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Abstract

Transferring information retrieval (IR) models
from a high-resource language (typically En-
glish) to other languages in a zero-shot fashion
has become a widely adopted approach. In
this work, we show that the effectiveness of
zero-shot rankers diminishes when queries and
documents are present in different languages.
Motivated by this, we propose to train rank-
ing models on artificially code-switched data
instead, which we generate by utilizing bilin-
gual lexicons. To this end, we experiment with
lexicons induced from (1) cross-lingual word
embeddings and (2) parallel Wikipedia page
titles. We use the mMARCO dataset to ex-
tensively evaluate reranking models on 36 lan-
guage pairs spanning Monolingual IR (MoIR),
Cross-lingual IR (CLIR), and Multilingual IR
(MLIR). Our results show that code-switching
can yield consistent and substantial gains of
5.1 MRR@10 in CLIR and 3.9 MRR@10 in
MLIR, while maintaining stable performance
in MoIR. Encouragingly, the gains are espe-
cially pronounced for distant languages (up to
2x absolute gain). We further show that our
approach is robust towards the ratio of code-
switched tokens and also extends to unseen lan-
guages. Our results demonstrate that training
on code-switched data is a cheap and effective
way of generalizing zero-shot rankers for cross-
lingual and multilingual retrieval.

1 Introduction

Cross-lingual Information Retrieval (CLIR) is the
task of retrieving relevant documents written in
a language different from a query language. The
large number of languages and limited amounts of
training data pose a serious challenge for training
ranking models. Previous work address this is-
sue by using machine translation (MT), effectively
casting CLIR into a noisy variant of monolingual
retrieval (Li and Cheng, 2018; Shi et al., 2020,
2021; Moraes et al., 2021). MT systems are used
to either train ranking models on translated train-

ing data (translate train), or by translating queries
into the document language at retrieval time (trans-
late test). However, CLIR approaches relying on
MT systems are limited by their language coverage.
Because training MT models is bounded by the
availability of parallel data, it does not scale well to
a large number of languages. Furthermore, using
MT for IR has been shown to be prone to propaga-
tion of unwanted translation artifacts such as topic
shifts, repetition, hallucinations and lexical ambigu-
ity (Artetxe et al., 2020; Litschko et al., 2022a; Li
et al., 2022). In this work, we propose a resource-
lean MT alternative to bridge the language gap and
propose to use artificially code-switched data.

We focus on zero-shot cross-encoder (CE) mod-
els for reranking (MacAvaney et al., 2020; Jiang
et al., 2020). Our study is motivated by the ob-
servation that the performance of CEs diminishes
when they are transferred into CLIR and MLIR
as opposed to MoIR. We hypothesize that training
on queries and documents from the same language
leads to monolingual overfitting where the ranker
learns features, such as exact keyword matches,
which are useful in MoIR but do not transfer well
to CLIR and MLIR setups due to the lack of lexical
overlap (Litschko et al., 2022b). In fact, as shown
by Roy et al. (2020) on bi-encoders, representa-
tions from zero-shot models are weakly aligned be-
tween languages, where models prefer non-relevant
documents in the same language over relevant doc-
uments in a different language. To address this
problem, we propose to use code-switching as an
inductive bias to regularize monolingual overfitting
in CEs.

Generation of synthetic code-switched data has
served as a way to augment data in cross-lingual
setups in a number of NLP tasks (Singh et al., 2019;
Einolghozati et al., 2021; Tan and Joty, 2021). They
utilize substitution techniques ranging from sim-
plistic re-writing in the target script (Gautam et al.,
2021), looking up bilingual lexicons (Tan and Joty,
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2021) to MT (Tarunesh et al., 2021). Previous
work on improving zero-shot transfer for IR in-
cludes weak supervision (Shi et al., 2021), tuning
the pivot language (Turc et al., 2021), multilingual
query expansion (Blloshmi et al., 2021) and cross-
lingual pre-training (Yang et al., 2020; Yu et al.,
2021; Yang et al., 2022; Lee et al., 2023). To this
end, code-switching is complementary to existing
approaches. Our work is most similar to Shi et al.
(2020), who use bilingual lexicons for full term-
by-term translation to improve MoIR. Concurrent
to our work, Huang et al. (2023) show that code-
switching improves the retrieval performance on
low-resource languages, however, their focus lies
on CLIR with English documents. To the best of
our knowledge, we are the first to systematically
investigate (1) artificial code-switching to train CEs
and (2) the interaction between MoIR, CLIR and
MLIR.

