by DarkNet-53 and
flatten the feature to only 768 long per frame. The
other with only current dialog is passed to the multi-
model encoder. Whereas in ANDH-Full task, since
the agent starts at an initial position with no previ-
ous dialog, only one set of language embeddings is
extracted and used.

The attention modules that are used in our HAA-
Transformer model and the HAA-LSTM model
have the same structure. They generate soft at-
tention based on dot-product attention mechanism.
The inputs are context features and attention fea-
tures. There is a fully connected layer before the
output of the attention module. The context fea-
tures attended by the attention features are con-
catenated with the attention features to become the
input of the fully connected layer, and the output
will be the attention module’s output which has the
same shape as the attention features.

A.1 Navigation Progress Prediction
As for the navigation progress prediction, we adopt
the idea of L2Stop (Xiang et al., 2019) and cre-
ate a navigation progress predictor to help decide
when to stop, which overcomes the problem that
the model would fail to stop at the desired position.
The navigation progress is trained with the supervi-
sion of IoU score of the current view area ûi,j,k and
the destination area. When the IoU is larger than 0,
it indicates the designation area is seen in ûi,j,k and
the larger the IoU the closer the ûi,j,k to the desi,j
. During the inference time, the predicted naviga-
tion stops when the generated navigation progress
indicator is less than 0.5.

B HAA-LSTM Model

We also design a Human Attention Aided Multi-
modal LSTM model for experiments in Section 6
as shown in Figure 6, where it takes the same input

Predicted human
attention mask

Human Attention
Decoder

Simulator

Navigation
Decoder

Attention

Position Eecoder

DarkNet-53

Predicted waypoint

Predicted navigation
progress

Attention

B
E
R
T
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(vision)
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(direction)

History Dialog

         Dialog
Instruction: ...
Question: ...

Direction

Visual obs.

Figure 6: Human Attention Aided Multi-modal LSTM
(HAA-LSTM) model which uses the same input and
output as our HAA-Transformer.

(a) Simulated drone.

(b) Cropped satellite images.

(c) Real drone visual observation.

Figure 7: (a) shows how simulated drone’s visual obser-
vation is generated from satellite images in our simulator.
We compare the simulated drone’s visual observation
from satellite images, (b), with images from a drone’s
onboard camera at about 200m above ground, (c).

and output as our HAA-Transformer model. We
also add the same human attention decoder as in
our HAA-Transformer model for human attention
prediction training. The language embeddings, vi-
sual observation and direction embeddings are also
extracted in the same way.

C Training Details

We train all models on one Nvidia RTX A6000
graphic card. We train all baseline models as well
as both HAA-Transformer model and HAA-LSTM
model for approximately 150k iterations on ANDH
task with batch size being 4 and learning rate being
1e-5. For the ANDH-Full task, since it uses full
dialog history as input, where more GPU RAM is
needed, we use a batch size of 2 and learning rate
of 5e-6 and train the model for 200k interactions
which take about 48 hours.
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D Simulator Details

We design a simulator to simulate a drone flying
with its onboard camera facing straight downward,
as in Figure 7a. The simulator uses satellite im-
ages from xView dataset (Lam et al., 2018) for the
drone’s visual observation, where the observation
is square image patches cropped from the satellite
image based on the drone’s view area, as in Fig-
ure 7b. We argue that by using satellite images,
our simulator is capable of providing equally rich
visual features as in the real world and some exam-
ples are shown in Figure 7c. Additionally, since
satellite images have boundaries that are not adja-
cent with each other, we prevent the drone’s view
area from moving out of boundary by automati-
cally invalidate the drone’s action that will lead to
out-of-boundary view areas. Further more, for sim-
plicity, we assume perfect control of the drone’s
movement, and therefore, the drone’s current view
area is determined by the previous drone’s position
and navigation action.

During the dataset collection, the follower con-
trols the simulated drone through the simulator in-
terface with keyboards. We defined 8 keys for
the control with a total of four degrees of free-
doms (DoFs), where there are 2 DoFs for horizon-
tal movement, 1 DoF for altitude control, and 1
DoF for rotation control. Despite that our simula-
tor environment is continuous, the control through
the interface is discrete for an easier control expe-
rience. Every time a key is pressed, the simulated
drone will move along the DoF for a fixed distance
and the higher the simulated drone flies, the faster
it moves with one press of the keyboard. Before
the follower presses ESC key to stop the control,
he/she can also generate the human attention data
by using the mouse to left-click on the attended
image region shown on the interface. After every
left-click, a circle with a radius being 1/10 of the
current view area width will become the attended
region and be displayed on the interface. Also, a
right-click on the circle will remove this region
from the attention record.

