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Abstract

Distilling knowledge from a high-resource task,
e.g., machine translation, is an effective way
to alleviate the data scarcity problem of end-
to-end speech translation. However, previous
works simply use the classical knowledge dis-
tillation that does not allow for adequate trans-
fer of knowledge from machine translation. In
this paper, we propose a comprehensive knowl-
edge distillation framework for speech trans-
lation, CKDST, which is capable of compre-
hensively and effectively distilling knowledge
from machine translation to speech translation
from two perspectives: cross-modal contrastive
representation distillation and simultaneous de-
coupled knowledge distillation. In the former,
we leverage a contrastive learning objective
to optimize the mutual information between
speech and text representations for represen-
tation distillation in the encoder. In the later,
we decouple the non-target class knowledge
from target class knowledge for logits distil-
lation in the decoder. Experiments on the
MuST-C benchmark dataset demonstrate that
our CKDST substantially improves the base-
line by 1.2 BLEU on average in all translation
directions, and outperforms previous state-of-
the-art end-to-end and cascaded speech trans-
lation models. The source code is available at
https://github.com/ethanyklei/CKDST.

1 Introduction

End-to-end (E2E) speech-to-text translation (ST),
directly translating speech in one language into
text in another, has recently attracted increasing
attention (Duong et al., 2016; Zhang et al., 2020;
Xu et al., 2021; Ye et al., 2022). Compared with
traditional cascaded ST, E2E ST does not require
automatic transcription, which endows itself with
less error propagation and lower latency.

However, parallel ST data that consist of speech
inputs and target translations, are proverbially
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limited, especially in comparison with automatic
speech recognition (ASR) and machine translation
(MT) data. In order to mitigate this issue, previ-
ous efforts leverage pre-training approaches (Xu
et al., 2021; Ao et al., 2022) and multi-task learn-
ing (MTL) frameworks (Ye et al., 2021; Tang et al.,
2021; Han et al., 2021) to transfer knowledge from
ASR and/or MT to ST. Among them, knowledge
distillation (KD) (Hinton et al., 2015) has proved to
be an effective way to improve ST performance by
transferring knowledge from MT to ST (Liu et al.,
2019; Xu et al., 2021; Tang et al., 2021).

However, previous KD approaches to ST only
explore the classical KD that transfers knowledge
from prediction logits, which may not allow for
sufficient knowledge distillation. Specifically, in
classical KD (Hinton et al., 2015), two types of
knowledge are encoded in prediction logits, target
class knowledge from target class logits and non-
target class knowledge from non-target class logits.
Each type of knowledge contributes to the success
of classical logits distillation. However, Zhao et al.
(2022) have found that the classical KD couples
the non-target class knowledge with the target class
knowledge. Such entanglement may inhibit the
transfer of non-target class knowledge and limit the
performance of logits knowledge distillation.

Additionally, due to the modality gap between
speech and text, it might be difficult for E2E ST
to sufficiently capture and translate semantic infor-
mation embedded in speech inputs to target transla-
tions. Fortunately, however, in MTL-based E2E ST,
a speech input is accompanied with its transcription
that is used as the input fed into MT. Such speech
and transcription pairs allow us to distill knowl-
edge from transcription representations to speech
representations so as to reduce the modality gap.
However, such knowledge distillation has not yet
been explored for end-to-end speech translation.

In order to address these two issues and effi-
ciently distill MT knowledge to ST, we propose
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a Comprehensive Knowledge Distillation frame-
work for ST (CKDST). Specifically, we propose
Cross-modal Contrastive Representation Distilla-
tion (CCRD) and Simultaneous Decoupled Knowl-
edge Distillation (SDKD) as two essential ap-
proaches for CKDST, to transfering knowledge
from text representations and to performing more
sufficient logits distillation.

CCRD applies a contrastive training objective
to force E2E ST to learn speech representations
that are closer to their corresponding textual rep-
resentations. In doing so, we could increase the
mutual information lower bound between speech
and text representations (Tian et al., 2019). SDKD
is proposed for E2E ST to mitigate the issue that
the classical KD couples the target class knowledge
with non-target class knowledge (Zhao et al., 2022).
For more effectively transferring logits knowledge
from MT to ST, we decouple these two types of
knowledge in prediction logits and extend the de-
coupled knowledge distillation to the MTL frame-
work where both ST and MT are fine-tuned simul-
taneously.