Our contributions are as follows: (i) We show
that training on artificially code-switched data im-
proves zero-shot cross-lingual and multilingual
rankers. (ii) We demonstrate its robustness towards
the ratio of code-switched tokens and effectiveness
in generalizing to unseen languages. (iii) We re-
lease our code and resources.1

2 Methodology

Reranking with Cross-Encoders. We follow the
standard cross-encoder reranking approach (CE)
proposed by Nogueira and Cho (2019), which for-
mulates relevance prediction as a sequence pair
(query-document pair) classification task. CEs are
composed of an encoder model and a relevance
prediction model. The encoder is a pre-trained lan-
guage model (Devlin et al., 2019) that transforms
the concatenated input [CLS] Q [SEP] D [SEP]
into a joint query-document feature representation,
from which the classification head predicts rele-
vance. Finally, documents are reranked accord-
ing to their predicted relevance. We argue that
fine-tuning CEs on monolingual data biases the
encoder towards encoding features that are only
useful when the target setup is MoIR. To mitigate
this bias, we propose to perturb the training data
with code-switching, as described next.

Artificial Code-Switching. While previous work
has studied code-switching (CS) as a natural phe-
nomenon where speakers borrow words from other

1https://github.com/MaiNLP/CodeSwitchCLIR

languages (e.g. anglicism) (Ganguly et al., 2016;
Wang and Komlodi, 2018), we here refer to code-
switching as a method to artificially modify mono-
lingual training data. In the following we assume
availability of English (EN–EN) training data. The
goal is to improve the zero-shot transfer of ranking
models into cross-lingual language pairs X–Y by
training on code-switched data ENX–ENY instead,
which we obtain by exploiting bilingual lexicons
similar to Tan and Joty (2021). We now describe
two CS approaches based on lexicons: one derived
from word embeddings and one from Wikipedia
page titles (cf. Appendix A for examples).

Code-Switching with Word Embeddings. We
rely on bilingual dictionaries D induced from cross-
lingual word embeddings (Mikolov et al., 2013;
Heyman et al., 2017) and compute for each EN
term its nearest (cosine) cross-lingual neighbor. In
order to generate ENX–ENY we then use DEN )X
and DEN )Y to code-switch query and document
terms from EN into the languages X and Y, each
with probability p. This approach, dubbed Bilin-
gual CS (BL-CS), allows a ranker to learn inter-
lingual semantics between EN, X and Y. In our
second approach, Multilingual CS (ML-CS), we ad-
ditionally sample for each term a different target
language into which it gets translated; we refer to
the pool of available languages as seen languages.

Code-Switching with Wikipedia Titles. Our
third approach, Wiki-CS, follows (Lan et al., 2020;
Fetahu et al., 2021) and uses bilingual lexicons de-
rived from parallel Wikipedia page titles obtained
from inter-language links. We first extract word
n-grams from queries and documents with differ-
ent sliding window of sizes n P t1, 2, 3u. Longer
n-gram are favored over shorter ones in order to
account for multi-term expressions, which are com-
monly observed in named entities. In Wiki CS we
create a single multilingual dataset where queries
and documents from different training instances
are code-switched into different languages.