E Dataset Details and Examples

We provide some details about our dataset with
related examples. Each example includes a dia-
log, sample drone’s visual observation with human
attention and navigation overviews.

Commander: Destina-
tion is a short rectangular 
building parallel with the 
highway at your three 
o'clock.
Follower: Yes, I think 
this is the destination. 
Am I right?  
Commander: Yes you 
have found it!!!

Trajectory overview
at the end of the dialog round

Examples of follower’s view 
with human attention Dialog:

Figure 8: Example of a trajectory with one dialog round.

Commander: hi drone, turn 
left and go straight ahead you 
pass by an avenue and keep 
going, your destination is a 
condominium with a sports 
court.
Follower:Follower: Yes, I think I have 
arrived. Am I right?
Commander: You need to fly 
higher.
Follower: Yes, I think now I 
have arrived the destination. 
Am I correct?  
Commander:Commander: Yes you have 
found it!!!

   Dialog: Trajectory overview
at the end of the dialog round

Examples of follower’s view 
with human attention

Figure 9: Example of a trajectory that includes auto-
instruction about altitude adjustment. There is only one
dialog round.

E.1 Human Attention
We record the attention from the follower through
our simulator interface when the follower is con-
trolling the simulated drone. In each navigation
trajectory collected, the attention are stored in a
list where the order of the list is ignored, mean-
ing that the attended areas either recorded earlier
or later during the navigation will be retrieved to-
gether when using the human attention data. In this
way, the human attention data becomes more accu-
rate since the area that followers missed to attend
in the current view area is likely to be included in
the future time steps. Also, because the previously
attended area is kept in later view areas, less effort
is needed to annotate the attended areas. We find
that 1/7 of the area on average is attended to in the
recorded view areas ui,j .

E.2 Dialog Structure
The dialogs contained in our AVDN datset have a
various number of rounds. Since the dialog rounds
are split based on the data collection rounds, each
dialog round contains only one instruction writ-
ten by the commander. Figure 8 shows an exam-
ple of a simple dialog with only one dialog round.
However, when the follower can not follow the
initial instruction to find the destination area, ques-
tions will be brought up, and therefore more dialog
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Commander: Head straight ahead, your 
destination is in a segregated area.
Follower: Where should I go after I go 
straight? How does the destination look 
like?
Commander: Commander: Proceed forward direction. 
The nearest by brown coiour building is in 
your destination.  
Follower: Yes, I think this is the destina-
tion. Is it correct? 
Commander: Nope, you haven't get 
there. Ask some more questions.
Follower: I have already seen the brown 
building, how to go to destinaton?
Commander: Go south to next building.  
Follower: Yes, I think this is the destina-
tion. Am I right?  
Commander: Yes you have found it!!!

   Dialog: Trajectory overview
at the end of the trajectory

Trajectory overview
at the end of the second sub-trajectory

Trajectory overview
at the end of the first sub-trajectory

Figure 10: Example of a trajectory with three dialog rounds. There is an incorrect instruction in the second dialog
round, where the destination should be described as the second nearest brown building rather than the nearest one.
For this case, since the instruction is clear and can be followed by the follower, we treat it as an inevitable and
acceptable type of instruction with mistakes and keep it in our dataset.

rounds will be introduced. Every dialog rounds
start with the instruction from human commanders
and could include one or more utterance from the
follower, depending on if auto-instructions exist.
We provide details about auto-instructions in the
next sub-section. Also, when followers are writing
the questions, we enable them to define some short-
cut keys for frequently used general questions such
as “could you further explain it?”, “where should I
go?”, etc. To avoid templated dialogs, followers are
forbidden to only use the shortcut for the question
but need to incorporate their own language.

E.3 Auto-instructions

When the follower claims that the destination is
reached, our simulator will check the navigation
result automatically using the success condition
described in Section 3.3. Then, auto-instructions
will be generated based on whether the destination
area is reached successfully. Specifically, when
the success condition is met, an auto-instruction
of “Yes, you have found it!!!” will be added to
the dialog as the end; if the destination is in the
center of the view area, but the view area is either
too large or too small, failing the success condition,
the simulator will also provide auto-instructions
asking the follower to adjust the drone’s altitude
and verify again if the success conditions are met
or not, as shown is Figure 9.

E.4 Dialog Quality

To ensure the dialogs in our dataset have good qual-
ity, we make efforts during the data collection pro-
cess and conduct extra examination for the dialog
data after the data collection.

