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Abstract

Coreference resolution is the task of finding
expressions that refer to the same entity in a
text. Coreference models are generally trained
on monolingual annotated data but annotating
coreference is expensive and challenging. Hard-
meier et al. (2013) have shown that parallel
data contains latent anaphoric knowledge, but
it has not been explored in end-to-end neural
models yet. In this paper, we propose a sim-
ple yet effective model to exploit coreference
knowledge from parallel data. In addition to
the conventional modules learning coreference
from annotations, we introduce an unsuper-
vised module to capture cross-lingual coref-
erence knowledge. Our proposed cross-lingual
model achieves consistent improvements, up to
1.74 percentage points, on the OntoNotes 5.0
English dataset using 9 different synthetic par-
allel datasets. These experimental results con-
firm that parallel data can provide additional
coreference knowledge which is beneficial to
coreference resolution tasks.

1 Introduction

Coreference resolution is the task of finding expres-
sions, called mentions, that refer to the same entity
in a text. Current neural coreference models are
trained on monolingual annotated data, and their
performance heavily relies on the amount of anno-
tations (Lee et al., 2017, 2018; Joshi et al., 2019,
2020). Annotating such coreference information is
challenging and expensive. Thus, annotation data
is a bottleneck in neural coreference resolution.

Hardmeier et al. (2013) have explored parallel
data in an unsupervised way and shown that parallel
data has latent cross-lingual anaphoric knowledge.
Figure 1 shows a coreference chain in an English–
Chinese parallel sentence pair. “ACL 2023”, “it”
in the English sentence, and “ACL 2023”, “它”(it)
in the Chinese sentence are coreferential to each
other. Compared to the two separate monolingual
coreferential pairs: <ACL 2023, it>, <ACL 2023,

• [ACL 2023] is a top-tier NLP conference, [it] is coming.

• [ACL 2023] 是NLP领域的一个顶会，[它]即将召开。

Figure 1: A coreference chain in an English–Chinese
parallel sentence pair. Mentions in brackets are corefer-
ential to each other. Links in blue are monolingual and
dashed liks in orange are cross-lingual.

它>, there are four more cross-lingual coreferential
pairs <it, ACL 2023>, <it,它>, <ACL 2023, ACL
2023>, <ACL 2023,它> in this parallel sentence
pair. This cross-lingual coreference chain suggests
that parallel multilingual data can provide extra
coreferential knowledge compared to monolingual
data which could be useful for training coreference
models.

Parallel data has been applied to project coref-
erence annotations in non-neural coreference mod-
els (de Souza and Orăsan, 2011; Rahman and Ng,
2012; Martins, 2015; Grishina and Stede, 2015;
Novák et al., 2017; Grishina and Stede, 2017). In-
stead, we focus on neural coreference models and
ask the following main research question: Can
parallel data advance the performance of coref-
erence resolution on English, where a relatively
large amount of annotations are available?

We propose a cross-lingual model which exploits
cross-lingual coreference knowledge from parallel
data. Our model is based on the most popular neu-
ral coreference model (Lee et al., 2018), which
consists of an encoder, a mention span scorer, and
a coreference scorer. We extend these three mod-
ules, which are applied to the source-side data, with
a target-side encoder and adapters for the mention
span scorer and the coreference scorer, allowing
these to resolve cross-lingual coreference. As there
is no annotated cross-lingual coreference data, the
model computes the coreference scores between
target spans and source spans without any supervi-
sion. We conduct experiments on the most popu-
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lar OntoNotes 5.0 English dataset (Pradhan et al.,
2012). Given the English data, we generate 9 dif-
ferent synthetic parallel datasets with the help of
pretrained neural machine translation (NMT) mod-
els. The target languages consist of Arabic, Cata-
lan, Chinese, Dutch, French, German, Italian, Rus-
sian, and Spanish. The experimental results show
that our cross-lingual models achieve consistent
improvements, which confirms that parallel data
helps neural entity coreference resolution.

2 Related Work

Lee et al. (2017) first propose end-to-end neural
coreference models (neural-coref ) and achieve bet-
ter performance on the OntoNotes English dataset
compared to previous models. Most current neural
coreference models are based on neural-coref and
replace the statistic word embeddings used by Lee
et al. (2017) with contextualized word embeddings
from ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019), SpanBERT (Joshi et al., 2020), etc.
(Lee et al., 2018; Joshi et al., 2019, 2020).