3 Experimental Setup

Models and Dictionaries. We follow Bonifacio
et al. (2021) and initialize rankers with the multi-
lingual encoder mMiniLM provided by Reimers
and Gurevych (2020). We report hyperparameters
in Appendix C. For BL-CS and ML-CS we use mul-
tilingual MUSE embeddings2 to induce bilingual

2https://github.com/facebookresearch/MUSE

3097

https://github.com/MaiNLP/CodeSwitchCLIR
https://github.com/facebookresearch/MUSE


EN–EN DE–DE RU–RU AR–AR NL–NL IT–IT AVG ∆ZS

Zero-shot 35.0 25.9 23.8 23.9 27.2 26.9 25.5 -
Fine-tuning 35.0 30.3* 28.5* 27.2* 30.8* 30.9* 29.5 +4.0
Zero-shotTranslate Test - 22.5* 18.2* 17.7* 24.7* 23.3* 21.3 -4.2
ML-CSTranslate Test - 22.8* 18.6* 17.7* 24.7* 24.5* 21.7 -3.8
BL-CS - 26.0 25.5 23.0 27.5 27.2 25.8 +0.3
ML-CS 34.0 25.9 24.7 21.3 27.2 26.9 25.2 -0.3
Wiki-CS 33.8* 25.6 24.1 20.5* 27.0 25.5* 24.5 -1.0

Table 1: MoIR: Monolingual results on mMARCO languages and averaged over all languages (excluding EN–EN) in
terms of MRR@10. Bold: Best zero-shot performance for each language. ∆ZS: Absolute difference to Zero-shot.
Results significantly different from Zero-shot are marked with * (paired t-test, Bonferroni correction, p ă 0.05).

EN–DE EN–IT EN–AR EN–RU DE–IT DE–NL DE–RU AR–IT AR–RU AVG ∆ZS

Zero-shot 24.0 23.0 14.0 18.3 15.0 19.7 12.9 7.7 7.1 15.7 -
Fine-tuning 29.7* 30.5* 26.5* 28.0* 26.9* 27.9* 25.5* 23.9* 22.7* 26.8 +11.1
Zero-shotTranslate Test 22.8 23.2 16.4 17.0 15.8 17.5 11.8 9.8 8.7 15.9 +0.2
ML-CSTranslate Test 24.9 24.6 17.9* 19.5 17.6 19.3* 14.3 12.2* 10.6* 17.9 +2.2
BL-CS 26.9* 27.3* 19.3* 22.8* 20.4* 22.8* 17.8* 15.6* 14.1* 20.8 +5.1
ML-CS 26.5* 26.4* 18.1* 22.1* 19.8* 22.8* 17.8* 15.3* 14.2* 20.3 +4.6
Wiki-CS 26.2* 26.4* 19.4* 22.9* 19.4* 22.4* 18.3* 14.4* 14.1* 20.4 +4.7

Table 2: CLIR: Cross-lingual results on mMARCO in terms of MRR@10.

Seen Languages All Languages

X–EN EN–X X–X AVGseen ∆seen X–EN EN–X X–X AVGall ∆all

Zero-shot 19.0 23.5 16.3 19.6 - 16.5 20.8 12.9 16.6 -
Fine-tuning 24.8* 26.4* 21.1* 24.1 +4.5 26.5* 26.5* 21.9* 25.0 +8.3
ML-CS 24.2* 25.9* 21.1* 23.7 +4.1 21.6* 23.2* 17.0* 20.6 +3.9
Wiki-CS 23.6* 26.0* 20.6* 23.4 +3.8 21.3* 23.8* 17.1* 20.7 +4.0

Table 3: MLIR: Multilingual results on mMARCO in terms of MRR@10. Left: Six seen languages for which we
used bilingual lexicons to code-switch training data. Right: All fourteen languages included in mMARCO.

lexicons (Lample et al., 2018), which have been
aligned with initial seed dictionaries of 5k word
translation pairs. We set the translation probabil-
ity p “ 0.5. For Wiki-CS, we use the lexicons
provided by the linguatools project.3