In a nutshell, our contributions are three-fold.

• We propose CKDST for end-to-end ST, which
can comprehensively and effectively transfer
MT knowledge to ST in both the encoder and
decoder.

• We introduce CCRD and SDKD in CKDST
to increase the mutual information between
speech and text representations, and to decou-
ple the non-target class knowledge from the
target knowledge for more effective logits dis-
tillation, respectively.

• We conduct extensive experiments on the
MuST-C benchmark dataset with four lan-
guage pairs. Experiment results validate
the effectiveness of the two approaches and
demonstrate that our model outperforms pre-
vious best end-to-end and cascaded baselines.

2 Related Work

End-to-End Speech Translation. To alleviate the
error propagation in cascaded ST and to ease the
deployment, Bérard et al. (2016) and Weiss et al.
(2017) propose to use an end-to-end architecture
to directly translate speech in one language into
text in another, without using the intermediate tran-
scriptions. In recent years, increasing efforts have

been done in E2E ST (Di Gangi et al., 2019b; Liu
et al., 2019; Wang et al., 2020b; Liu et al., 2020;
Xu et al., 2021; Tang et al., 2021; Fang et al., 2022;
Tang et al., 2022). Since the parallel speech trans-
lation data is notoriously limited, many approaches
have been proposed to solve this problem, such as
pre-training (Wang et al., 2020b; Xu et al., 2021;
Tang et al., 2022), multi-task learning (Le et al.,
2020; Zhao et al., 2021; Ye et al., 2022), and data
augmentation (Bahar et al., 2019; Lam et al., 2022).
Additionally, knowledge distillation from a well
trained MT model to a ST model has proved effec-
tive in improving ST performance. Liu et al. (2019)
leverage knowledge distillation to allow the E2E
ST model to learn the same prediction distribution
as the MT model. The MT model is frozen while
the ST model is being trained. SATE (Xu et al.,
2021) uses both pre-trained ASR model and MT
model as teacher models to perform knowledge
distillation. Each pre-trained model serves a dif-
ferent module of the ST model, and they are also
frozen during training. Tang et al. (2021) propose
the online-KD that simultaneously update the ST
module and the MT module in a multi-task learn-
ing framework. However, these efforts only distill
the knowledge from prediction logits via classical
KD, and the knowledge from encoder representa-
tions is ignored. In our work, we comprehensively
and efficiently distill knowledge from both encoder
representations and prediction logits of MT to ST.

Knowledge Distillation. The concept of knowl-
edge distillation has been firstly proposed by Hin-
ton et al. (2015). KD defines a learning framework
where a stronger teacher network is employed to
guide the training of a student network for many
tasks (Kim and Rush, 2016; Li et al., 2017; Tan
et al., 2019). The subsequent works can be roughly
divided into two groups, distillation from predic-
tion logits (Furlanello et al., 2018; Cho and Hariha-
ran, 2019; Yang et al., 2019; Mirzadeh et al., 2020)
and intermediate representations (Yim et al., 2017;
Huang and Wang, 2017; Heo et al., 2019; Park
et al., 2019). Romero et al. (2014) explore interme-
diate representations for KD by using regressions to
guide the feature activations of the student network.
Tian et al. (2019) apply a contrastive objective to
maximize the mutual information lower bound be-
tween teacher representations and student repre-
sentations. In contrast, DKD (Zhao et al., 2022)
decouples and amplifies student-friendly knowl-
edge from prediction distribution to perform more
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Figure 1: The diagram of CKDST. The blue part is related to the ST task while the light pink part is related to the
MT task. "Average Pooling" is applied on the time dimension to obtain the sentence-level representations.

effective distillation. Our approaches are partially
motivated by these previous efforts but are signifi-
cantly different from them in two aspects. First, the
knowledge gap in representations is due to different
modalities rather than the model capability (teacher
vs. student), so the inconsistency of modalities is
also an important challenge we have to deal with in
our distillation. Second, we don’t freeze the teacher
during distillation, we argue that this may allow the
teacher model to adapt to provide student-friendly
knowledge.

3 CKDST

In this section, we first introduce the model ar-
chitecture of CKDST and then elaborate the two
knowledge distillation approaches in CKDST.