(a) Words from commander utterances

(b) Words from follower utterances

Figure 11: Counts of top 50 most frequently used words
in commander and follower utterances.
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During the data collection, online workers from
Amazon Mechanical Turk (AMT) are playing as
commanders and provide instructions in the dialog,
who, compared with the follower that we hired to
work on-site and supervised by us in-person, have
a higher chance of generating low quality and in-
correct language instructions. We develop some
strategies to deal with these undesired instructions.
First, if the follower, guided by the instruction, lets
the drone navigate to a direction that is more than
90 degrees different from the ground truth direc-
tion of the destination area, our simulator will auto-
matically label the instruction as incorrect. Those
labeled instructions will be discarded and collected
again. Then, since the follower needs to read and
understand the instructions, they have the chance
to report the instructions as being low-quality or
incomprehensible and skip them. Finally, in the
remaining instructions that are not spotted as low-
quality or incorrect, it is still possible that instruc-
tions are not accurate or incorrect due to human
mistakes from the AMT workers, such as in Figure
10. By manually checking the dialogs and naviga-
tion trajectories in randomly selected subsets of our
AVDN dataset, we spot only 5 instructions with
potential mistakes in 50 dialogs. In those cases,
because the follower successfully followed the in-
struction, we keep those instructions unchanged
even if they didn’t help guide the follower to find
the destination area. In the real world, the user in
AVDN could also make mistakes, so this mistake
tolerance strategy makes our dataset even closer to
real scenarios.

We further examine the dialog quality after the
data collection by analyzing the dialogs. The av-
erage utterance (human-written instructions and
questions) in a dialog is 3.1, with a minimum and
maximum being 1 and 7 because each dialog in-
cludes at least one instruction written by a human.
The average number of words written by comman-
der and follower are 45 and 19, and there are about
15 words from auto-instructions. Also, in Figure
11, we show the distribution of the top 30 most
frequent words in the commander’s and follower’s
utterances. The results show a smooth variance
across nouns, verbs, adjectives, and prepositions,
indicating that our dataset’s utterances have rich
contents and good variety. Last but not least, we
manually checked the dialogs in all validation and
test sets by visualizing the corresponding naviga-
tion trajectory and the dialog, and we observed no

major issue.

F Interface for workers in dataset
collection

We use help from Amazon Mechanical Turk (AMT)
workers and human drone experts during the collec-
tion of our Aerial Vision-and-Language Navigation
(AVDN) dataset, where the AMT workers play the
commander role providing instructions the drone
experts play the follower role asking questions and
controlling the drone. In this section, we demon-
strate the interface for both groups of workers with
all the information they receive in the data collec-
tion procedure.

F.1 Interfaces for commanders

There are two interfaces for commanders (AMT
workers) depending on which data collection round
it is. The interface includes one trajectory each
time and contains all the information needed for the
commander to create the instruction. Detailed and
step-by-step instructions for what needs to be done
as a commander are introduced at the beginning
of the interface. The AMT workers need to write
sentences in the Answer according to the provided
information.

In the first round of data collection, the comman-
der needs to write the initial instruction based on
an overview of the AVDN trajectory. As shown
in Fig. 12 the satellite image shows the trajectory
overview marked with a predefined staring position
(the red point with an arrow showing the drone’s
direction at the starting position) and a destination
area (purple bounding box).

In the data collection round after the first round,
the commander is required to give follow-up in-
structions, i.e., answers, to the questions from the
follower. The user interface for the second and fol-
lowing rounds is shown in Fig. 13. Besides all the
information shown to the commander in the first
round, the follower is also provided with previous
dialog, past trajectories (broken purple line), and
the view area corresponding to the most recent time
step (named current view area marked with white
bounding box).

F.2 Interface for followers

The follower uses an interface to interact with our
simulator. In our simulator, they receive instruc-
tions from the commander and control the sim-
ulated drone. The keyboard is used to simulate
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Figure 12: Interface for AMT workers (commanders) in first round of data collection.

the drone controller with eight keys representing
four channels in the controller, where key w and s
represent the channel controlling forward and back-
ward movement, key a and d represent the channel
controlling left and right movement, key q and e
represent the channel controlling rotating clock-
wise and anti-clockwise movement and key 1 and
2 represent the channel controlling altitude change.
After the experts finish the control, the commander
can either claim the destination is reached or ask
questions for more instruction. As in Fig. 14, the
interface is an image window showing the simu-
lated drone’s visual observation and a text window
for displaying the previous dialogs and inputting
questions from the follower. There is a compass on
the top left of the image window, showing the orien-
tation of the simulated drone. The red cross in the

image window shows the center of the view, help-
ing the follower control the drone to right above the
destination area, and the red corners in the window
show the area of 0.4 IoU with the view area. The
follower is instructed to make the destination area
larger than the area indicated by the red corners in
order to finish successful navigation.
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Figure 13: Interface for AMT workers (commanders) in following rounds of data collection.
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Figure 14: Interface for human drone experts (follower). The upper window shows the simulated drone’s visual
observation and the lower window shows the previous dialog.
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