Baselines. To compare whether training on
CS’ed data ENX–ENY improves the transfer into
CLIR setups, we include the zero-shot ranker
trained on EN–EN as our main baseline (hence-
forth, Zero-shot). Our upper-bound reference,
dubbed Fine-tuning, refers to ranking models
that are directly trained on the target language pair
X–Y, i.e. no zero-shot transfer. Following Roy
et al. (2020), we adopt the Translate Test baseline
and translate any test data into EN using using our
bilingual lexicons induced from word embeddings.
On this data we evaluate both the Zero-shot base-
line (Zero-shotTranslate Test) and our ML-CS model
(ML-CSTranslate Test).

3https://linguatools.org/wikipedia-parallel-titles

Datasets and Evaluation. We use use the
publicly available multilingual mMARCO data
set (Bonifacio et al., 2021), which includes four-
teen different languages. We group those into six
seen languages (EN, DE, RU, AR, NL, IT) and
eight unseen languages (HI, ID, IT, JP, PT, ES, VT,
FR) and construct a total of 36 language pairs.4 Out
of those, we construct setups where we have doc-
uments in different languages (EN–X), queries in
different languages (X–EN), and both in different
languages (X–X). Specifically, for each document
ID (query ID) we sample the content from one of
the available languages. For evaluation, we use the
official evaluation metric MRR@10.5 All models
re-rank the top 1,000 passages provided for the
passage re-ranking task. We report all results as
averages over three random seeds.

4Due to computational limitations we don’t exhaustively
evaluate on all possible language pairs.

5We use the implementation provided by the ir-measures
package (MacAvaney et al., 2022).
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4 Results and Discussion

We observe that code-switching improves cross-
lingual and multilingual re-ranking, while not im-
peding monolingual setups, as shown next.

Transfer into MoIR vs. CLIR. We first quantify
the performance drop when transferring models
trained on EN–EN to MoIR as opposed to CLIR
and MLIR. Comparing Zero-shot results between
different settings we find that the average MoIR
performance of 25.5 MRR@10 (Table 1) is sub-
stantially higher than CLIR with 15.7 MRR@10
(Table 2) and MLIR with 16.6 MRR@10 (Table 3).
The transfer performance greatly varies with the
language proximity, in CLIR the drop is larger for
setups involving typologically distant languages
(AR–IT, AR–RU), to a lesser extent the same ob-
servation holds for MoIR (AR–AR, RU–RU). This
is consistent with previous findings made in other
syntactic and semantic NLP tasks (He et al., 2019;
Lauscher et al., 2020). The performance gap to
Fine-tuning on translated data is much smaller
in MoIR (+4 MRR@10) than in CLIR (+11.1
MRR@10) and MLIR (+8.3 MRR@10). Our aim
to is close this gap between zero-shot and full fine-
tuning in a resource-lean way by training on code-
switched queries and documents.

Code-Switching Results. Training on code-
switched data consistently outperforms zero-shot
models in CLIR and MLIR (Table 2 and Ta-
ble 3). In AR–IT and AR–RU we see improve-
ments from 7.7 and 7.1 MRR@10 up to 15.6 and
14.1 MRR@10, rendering our approach particu-
larly effective for distant languages. Encouragingly,
Table 1 shows that the differences between both
of our CS approaches (BL-CS and ML-CS) versus
Zero-shot is not statistically significant, showing
that gains can be obtained without impairing MoIR
performance. Table 2 shows that specializing one
zero-shot model for multiple CLIR language pairs
(ML-CS, Wiki-CS) performs almost on par with spe-
cializing one model for each language pair (BL-CS).
The results of Wiki-CS are slightly worse in MoIR
and on par with ML-CS on MLIR and CLIR.

Translate Test vs. Code-Switch Train. In
MoIR (Table 1) both Zero-shotTranslate Test and
ML-CSTranslate Test underperform compared to other
approaches. This shows that zero-shot rankers
work better on clean monolingual data in the target
language than noisy monolingual data in English.