3.1 Model Architecture

CKDST adopts the encoder-decoder ST framework,
as shown in Figure 1. It consists of four main
components: speech encoder, text encoder, shared
encoder and shared decoder, facilitating the joint
training of the ST and MT task.
Speech Encoder is composed of non-finetuned
wav2vec 2.0 (Baevski et al., 2020) followed by two
layers of 1-D CNNs. It takes speech wavforms as
input to obtain low-level speech representations.
Text Encoder is the normal word embedding layer,
which is the same as the word embedding layer for

text translation. It takes text as input for the MT
task.
Shared Encoder / Decoder adopt the standard
Transformer (Vaswani et al., 2017) as their back-
bone network. The shared encoder takes outputs
from both speech and text encoder as inputs to
further extract semantic information. The shared
decoder generates target translations for ST and
MT. And, with shared parameters, the shared en-
coder and decoder are expected to learn the shared
knowledge between ST and MT.

A training sample for E2E ST is a
(speech,transcript,translation) triplet (s, t, y). We
use speech-translation pairs (s, y) as training data
for ST, and transcript-translation pairs (t, y) as
training data for MT. The cross-entropy loss is
adopted for both ST and MT:

LST =−
|y|∑

i=1

log p(yi|y<i, s)

LMT =−
|y|∑

i=1

log p(yi|y<i, t)

(1)

3.2 Cross-modal Constrative Representation
Distillation

Speech inputs are usually noisier than their textual
counterpart transcripts (Tang et al., 2021), which
makes the extraction of semantic information from
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speech difficult. Thus, we want to transfer semantic
knowledge across modality, from text representa-
tions to speech representations. For this, we pro-
pose cross-modal contrastive representation distilla-
tion which employs a contrastive training objective
to maximize the mutual information between text
and speech representations. Due to the length dif-
ference between speech and text, we use sentence-
level representations for distillation. We apply av-
erage pooling on the output of the shared encoder
in the time dimension to obtain sentence-level rep-
resentations of speech and text.

Concretely, let T and S denote the sentence-
level source text representation (teacher representa-
tion) in MT and speech representation (student rep-
resentation) in ST, respectively. Tian et al. (2019)
show that a lower bound of the mutual informa-
tion (MI) between T and S exists when we have
1 positive pair (i.e., speech-transcript pair) and N
negative pairs (i.e., pairs of a speech with the rest of
the transcripts in the same mini batch). The lower
bound is estimated as follows:

MI(T ,S) ≥ log(N) + Eq(T ,S)[log h(T ,S)]

+NEq(T )q(S)[log (1− h(T ,S))]
(2)

where q(T ,S) (indicating positive pairs) and
q(T )q(S) (indicating negative pairs) are the joint
distribution and the product of marginal distribu-
tions of T and S, respectively. h(·) is a critic func-
tion that estimates the probability that the input pair
(T ,S) is drawn from q(T ,S).

We optimize our model to maximize the expec-
tation terms in Eq. (2). In doing so, we force our
model to learn a representation for S, which is se-
mantically close to that of T , so as to optimize the
mutual information between S and T . This can be
considered as a procedure that distills knowledge
from the representation of T to that of S.

Given a sentence-level text-speech representa-
tion pair (T ,S), the critic function h(·) calculates
a score indicating the possiblity that (T ,S) is a
positive pair (drawn from q(T,S)) or negative pair
(drawn from q(T )q(S)). We define the critic func-
tion h(T ,S) → [0, 1] as follows:

h(T ,S) =
ecos(T ,S)/τ

1 + ecos(T ,S)/τ
(3)

where cos(·) is the cosine similarity and τ is a tem-
perature hyper-parameter. With the critic probabil-

ity h(T ,S), we can calculate the loss of CCRD:

LCCRD =− (Eq(T ,S)[log h(T ,S)]

+NEq(T )q(S)[log (1− h(T ,S))])
(4)

Different from Ye et al. (2022) who use con-
trastive learning to bridge the modality gap be-
tween speech and text, we use NCE loss (Gutmann
and Hyvärinen, 2010) as the contrastive objective,
and aim to maximize the lower bound of mutual in-
formation between speech and text representations.