Neural-coref only models the relation between
pairs of mentions. Many studies propose to con-
sider entity-level information while predicting clus-
ters (Lee et al., 2018; Kantor and Globerson, 2019;
Xu and Choi, 2020). However, Xu and Choi (2020)
find that these models considering higher-order in-
ference are not significantly better or even worse.
Instead, the observed differences can be explained
by the powerful performance of SpanBERT.

Because these models are expensive in terms of
memory and time, especially when using higher-
dimensional representations. Xia et al. (2020) and
Toshniwal et al. (2020) propose models that only
keep a limited number of entities in the memory,
without much performance drop. Kirstain et al.
(2021) introduce a start-to-end model where the
model computes mention and antecedent scores
only through bilinear functions of span boundary
representations. To cope with the enormous num-
ber of spans, Dobrovolskii (2021) proposes a word-
level coreference model, where the model first con-
siders the coreference links between single words,
and then reconstruct the word spans.

All these models are trained on monolingual
coreference annotations. In this paper, we in-
troduce a simple model building on the top of
neural-coref, which exploits cross-lingual coref-
erence from parallel data in an unsupervised way.
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Figure 2: Overview of (a) the conventional monolingual
coreference model and (b) our cross-lingual coreference
model using synthetic parallel data. The main differ-
ences are marked in red. The red block is a cross-lingual
coreference scorer which is expected to capture cross-
lingual coreference knowledge.

3 Coreference Models

3.1 neural-coref

Most neural coreference models are variants of
neural-coref (Lee et al., 2017), whose structure
is illustrated in Figure 2 (a). It consists of a text
encoder, a mention scorer, and a coreference scorer.
The final coreference clusters are predicted based
on the scores of these modules.

Given a document, the encoder first generates
representations for each token. Then the model cre-
ates a list of spans, varying the span width.1 Each
span representation is the concatenation of 1) the
first token representation, 2) the last token represen-
tation, 3) the span head representation, and 4) the
feature vector, where the span head representation
is learned by an attention mechanism (Bahdanau
et al., 2015) and the feature vector encodes the
size of the span. Then the mention scorer, a feed-
forward neural network, assigns a score to each
span. Afterwards, the coreference scorer computes
how likely it is that a mention refers to each of the
preceding mentions.

During training, given a span i, the model
predicts a set of possible antecedents Y =
{ϵ, 1, . . . , i − 1}, a dummy antecedent ϵ and pre-
ceding spans. The model generates a probability
distribution P (yi) over antecedents for the span
i, as shown in Equation 1 below. s(i, j) denotes
the coreference score between span pair i and j.
The coreference loss is the marginal log-likelihood
of the correct antecedents. During inference, the

1The number of generated spans is decided by hyper-
parameters, i.e., the maximum width of a span, the ratio of
entire span space, the maximum number of spans.
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model first recognizes potential antecedents for
each mention, then it predicts the final coreference
clusters. More specifically, given a mention, the
model considers the preceding mention with the
highest coreference score as the antecedent.

P (yi) =
es(i,yi)∑

y′∈Y(i) e
s(i,y′)

(1)

3.2 Cross-Lingual Model
We hypothesize that parallel data can provide addi-
tional coreference information which benefits learn-
ing coreference. As there is no supervision to the
target-side and cross-lingual modelling, we attempt
to transfer the source-side learned parameters to
the target-side unsupervised modules by adding ad-
ditional adapters, which has been shown efficient
and effective (Houlsby et al., 2019). Therefore, we
extend neural-coref by introducing a target-side
encoder, adapters for target-side mention scorer,
and cross-lingual coreference scorer, where each
adapter is a one-layer feed-forward neural network
with 500 hidden nodes. The overview of our cross-
lingual model is shown in Figure 2 (b).

For the target-side, we can use a shared cross-
lingual encoder or a target-side monolingual en-
coder. The coreference scorer computes corefer-
ence scores between target-side spans and source-
side spans. This is the key component to learn
cross-lingual coreference knowledge. The strategy
we follow is the same as that in neural-coref during
inference: Given a source mention, the target men-
tion with the highest coreference score is consid-
ered as the corresponding cross-lingual antecedent.
This component serves to capture latent corefer-
ence information. During training, as source-side
modules are shared across languages, source-side
parameters are jointly updated when optimizing the
cross-lingual coreference loss.