Figure 1: Retrieval performance in terms of mean aver-
age precision (MAP) for different translation probabili-
ties, averaged across all language pairs.

In CLIR, where Translate Test bridges the language
gap between X and Y, we observe slight improve-
ments of +0.2 and +2.2 MRR@10 (Table 2). How-
ever, in both MoIR and CLIR Translate Test consis-
tently falls behind code-switching at training time.

Multilingual Retrieval and Unseen Languages.
Here we compare how code-switching fares against
Zero-shot on languages to which neither model
has been exposed to at training time. Table 3 shows
the gains remain virtually unchanged when moving
from six seen (+4.1 MRR@10 / +3.8 MRR@10)
to fourteen languages including eight unseen lan-
guages (+3.9 MRR@10 / +4.0 MRR@10). Results
in Appendix B confirm that this holds for unseen
languages on the query, document and both sides,
suggesting that the best pivot language for zero-
shot transfer (Turc et al., 2021) may not be mono-
lingual but a code-switched language. On seen
languages ML-CS is close to MT (Fine-tuning).

Ablation: Translation Probability. The trans-
lation probability p allows us to control the ratio
of code-switched tokens to original tokens, with
p “ 0.0 we default back to the Zero-shot base-
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EN–X X–EN X–X

No Code Switching (Zero-Shot)

No overlap 12.2 11.0 7.4
Some overlap 29.7 22.4 19.9
Significant overlap 44.6 36.4 45.5
All queries 23.5 19.0 16.3

Multilingual Code Switching (ML-CS)

No overlap 15.5 (+3.3) 17.8 (+6.8) 13.0 (+5.6)
Some overlap 31.7 (+2.0) 27.2 (+4.8) 25.3 (+5.4)
Significant overlap 44.7 (+0.2) 37.8 (+1.4) 45.1 (-0.5)

All queries 25.9 (+2.4) 24.2 (+5.3) 21.1 (+4.8)

Table 4: MLIR results on seen languages (MRR@10)
broken down into queries that share no common to-
kens (no overlap), between one and three tokens (some
overlap) and more than three tokens (significant over-
lap) with their relevant documents. Gains of ML-CS are
shown in brackets. EN–X has 3,116 queries with no
overlap, 3,095 with some overlap and 769 with signifi-
cant overlap. X–EN has 3,147 queries with no overlap,
2,972 with some overlap and 861 with significant over-
lap. X–X has 3,671 queries with no overlap, 2,502 with
some overlap and 807 with significant overlap.

line, with p “ 1.0 we attempt to code-switch every
token. 6 Figure 1 (top) shows that code-switching
a smaller portion of tokens is already beneficial
for the zero-shot transfer into CLIR. The gains are
robust towards different values for p. The best re-
sults are achieved with p “ 0.5 and p “ 0.75 for
BL-CS and ML-CS, respectively. Figure 1 (bottom)
shows that the absolute differences to Zero-shot
are much smaller in MoIR.

Monolingual Overfitting. Exact matches be-
tween query and document keywords is a strong
relevance signal in MoIR, but does not transfer well
to CLIR and MLIR due to mismatching vocabular-
ies. Training zero-shot rankers on monolingual data
biases rankers towards learning features that cannot
be exploited at test time. Code-Switching reduces
this bias by replacing exact matches with transla-
tion pairs,7 steering model training towards learn-
ing interlingual semantics instead. To investigate
this, we group queries by their average token over-
lap with their relevant documents and evaluate each

6Due to out-of-vocabulary tokens the percentage of trans-
lated tokens is slightly lower: 23% for p “ 0.25, 45% for
p “ 0.5, 68% for p “ 0.75 and 92% for p “ 1.0. In Wiki CS
90% of queries and documents contain at least one translated
n-gram, leading to 20% of translated tokens overall.