3.3 Simultaneous Decoupled Knowledge
Distillation

Previous efforts (Liu et al., 2019; Xu et al., 2021;
Tang et al., 2021) calculate the KL-Divergence on
prediction logits between ST and MT for logits
distillation. However, this classical KD loss (Hin-
ton et al., 2015) couples target class knowledge
and non-target class knowledge by the confidence
of the teacher model on the target class, and sup-
press the non-target class knowledge transfer which
limits the effectiveness of logits distillation (Zhao
et al., 2022). Therefore, we propose simultaneous
decoupled knowledge distillation which decouples
the non-target class knowledge from target class
knowledge to allow more sufficient knowledge dis-
tillation than the classical KD.

Let pTi and pSi be the probabilities of MT and ST
for the i-th subword in the vocabulary V , respec-
tively. The classical KD loss can be formulated
as:

LKD =

|V |∑

i=1

pTi log

(
pTi
pSi

)
(5)

We use pt to denote the probability of the target
subword. Correspondingly, the sum of the prob-
abilities of the remaining non-target subwords is
p\t = (1 − pt). Meanwhile, let p̂i be the prob-
ability of modeling on non-target subwords (i.e.,
without considering the target class), which can be
calculated as:

p̂i =
exp(zi)∑|V |

j=1,j ̸=t exp(zj)
(i ̸= t) (6)

where z is the logit. Since p̂i is independent of
the target subword probability pt, we assume that it
represents the non-target class knowledge in predic-
tion logits. Now, according to the above definitions,
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we can reformulate Eq. (5) as:

LKD = pTt log

(
pTt
pSt

)
+ pT\t log

(
pT\t
pS\t

)

︸ ︷︷ ︸
TCK

+ (1− pTt )

|V |∑

i=1,i ̸=t

p̂Ti log

(
p̂Ti
p̂Si

)

︸ ︷︷ ︸
NCK

(7)

The details of the reformulation can be found in
Appendix A. Obviously, the non-target class knowl-
edge (NCK) couples with the target class knowl-
edge (TCK) with a coupling weight (1−pTt ). Thus
larger prediction scores pTt of the teacher model
would lead to smaller coupling weights of NCK,
which significantly suppresses the transfer of NCK.
However, such suppression is not desirable since
the more confident the teacher is, the more reliable
and valuable knowledge it can provide, and since
the contributions of NCK and TCK are from dif-
ferent aspects that should be considered separately
(Zhao et al., 2022). Therefore, we replace (1− pTt )
with a hyper-parameter β to decouple the TCK and
NCK to control the importance of the two types of
knowledge, separately, and the training objective
of SDKD is calculated as follows1:

LSDKD = TCK + βNCK (8)

3.4 Training and Inference
We train our model in a pretraining-then-finetuning
manner. We first pre-train the text encoder, shared
encoder and decoder with MT data. Then dur-
ing the fine-tuning phase, we jointly train ST, MT,
CCRD and SDKD with ST data. The overall train-
ing objective is the combination of the four task
losses:

L = LST + LMT + LCCRD + LSDKD (9)

Note that we do not freeze MT parameters (i.e.,
we still enable the gradient propagation of MT)
when distilling knowledge from representations
and prediction logits. This is because we find that
contiguously training MT parameters benefits ST
performance in our experiments (see Appendix B).

During inference, we remove the text encoder
and use the remaining modules of CKDST for
speech translation.

1We regard this as decoupling because the knowledge trans-
fer of NCK is not controlled (i.e., weighted) by the probability
of the target class any more. Instead, it is controlled by β.

En ST (MuST-C) External MT
hours #sents version #sents

De 408 234K WMT16 4.6M
Es 504 270K WMT13 15.2M
Fr 492 280K WMT14 40.8M
Ru 489 270K WMT16 2.5M

Table 1: Statistics of the used datasets.

4 Experiments

We compared with state-of-the-art E2E/cascaded
ST models to examine the effectiveness of the pro-
posed CKDST.

4.1 Datasets
ST Dataset We conducted experiments on
the MuST-C2 (Di Gangi et al., 2019a) bench-
mark dataset in four translation directions:
English-German (En-De), English-Spanish (En-
Es), English-French (En-Fr) and English-Russian
(En-Ru). Each direction have around 400 hours
speech. dev was used to develop and analyze our
approaches, tst-common was used for testing.
External MT Data We followed previous works
(Tang et al., 2021; Ye et al., 2022) to use WMT3

datasets of different years as external MT data:
WMT 2016 for English-German and English-
Russian, WMT 2014 for English-French and WMT
2013 for English-Spanish.

The statistics of MuST-C and WMT datasets are
shown in Table 1.