There is no specific range for antecedents in the
cross-lingual setting. Thus, we introduce a restric-
tion to target-side antecedents, where the cross-
lingual antecedent’s position number in the target
sentence should not surpass the source mention’s
position number in the source sentence more than
50. This pruning can make the model more efficient
and effective.

Say the model has predicted a source mention
list Ms: {ms1 ,ms2 , . . . ,msm} and a target men-
tion list Mt: {mt1 ,mt2 , . . . ,mtn}. The model has
also generated a two-dimensional coreference score
matrix, where sij represents the coreference score

between msi and mtj . We denote Y(i) as the pos-
sible antecedent set of the source mention i. The
cross-lingual coreference loss is defined in Equa-
tion 2, where ĵ = argmax

j∈Y(i)
sij for a given i.2

Lx =
∑m

i=1 e
−siĵ (2)

During training, the model learns to minimize
both the coreference loss and the cross-lingual
coreference loss Lx with a ratio 1 : 1. During in-
ference, we only employ the source-side modules,
which are trained with coreference supervision and
latent cross-lingual coreference knowledge, to pre-
dict coreference clusters.

4 Experiments

Due to the page limit, we leave our experimental
settings in Appendix A.

4.1 Data
We experiment with the OntoNotes 5.0 English
dataset. The number of documents for training,
development, and test is 2,802, 343, and 348, re-
spectively. The data is originally from newswire,
magazines, broadcast news, broadcast conversa-
tions, web, conversational speech, and the Bible.
It has been the benchmark dataset for coreference
resolution since it is released. The annotation in
OntoNotes covers both entities and events, but with
a very restricted definition of events. Noun phrases,
pronouns, and head of verb phrases are considered
as potential mentions. Singleton clusters3 are not
annotated in OntoNotes.

Given the English data, we use open access pre-
trained NMT models released by Facebook and the
Helsinki NLP group to generate synthetic parallel
data (Wu et al., 2019; Ng et al., 2019; Tiedemann
and Thottingal, 2020).

The input to monolingual models are the En-
glish data and the inputs to cross-lingual models
are these parallel data. They have the same amount
of data entries. These parallel data have the same
coreference annotations as the data fed into mono-
lingual models, the only difference is that the En-
glish data is paired with its target translations, and
there are no annotations in the translations at all.

2We assume that there should be at least one antecedent
on the other side for each mention, either the translation of
the mention or a translation of its antecedent. In practice, the
quality of synthetic parallel data is not guaranteed which in-
troduces noise. On the other hand, synthetic data may actually
be more parallel than natural translations.

3An entity cluster that only contains a single mention.
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Data F1mention
MUC B3 CEAFe F1avg ∆ F1

R P F1 R P F1 R P F1

English 85.42 80.31 81.40 80.85 71.31 70.92 71.10 65.81 70.97 68.30 73.42 0

English–Arabic 86.13 81.73 81.80 81.77 72.91 71.77 72.34 67.85 71.53 69.64 74.58 1.16
English–Catalan 86.17 81.38 82.36 81.87 72.55 72.75 72.65 67.77 72.19 69.91 74.81 1.39
English–Chinese 86.02 81.16 82.43 81.78 71.91 72.74 72.32 66.96 72.17 69.47 74.53 1.11
English–Dutch 86.29 81.53 82.84 82.18 72.67 73.31 72.99 68.36 72.41 70.33 75.16 1.74
English–French 85.93 81.12 82.15 81.63 72.06 72.36 72.20 67.36 71.31 69.28 74.37 0.95
English–German 86.02 81.86 81.28 81.56 73.06 70.82 71.92 67.42 70.93 69.14 74.20 0.78
English–Italian 86.13 81.71 82.09 81.90 72.82 72.09 72.45 67.73 71.60 69.61 74.65 1.23
English–Russian 86.17 82.38 81.31 81.84 73.75 70.62 72.15 67.94 71.12 69.49 74.50 1.08
English–Spanish 86.21 81.72 81.88 81.80 72.62 71.88 72.25 67.88 71.11 69.45 74.50 1.08

Table 1: F1 scores on mention detection (F1mention) and coreference resolution (F1avg) of the monolingual
model trained on English and cross-lingual models trained on 9 different synthetic parallel datasets. ∆ F1 is the
improvement over the monolingual model. Bold numbers are the best scores in each column. F1avg scores of all
the cross-lingual models are statistically significant (t-test, p < 0.05).