7We analyzed a sample of 1M positive training instances
and found a total of 4,409,974 overlapping tokens before and
3,039,750 overlapping tokens after code-switching (ML-CS,
p “ 0.5), a reduction rate of ~31%.

group separately on MLIR.8 The results are shown
in Table 4. Unsurprisingly, rankers work best
when there is significant overlap between query
and document tokens. However, the performance
gains resulting from training on code-switched data
(ML-CS) are most pronounced for queries with some
token overlap (up to +5.4 MRR@10) and no token
overlap (up to +6.8 MRR@10). On the other hand,
the gains are much lower for queries with more
than three overlapping tokens and range from -0.5
to +1.4 MRR@10. This supports our hypothesis
that code-switching indeed regularizes monolin-
gual overfitting.

5 Conclusion

We propose a simple and effective method to im-
prove zero-shot rankers: training on artificially
code-switched data. We empirically test our ap-
proach on 36 language pairs, spanning monolin-
gual, cross-lingual, and multilingual setups. Our
method outperforms zero-shot models trained only
monolingually and provides a resource-lean alter-
native to MT for CLIR. In MLIR our approach can
match MT performance while relying only on bilin-
gual dictionaries. To the best of our knowledge, this
work is the first to propose artificial code-switched
training data for cross-lingual and multilingual IR.

Limitations

This paper does not utilize any major linguistic the-
ories of code-switching, such as (Belazi et al., 1994;
Myers-Scotton, 1997; Poplack, 2013). Our ap-
proach to generating code-switched texts replaces
words with their synonyms in target languages,
looked up in a bilingual lexicon. Furthermore, we
do not make any special efforts to resolve word
sense or part-of-speech ambiguity. To this end, the
resulting sentences may appear implausible and
incoherent.
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A Code-Switching Examples

Approach Query Document

Zero-Shot What is an affinity credit card program? Use your PayPal Plus credit card to deposit funds. If you have

a PayPal Plus credit card, you are able to instantly transfer

money from it to your account. This is a credit card offered

by PayPal for which you must qualify.

Fine-tuning Was ist ein Affinity-Kreditkartenprogramm? Используйте свою кредитную карту PayPal Plus для

внесения средств. Если у вас есть кредитная карта

PayPal Plus, вы можете мгновенно переводить деньги с

нее на свой счет. Это кредитная карта, предлагаемая

PayPal, на которую вы должны претендовать.

BL-CS Denn is einem affinity credit card pro-

gramms?

Использовать your PayPal плюс кредита билет попы-

таться депозиты funds. если you have a PayPal плюс

credit билет, скажите are able to instantly переход денег

from it попытаться ваши account. This is a credit билет

offered by paypal for причём you может qualify.

ML-CS What is это affinità credit card program? Use jouw PayPal Plus credit geheugenkaarten to depositi

funds. @ 	X @ you хотя ein 	àAÒ�JKB@ aggiunta credit card, you

are попытаться quindi sofort transfer geld from questo úÍ@
deine account. Это является a кредита card offerto by

paypal voor which you devono Éë

A�JÊË

Wiki-CS What is an affinity Kreditkarte program? Use your PayPal Plus carta di credito to deposit funds. If you

have a PayPal Plus carta di credito, you are able to instantly

transfer denaro from it to your account. This is a carta di

credito offered by PayPal for which you mosto qualify.

Table 5: Different Code-Switching strategies on a single training instance for the target language pair DE–RU (Query
ID: 711253, Document ID: 867890, label: 0). Zero-shot: Train a single zero-shot ranker on the original EN–EN
MS MARCO instances (Bajaj et al., 2016). Fine-tuning: Fine-tune ranker directly on DE–RU, we use translations
(Google Translate) provided by the mMARCO dataset (Bonifacio et al., 2021). Bilingual Code-Switching (BL-CS):
Translate randomly selected EN query tokens into DE and randomly selected EN document tokens into RU, each
token is translated with probability p “ 0.5; Multilingual Code-Switching (ML-CS): Same as BL-CS but additionally
sample for each token its target language uniformly at random. Wiki-CS: Translate n-grams extracted with a sliding
window. Tokens within a single query/document are code-switched with a single language; across training instances
languages are randomly mixed. We use the following “seen languages”: English, German, Russian, Italian, Dutch,
Arabic.
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B Results on Unseen Languages