4.2 Settings
Pre-processing We used 16-bit 16 kHz mono-
channel audio wave as speech input. And we re-
moved utterances of which the duration is longer
than 30s. For text inputs, we extracted 10K un-
igram subwords with a shared source and target
vocabulary via SentencePiece4 (Kudo and Richard-
son, 2018).
Model Configuration We used the base version
of Wav2vec 2.05 in the speech encoder, which is
pretrained on audio data from LibriSpeech (Panay-
otov et al., 2015) without finetuning. Two layers of
CNNs were stacked over Wav2vec 2.0 , where the
kernel size was set to 5, stride size to 2 and hidden

2https://ict.fbk.eu/must-c/
3https://statmt.org/
4https://github.com/google/

sentencepiece
5https://dl.fbaipublicfiles.com/

fairseq/wav2vec/wav2vec_small.pt
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Models External Data MuST-C
Speech ASR MT En-De En-Es En-Fr En-Ru AVG

w/o external MT data
Fairseq ST (Wang et al., 2020a) - - - 22.7 27.2 32.9 15.3 24.5
Espnet ST (Inaguma et al., 2020) - - - 22.8 27.4 33.3 15.6 24.8
W-Transf (Ye et al., 2021) ✓ - - 23.6 28.4 34.6 14.4 25.3
XSTNet (Ye et al., 2021) ✓ - - 25.5 29.6 36.0 16.9 27.0
STEMM (Fang et al., 2022) ✓ - - 25.6 30.3 36.1 17.1 27.3
ConST (Ye et al., 2022) ✓ - - 25.7 30.4 36.8 17.3 27.6
MTL baseline ✓ - - 25.4 29.6 35.9 16.8 26.9
Ours ✓ - - 26.4 30.9 37.3 17.7 28.1

w/ external MT data
JT-S-MT (Tang et al., 2021) - - ✓ 26.8 31.0 37.4 - -
SATE (Xu et al., 2021) - ✓ ✓ 28.1† - - - -
Chimera (Han et al., 2021) ✓ - ✓ 27.1† 30.6 35.6 17.4 27.7
XSTNet (Ye et al., 2021) ✓ - ✓ 27.1 30.8 38.0 18.5 28.6
STEMM (Fang et al., 2022) ✓ - ✓ 28.7 31.0 37.4 17.8 28.7
ConST (Ye et al., 2022) ✓ - ✓ 28.3 32.0 38.3 18.9 29.4
MTL baseline ✓ - ✓ 27.1 31.2 37.3 18.2 28.5
Ours ✓ - ✓ 28.5 32.5 38.5 19.1 29.7

Table 2: BLEU scores of different models on the MuST-C tst-common set. "Speech" indicates unlabelled speech
data. "MTL baseline" is the implemented strong baseline using the same architecture as our model, excluding CCRD
and SDKD. †denotes that large-scale Opensubtitles (Lison and Tiedemann, 2016) data are used as the external MT
data.

size to 512. The shared encoder and decoder were
configured with the base Transformer setting: 6
layers, 512 as hidden size, 8 attention heads, and
2048 as FFN hidden size.
Implementation Details We implemented our
model based on fairseq toolkit.6 For experiments
with external data, we used external MT data for
pre-training. For those without any external data,
only the MT data from the ST triplet data were con-
sidered. For fine-tuning, we used the same hyper-
parameters for experiments with/without external
MT data. Particularly, we used the Adam optimizer
wiht 25K warm-up updates. The learning rate was
1e-4. The maximal number of tokens was 0.8M
per batch. Both the dropout and the value of label
smoothing were set to 0.1. We set the update fre-
quency to 2. The temperature τ was 0.1 and the
non-target class knowledge weight β was 4.0. We
set the maximal number of updates to 200000, and
used the early-stop training strategy if the perfor-
mance did not improve for 10 consecutive valida-
tion runs. We trained all the models on 4 Nvidia
TeslaV100 GPUs.