4.2 Experimental Results

Table 1 shows the detailed scores of each model
on the OntoNotes 5.0 English test set. Compared
to the baseline model, which is trained only on
English data, our cross-lingual model trained on
different synthetic parallel datasets achieves con-
sistent and statistically significant (t-test, p < 0.05)
improvements, varying from 0.78 to 1.74 percent-
age points. The model trained on English–Dutch
achieves the best F1 performance on coreference
resolution. The model trained on English–Russian
achieves the best recall score on MUC and B3.

It is interesting to see that the model trained on
English–German achieves the least improvement,
although German together with Dutch are closer to
English compared to other languages. Meanwhile,
the models trained on English–Arabic, English–
Chinese, English–Russian obtain moderate im-
provements, even though Arabic, Chinese, and Rus-
sian are more different from English. Given the
reported BLEU scores of the pre-trained NMT mod-
els, we find that the improvements do not correlate
with the quality of generated translations.

In addition to the results on coreference resolu-
tion, we also report the mention detection results,
which are based on mention scores, i.e., the outputs
of mention scorers. Models trained on parallel data
are consistently superior to the monolingual model,
and the model trained on English–Dutch gets the
best F1 score of 86.29. We can tell that models
with a higher mention detection F1 score do not
always achieve higher coreference F1 score. There
is no consistency across different language pairs, so
the improvements are not merely from better men-
tion detection performance, namely, memorizing
mentions.

As Table 1 shows, our cross-lingual model,
which exploits parallel data, is superior to the
model trained only on monolingual data. This con-
firms that parallel data can provide additional coref-
erence knowledge to coreference models, which is
beneficial to coreference modelling, even if the
parallel data is synthetic and noisy.4

5 Analysis

5.1 Unsupervised Cross-Lingual Coreference
To explore whether the unsupervised module can
capture cross-lingual coreference information, we
check the cross-lingual mention pairs predicted by
the cross-lingual coreference scorer.

ParCorFull (Lapshinova-Koltunski et al., 2018)
is an English–German parallel corpus annotated
with coreference chains. We first feed the data
to the model and let the model predict English–
German mention pairs. We go through the these
pairs quickly and find that some of these pairs
are coreferential, some of these pairs are transla-
tion pairs, but most of them are irrelevant. As the
coreference chains in English and German are not
aligned, we cannot conduct quantitative evaluation.

Alternatively, we evaluate the ability of the
model to capture cross-lingual coreference knowl-
edge using a synthetic mention pair set: an English–
English mention pair set. Now we have “aligned”
coreference chains, and we can evaluate the men-
tion pairs automatically. Specifically, we first train

4We also conduct preliminary experiments with parallel
data from multiple language pairs, concatenating the parallel
data of EN-DE, EN-ES, EN-IT, EN-NL, and EN-RU five
language pairs. Our proposed cross-lingual model achieves
better performance compared to using data from one single
language pair, showing the capability of our model to work
with multiple parallel data.
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a cross-lingual model with English–English syn-
thetic data, and we then feed the OntoNotes English
validation set to the model, both the source and tar-
get sides, to predict English–English mention pairs.

The model predicts 18,154 pairs in total, includ-
ing 131 mention pairs that are the same mention,
1,257 mention pairs that are coreferential, and 758
mention pairs with the same surface. This indicates
that the model is able to resolve some cross-lingual
coreference. However, since the cross-lingual mod-
ule is trained without any supervision, most of pre-
dicted mention pairs are not coreferential.

Table 2 shows some correctly predicted coref-
erential mention pairs, in English–English and
English–German settings. We can tell that our
cross-lingual models are not simply generating a
pair of two identical mentions, but coreferential
mentions as well, which is different from word
alignment. These mention pairs support our hy-
pothesis that the cross-lingual model can capture
cross-lingual coreference knowledge.

Source Mentions(English) Target Mentions(English/German)

Hong Kong the city ’s
It the Supreme Court
he 28-jähriger Koch (28-Year-Old Chef)
The 19-year-old American gymnast Simone Biles

Table 2: Examples of correct coreferential mention
pairs predicted by the cross-lingual coreference model,
in English–English, English–German settings.