Unseen QL Unseen DL Unseen Both

FR–EN ID–NL EN–PT DE–VT IT–ZH ES–FR FR–PT ID–VT PT–ZH AVG ∆ZS

Zero-shot 18.3 13.7 23.2 10.9 9.4 19.0 18.7 11.8 9.6 15.0 -
Fine-tuning 30.0* 27.2* 30.8* 24.8* 25.0* 29.0* 29.0* 25.8* 25.4* 27.4 +12.2
Multilingual CS 21.4* 18.3* 25.9* 15.5* 14.8* 22.7* 21.9* 16.4* 14.7* 19.1 +4.1
Wiki CS 21.0* 17.2* 26.2* 15.4* 15.0* 21.9* 20.5* 15.3* 14.8* 18.6 +3.4

Table 6: CLIR results on unseen mMARCO languages in terms of MRR@10. Bold: Best zero-shot model for each
language pair. ∆ZS: Absolute difference to the zero-shot baseline. Results significantly different from the zero-shot
baseline are marked with * (paired t-test, Bonferroni correction, p ă 0.05). Results include unseen query languages
(QL), unseen document languages (DL) and unseen languages on both sides.

FR–FR ID–ID ES–ES PT–PT ZH–ZH VT–VT AVG ∆ZS

Zero-shot 27.2 26.8 28.2 27.9 24.8 22.8 26.3 -
Fine-tuning 30.5* 30.6* 31.5* 31.2* 29.1* 28.6* 30.3 +4.0
Multilingual CS 26.4 26.7 27.6 27.3 22.3 23.1* 25.6 -0.7
Wiki CS 25.8* 25.5* 27.1* 26.5* 22.2* 21.8* 24.8 -1.8

Table 7: MoIR: Monolingual results on unseen mMARCO languages in terms of MRR@10.

C Hyperparameters, Datasets and Infrastructure

Hyperparameter Value

Maximum sequence length 512
Learning rate 2e-5
Training steps 200,000
Batch size 64
Warm-up steps (linear) 5,000
Positive-to-negative ratio 1:4
Optimizer AdamW (Loshchilov and Hutter, 2019)
Encoder Model nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large
Encoder Parameters 106,993,920

Table 8: Hyperparameter values for re-ranking models. Following Reimers and Gurevych (2020) we extract negative
samples from training triplets provided by MS MARCO (Bajaj et al., 2016). In the passage re-ranking task we
re-rank for 6980 queries 1,000 passages respectively (qrels.dev.small). We construct 36 different language pairs
from the mMARCO dataset (Bonifacio et al., 2021).

Setup

GPU NVIDIA A100 (80 GB)
Avg. Training Duration (per model) 13 h
Avg. Test (per language pair) 2 h

Table 9: Computational environment. We use Huggingface to train our models (Wolf et al., 2020), NLTK for
tokenization, ir-measures for evaluating MRR@10 (MacAvaney et al., 2022) and SciPy for significance testing.
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D Bilingual Lexicon Sizes

Language MUSE vocabulary Parallel Wikipedia titles

Arabic 132,480 432,359
German 200,000 1,113,422
Italian 200,000 999,243
Dutch 200,000 822,563
Russian 200,000 906,750

Table 10: Size of bilingual lexicons. Two lexicons are used to substitute the words in English with their respective
cross-lingual synonyms: (i) multilingual word embeddings provided by MUSE (Lample et al., 2018), (ii) Wikipedia
page titles obtained from inter-language links, provided by linguatools project.9 The Wikipedia-based lexicons are
several times larger that the MUSE vocabulary.
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