During inference, we averaged the checkpoints
of the last 10 epochs for evaluation. We used beam

6https://github.com/facebookresearch/
fairseq

search with a beam size of 10 and length penalty
was 1.0. We evaluated case-sensitive detokenized
BLEU and ChrF++ by sacreBLEU7 (Post, 2018).
Additionally, we also evaluated translation quality
with COMET (Rei et al., 2020), which leverages
pretrained language models to achieve high corre-
lations with human quality judgments. Specifically,
we used COMET-22 (wmt22-COMET-da)8.
Baselines We compared our CKDST with multi-
ple strong E2E ST baselines including: (1) Fairseq
ST (Wang et al., 2020a) and (2) Espnet ST (In-
aguma et al., 2020) trained only with the ST task
data, (3) W-Transf (Ye et al., 2021) that uses a pre-
trained speech model to extract speech features,
(4) XSTNet (Ye et al., 2021) that trains the ST
model based on W-Transf in a multitask learning
framework, (5) Chimera (Han et al., 2021) that
learns a shared memory space to align speech and
text, (6) STEMM (Fang et al., 2022) that mixes
speech and text representations and (7) ConST (Ye
et al., 2022) that applies contrastive learning to
bridge the modality gap between speech and text,
(8) JT-S-MT (Tang et al., 2021) that employs an
online-KD method to transfer knowledge from MT

7sacreBLEU signature: BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.5.1

8https://huggingface.co/Unbabel/
wmt22-comet-da
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ChrF++ COMET
En-De En-Es En-Fr En-Ru AVG En-De En-Es En-Fr En-Ru AVG

MTL baseline 55.02 57.92 61.71 43.39 54.51 82.15 82.10 81.00 80.34 81.29
Ours 55.99 58.77 62.54 45.04 55.59 82.67 82.69 81.55 82.38 82.32

Table 3: Results of ChrF++ and COMET for the four language pairs on the MuST-C benchmark dataset.

Models En-De En-Fr
Cascaded

Espnet (Inaguma et al., 2020) 23.6 33.8
(Xu et al., 2021) 28.1 -
Cascaded baseline 27.2 36.6

End-to-end
Ours 28.5 38.5

Table 4: Comparison to cascaded baselines on the
MuST-C En-De and En-Fr tst-common set. "Cascaded
baseline" is the implemented strong cascaded baseline
which uses the speech encoder of our model as its ASR
module and the MT related part of our model as its MT
module.

to ST and (9) SATE (Xu et al., 2021) that lever-
ages an adapter to incorporate pre-trained ASR and
MT models into E2E ST, and uses classical KD for
knowledge transfer. In addition to these baselines,
we implemented a strong baseline "MTL baseline"
that uses the same neural architecture (excluding
the proposed CCRD and SDKD) as our model to
jointly train ST and MT.

4.3 Main Results

Comparison to End-to-End Baselines. We com-
pared our model with several strong baselines for
four language pairs on the MuST-C benchmark
dataset. Results are shown in Table 2. Without the
external MT data, our model achieves a substantial
improvement of 1.2 BLEU over the MTL baseline
on average and outperforms the strongest baseline,
ConST, in all translation directions. When we use
the external MT data, we achieve new state-of-the-
art results in terms of the average BLEU score over
the four translation directions and gain a 1.2 BLEU
improvement over the MTL baseline. These re-
sults demonstrate that our approaches are able to
effectively improve ST with knowledge distillation.
Compared to previous works that explore knowl-
edge distillation for E2E ST, we outperform JT-S-
MT (Tang et al., 2021) and SATE (Xu et al., 2021)
by 1.4 BLEU and 0.4 BLEU on average, respec-
tively. This suggests that our proposed knowledge
distillation approaches are more effective than pre-
vious KD methods used in E2E ST. To better eval-

uate our approach, we used ChrF++ and COMET,
which are more relevant to human evaluation, to
assess our model. As shown in Table 3, our model
achieves an average improvement of 1.08 ChrF++
and 1.03 COMET compared to the MLT baseline
model.
Comparison to Cascaded Baselines. We also
compared our end-to-end model with cascade base-
lines. Espnet (Inaguma et al., 2020) and the cas-
caded ST system presented by Xu et al. (2021) are
two strong cascaded systems trained with MuST-
C and external ASR and MT data (LibriSpeech,
WMT, and Opensubtitles). We implemented a
strong "Cascaded baseline" using the ASR data
from the ST data and the same external MT data
as ours. Its ASR module is the same as our speech
encoder and was trained with the CTC loss. The
MT module is a standard Transformer, trained with
the traditional MT loss. As shown in Table 4, our
implemented Cascaded baseline is competitive to
the other two cascaded baselines. Impressively, our
end-to-end model outperforms all cascaded base-
lines in all translation directions.