5.2 Separate Monolingual Encoders
Multilingual pretrained models suffer from the
curse of multilinguality which makes them less
competitive as monolingual models. Thus, we test
the robustness of our model with separate encoders,
i.e., we replace the unified cross-lingual encoder
(XLM-R) with two separate monolingual encoders.
The baseline is a monolingual model trained with
SpanBERT, and the cross-lingual model is trained
with SpanBERT and BERT on source- and target-
side text, on the English–German synthetic dataset.

Our experimental results show that models em-
ploying SpanBERT perform much better, which
is consistent with previous findings by Joshi et al.
(2020). The monolingual model achieves 77.26
F1 score on the OntoNotes 5.0 English test set.
Our cross-lingual model obtains an even higher F1
score, 77.79, which is statistically significant (t-test,
p=0.044). Thus, our proposed model is applicable
to settings with separate monolingual encoders.

The improvement on SpanBERT is smaller than

that on XLM-R. One explanation is that SpanBERT
is already very powerful and parallel data provides
less additional knowledge. Another explanation
is that the target-side encoder, a BERT model,
is much weaker than SpanBERT, which makes it
harder to learn the cross-lingual coreference.

6 Conclusions and Future Work

In this paper, we introduce a simple yet effective
cross-lingual coreference resolution model to learn
coreference from synthetic parallel data. Compared
to models trained on monolingual data, our cross-
lingual model achieves consistent improvements,
varying from 0.78 to 1.74 percentage points, on the
OntoNotes 5.0 English dataset, which confirms that
parallel data benefits neural coreference resolution.

We have shown that the unsupervised cross-
lingual coreference module can learn limited coref-
erence knowledge. In future work, it would be in-
teresting if we can provide the model some aligned
cross-lingual coreference knowledge for supervi-
sion, to leverage parallel data better.

Limitations

We expect that our cross-lingual models have learnt
some coreference knowledge on the target lan-
guages and we conduct experiments on some lan-
guages in zero-shot settings. However, we do not
get consistent and significant improvements com-
pared to monolingual models. This should be fur-
ther investigated which potentially helps languages
with few or no coreference annotations. Compared
to monolingual models, our cross-lingual model
improves the source-side coreference resolution
but it requires almost two times GPU memory dur-
ing training. Thus, this model architecture imposes
restrictions on using larger pretrained models given
limited resources.
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A Experimental Settings

Our experiments are based on the code released
by Xu and Choi (2020).5 We keep the original set-
tings and do not do hyper-parameter tuning. As
Xu and Choi (2020) have shown that higher-order,
cluster-level inference does not further boost the
performance on coreference resolution given the
powerful text encoders, we do not consider higher-
order inference in our experiments. Even though
the mention boundaries are provided in the data,
we still let the model learn to detect mentions by
itself. For evaluation, we follow previous studies
and employ the CONLL-2012 official scorer (Prad-
han et al., 2014, v8.01)6 to compute the F1 scores
of three metrics (MUC(Vilain et al., 1995), B3

(Bagga and Baldwin, 1998), CEAFe(Luo, 2005))
and report the average F1 score.

Regarding the pretrained NMT models, the
English-German/French/Russian models are
transformer.wmt19* and transformer.wmt14.en-fr
from https://github.com/pytorch/
fairseq/blob/main/examples/

5https://github.com/lxucs/coref-hoi
6https://github.com/conll/

reference-coreference-scorers
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translation/README.md, the NMT
models for other translation directions are
opus-mt-en-* or opus-mt-*en from https:
//huggingface.co/Helsinki-NLP.

The baseline model is trained on monolingual
data while the cross-lingual models are trained on
synthetic parallel data. Note that we use the trained
monolingual model to initialize the source-side
modules of the cross-lingual model. We randomly
initialize the parameters of adapters. As we train
a unified cross-lingual model, we mainly employ
cross-lingual pretrained models, the XLM-R base
model, as our encoders, but we also explore using
two separate monolingual encoders in Section 5.2.
All the models are trained for 24 epochs with 2 dif-
ferent seeds, and the checkpoint that performs best
on the development set is chosen for evaluation.
We only report the average scores. Each model is
trained on a single NVIDIA V100 GPU with 32GB
memory.
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