4.4 Ablation Study
To better evaluate the contribution of our proposed
knowledge distillation approaches, we progres-
sively removed the CCRD module and the SDKD
module to conduct ablation study on the MUST-C
benchmark. As shown in Table 5, without CCRD,
we get an average drop of 0.5 BLEU on all four
translation directions. And, SDKD also contributes
0.6 BLEU on average on all translation directions.
These demonstrate the effectiveness of both ap-
proaches in enhancing ST.

5 Analysis

Additionally, we conducted a series of in-depth
analyses to further investigate how the proposed
methods improve E2E ST.

5.1 Does CCRD Increase the Mutual
Information?

The proposed CCRD distills knowledge from MT
to ST by optimizing the mutual information be-
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Ablation MuST-C
En-De En-Es En-Fr En-Ru

Ours 28.5 32.5 38.5 19.1
- LCCRD 28.2 32.1 38.2 18.7
- LSDKD 28.0 31.9 37.9 18.5

Table 5: BLEU scores on MuST-C benchmark tst-
common set by removing individual losses.

(a) w/o CCRD (b) w/ CCRD

Figure 2: Bivariate KDE contour of the speech and text
representations. t-SNE is used to reduce the dimension
into 2D. Blue curves are speech representations while
orange curves stand for text representations. Samples
are drawn from the MuST-C En-De dev set.

tween text and speech representations. Mutual in-
formation (MI) can be represented by the degree
of overlap between two distributions. Thus, we
plot the bivariate kernel density estimation (Parzen,
1962) (KDE) contour of speech and text dim-
reduced representations to visualize their distribu-
tions as shown in Figure 2, where t-SNE (Van der
Maaten and Hinton, 2008) is used to reduce the
dimension of representations into 2D. As shown
in Figure 2(a), without CCRD, the overlap of the
speech representation distribution and the text rep-
resentation distribution is small. This shows that
even with the shared encoder, the distributions of
representations from the two modalities have very
low MI. In contrast, when we apply CCRD, the
distribution of speech representations and the distri-
bution of text representations almost overlap. This
indicates our proposed CCRD can significantly im-
prove the MI between the two representation distri-
butions.

5.2 Is SDKD Better than Classical KD?
As discussed in Section 3.3, the classical KD sup-
presses the knowledge of non-target classes, which
limits its performance. To verify this, we conducted
experiments on the MuST-C benchmark to compare
the effects of SDKD and classical KD. In order to

Loss
MuST-C

En-De En-Es En-Fr En-Ru
LSDKD 28.2 32.1 38.2 18.7
LKD 27.9 31.6 38.1 18.3

Table 6: SDKD vs. the classical KD on the MuST-C
benchmark. LKD is calculated according to Eq. (5).

eliminate the interference of other factors, we did
not apply CCRD during training. The loss function
LKD of the classical KD is estimated according to
Eq. (5). During training, LKD is interpolated with
the primary loss (i.e., ST loss) with weight α (Hin-
ton et al., 2015). Therefore, the training objective
for E2E ST with the classical KD is:

L = (1− α)LST + αLKD + LMT (10)

We followed Tang et al. (2021) to set α to 0.8. As
shown in Table 6, SDKD outperforms the classical
KD on all translation directions and achieves an
average improvement of 0.4 BLEU. This indicates
that separately exploring the target and non-target
class knowledge is better than the coupled form.

5.3 Impact of the Non-target Class
Knowledge Weight

For SDKD, it is important to choose an appropriate
non-target class knowledge weight β. To under-
stand the impact of β, we employed a grid search
from [0, 8] to search desirable β with a stride of 2
on the MuST-C En-De dev set. Results are shown
in Figure 3. The orange dashed line indicates the
baseline model which uses the classical KD dur-
ing training. If β = 0, it indicates that the non-
target class knowledge is ignored when distilling
knowledge from prediction logits. Compared with
the classical KD baseline, the model performance
drops significantly if we ignore the non-target class
knowledge. This suggests that the non-target class
knowledge is important and useful. The curve with
varying β clearly shows that the performance of
the model first increases and then drops as β in-
creases. We achieve the best BLEU score when
β = 4. This indicates that appropriately increasing
the importance of the non-target class knowledge is
beneficial for knowledge distillation, but too large
weights would undermine the performance of the
model.
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Figure 3: BLEU score curve on the MuST-C En-De
dev set with the non-target class knowledge weight β
varying from 0 to 8. Orange dashed curve indicates the
baseline model which uses the classical KD during train-
ing. β = 0 indicates that the non-target class knowledge
is ignored when distilling knowledge from prediction
logits.

5.4 Impact of the Performance of the
Pre-trained MT Model

Our proposed approaches aim to effectively distill
knowledge from MT to ST, thus the pre-trained
MT performance is of importance to our model. In
order to study the impact of MT performance on
our model, we randomly sample 1M, 2M and 3M
MT data from the external MT data to pre-train
the MT model so as to have different MT models
with varying performance. When the size of ex-
ternal MT data is 0, we use the MT data from the
ST triplet to pre-train the MT model. Results are
shown in Figure 4. We observe that as the perfor-
mance of the pre-trained MT model improves, the
BLEU score of our model also keeps improving.
This demonstrates that our approaches benefit from
strong pre-trained MT models.

6 Conclusion

In this paper, we have presented CKDST, which
comprehensively and effectively distills the knowl-
edge of MT to boost the performance of E2E ST
through two key approaches: CCRD and SDKD.
The former leverages a contrastive objective to
maximize the mutual information lower bound be-
tween speech and text representations for represen-
tation knowledge distillation. The later reformu-
lates the classical KD loss to decouple the target
class knowledge and the non-target class knowl-
edge for more effective logits knowledge distilla-
tion. Our experiments strongly demonstrate that
our approaches are able to significantly improve
E2E ST and achieve new state-of-the-art results on
the MUST-C benchmark dataset.

Figure 4: BLEU score curve on the MuST-C En-De
tst-common against the size of external MT data used
during pre-training. When the size of external MT data
is 0, we use the MT data from the ST training data for
pre-training.

Limitations

Although the proposed CKDST distills the knowl-
edge of MT more comprehensively and efficiently
from encoder representations and prediction logits,
and obtains significant improvements over previous
methods, it still has limitations: (1) The batch size
is not very large, limited by the memory capacity of
the used hardware and the extremely long sequence
length of speech inputs, which leads to a small num-
ber of negative samples used in CCRD and does
not fully exploit the ability of contrastive learning.
In future work, we attempt to expand the negative
sample size using a mechanism like memory bank
(He et al., 2020). (2) As we distill knowledge from
MT to ST, the performance of the pretrained MT
model has an impact on our framework.
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tion framework for ST to more comprehensively
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the MT community.
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A Reformulation Details
In Sec 3.3, we define the classical KD loss as fol-
lows:

LKD =

|V |∑

i=1

pTi log

(
pTi
pSi

)

= pTt log

(
pTt
pSt

)
+

|V |∑

i=1,i ̸=t

pTi log

(
pTi
pSi

) (11)

According to the definition of p\t and p̂i in Sec
3.3, we can reformulate Eq. (11) to:
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(12)
Since pT\t and pS\t are irrelevant to the class index
i, we have:

|V |∑

i=1,i̸=t
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T
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)
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(13)

Moreover,
∑|V |

i=1,i ̸=t p̂
T
i = 1, so:
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Bringing Eq. (14) back to Eq. (12), we have:
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B Whether to freeze MT Parameters

Knowledge distillation usually freezes the teacher
model (i.e., the gradient propagation of the teacher
model is disable). We assume that this is because
the teacher model is not supervised by the primary

Methods MT MuST-C En-De

CCRD ✓ 27.7
✗ 28.0

SDKD ✓ 28.2
✗ 28.2

Table 7: Freezing MT vs. not freezeing MT on the
MuST-C En-De tst-common set. ✓indicates freezing
MT while ✗ indicates not freezing MT.

loss and freezing the teacher model prevents it from
being degraded by the student model. Howerver,
our model is trained on ST and MT, simultaneously.
The teacher knowledge can be preserved by the
auxiliary MT task. Moreover, we assume that not
freezing teacher knowledge during knowledge dis-
tillation can make it more student-friendly. To in-
vestigate this, we conducted experiments on Must-
C En-De. Results are shown in Table 7. When
we freeze MT in CCRD, we find the performance
drops 0.3 BLEU. In SDKD, there is no difference
in the performance of freezing MT or not. In gen-
eral, not freezing MT when performing knowledge
distillation is more suitable for our model.
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to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix C

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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