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Abstract

We investigate the representation of pretrained
language models and humans, using the idea
of word definition modeling–how well a word
is represented by its definition, and vice versa.
Our analysis shows that a word representation
in pretrained language models does not success-
fully map its human-written definition and its
usage in example sentences. We then present
a simple method DefBERT that integrates pre-
trained models with word semantics in dictio-
naries. We show its benefits on newly-proposed
tasks of definition ranking and definition sense
disambiguation. Furthermore, we present the
results on standard word similarity tasks and
short text classification tasks where models are
required to encode semantics with only a few
words. The results demonstrate the effective-
ness of integrating word definitions and pre-
trained language models.1

1 Introduction

A word embedding vector maps a word into a fixed-
dimensional vector as a distributed representation.
The word vectors are trained by looking at their
context words and aggregating their representa-
tions in supervised ways (Turney, 2013) or unsuper-
vised ways (Mikolov et al., 2013; Pennington et al.,
2014). More recently, the representations have
been learned as a form of pretrained language mod-
els (Peters et al., 2018; Devlin et al., 2019). The
huge success of these pretrained language models
on various NLP tasks is achieved by capturing a
rich semantic representation of words from their
context in huge data.

On the other hand, for centuries, lexicographers
and linguists have created dictionaries that con-
tain general definitions of words and examples of
their usage. With these sophisticated data, there
have been many applications for NLP tasks (e.g.,
machine translation (Hill et al., 2016), semantic

1https://github.com/hwiyeoljo/DefBERT

Distances between word ‘love’ and its definitions:
1. An intense feeling of deep affection. (57.8)
A feeling of deep romantic or sexual attachment to someone.
(139.8)
2. Affectionate greetings conveyed to someone on one’s
behalf. (126.6)
3. A formula for ending an affectionate letter. (64.9)
4. A personified figure of love, often represented as Cupid.
(149.0)
5. A great interest and pleasure in something. (66.0)
6. A person or thing that one loves. (103.7)
7. A friendly form of address. (44.9)
8. Used in affectionate requests. (93.9)
(in tennis, squash, and some other sports) a score of zero; nil.
(117.5)
9. Feel deep affection for (someone) (85.4)
10. Feel a deep romantic or sexual attachment to (someone)
(191.5)
11. Like or enjoy very much. (71.3)

The closest definition to the word ‘love’:
“Several.” (definition of word ‘number’) (27.3)

Table 1: The mean squared distance between the word
‘love’ and its definitions in a dictionary (top; |Wi-Dwi |),
and the closest distance between the word and any def-
initions in our collected dictionary (bottom; |Wi-Dw j |).
Each word or definition is embedded by BERT (see §3).

relatedness classification (Bahdanau et al., 2017)).
Some recent works have used WordNet (Miller,
1995) for fine-tuning BERT for word sense disam-
biguation (Huang et al., 2019; Guo et al., 2020),
whereas our work uses up-to-date dictionary defi-
nitions and usage examples to fine-tune pretrained
language models.

In this work, we study the difference between
machine-learned definitions and human-written
definitions. Table 1 shows the mean squared dis-
tance between the vanilla BERT representation (the
last hidden layer of [CLS]) for the word ‘love’ and
the sentence representation (by [CLS]) for its defi-
nitions in dictionaries. The closest word of ‘love’
in the pretrained model is ‘number’ in our data
collection. This indicates a potential risk of us-
ing pretrained representations as the only means
to measure the semantic similarity between words
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or short sentences, where the context words are
insufficient to get good representations.

Furthermore, it is important to make general and
self-indicated embeddings. For example, if we do
not have pooling layers to the pretrained embed-
ding, we need additional training data to fine-tune
the pooling layer and the pretrained model. On the
other hand, if we can do the same task by using the
pretrained model only (without fine-tuning), this
means good generalization.

Lastly, some researchers believe that target word
token representation is better than [CLS] token
when the input text is short. However, we do not
know ‘what the short text is’ or ‘when the model
gets short text as inputs.’ Thus, the fact that we can
use [CLS] token for a single word or short text is
beneficial in that we do not need to consider the
input length. To do so, we attempt to inject word-
definition-example (its usage) information into the
model.

To overcome the deficiency and get such a gen-
eralized model, we propose a new joint represen-
tation that combines the human-written word defi-
nition with its usage example in a dictionary entry.
We show the effectiveness of this new representa-
tion on several downstream tasks.

The main contributions are:

• Performed extensive analyses of how close the
representations of pretrained language mod-
els are to the one of collected human-written
definitions; our analyses show that the repre-
sentations of BERT do not reflect the human-
written definitions.

• Incorporated the dictionary definitions into
the pretrained language models in embedding-
level–As a new model called DefBERT (§4),
showing significant performance improve-
ments where tasks lack contextual informa-
tion.

• Proposed two semantics-related ranking tasks:
DefRank aims to find the correct definition
given the word, and SenseRank is to find the
proper sense from a word’s definitions given
the word’s usage. Unsurprisingly but inter-
estingly, DefBERT shows significant improve-
ments in both tasks.

2 Related Work

Using dictionaries for NLP tasks.
Dict2vec (Tissier et al., 2017) learned word

embeddings through word-definition pairs. They
designed strong and weak word pairs within
dictionaries and made the word pairs close. Bah-
danau et al. (2017) utilized dictionaries to solve
out-of-vocabulary (OOV) problems by encoding
the definitions of OOV words and generating the
word’s embeddings. Hill et al. (2016) suggested
a dictionary-based learning task using neural
networks. They also suggested reversed dictionary
evaluation tasks that choose the most related
word to a given description. Like dictionaries,
WordNet (Miller, 1995) has been widely used to
enrich word representations (Faruqui et al., 2015).
However, the prior works were biased to inject
relation knowledge, such as synonyms, rather than
general word definitions.

More recently, GlossBERT (Huang et al., 2019)
used definitions for disambiguation tasks, but the
approach needs context-gloss pairs and a classi-
fier even at inference. In this work, we attempt to
build a generalized model which does not require
additional classifiers.

Definition Modeling. The definition modeling
task was proposed by Noraset et al. (2017) that gen-
erates a word definition from the word’s embedding.
The authors considered the definition modeling as
a special case of language modeling and used it for
word embedding evaluation. However, Gadetsky
et al. (2018) found that the prior definition model-
ing tasks could not resolve word disambiguation
because it is conditioned on only a single word. To
address the issue, they also extended Noraset et al.
(2017)’s model to process context.

Chang and Chen (2019) investigated whether
contextual representations can capture word defini-
tions. Unlike the prior works on definition model-
ing, they suggested a general framework that maps
the contextualized representation into a definition
embedding space and then selects top-N closest
definitions. This retrieval-based approach can re-
solve the problems in the generative approach of
definition modeling, such as the difficulty in evalu-
ation.

The major differences between the prior works
and our study are as follows: First, we compare rep-
resentations from pretrained language models and
definitions from a lexical dictionary at embedding-
level. Second, we use word-definition pairs and
definition-example pairs from the dictionary. The
use of words in a sentence is similar to GlossBERT,
but its objective is not to make definition-injected
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Chang and
Chen (2019)

Oxford+
(Ours)

# Words (W) 31,889 30,533
# Definition (Def) 79,105 93,227

# Examples (Exam) 707,001 1,167,055
Avg./Max. # Def by Word 10.6/65 10.5/51
Avg./Max. # Exam by Def 17.8/46 18.0/85

Sense order N Y

Table 2: Comparison of dictionary datasets. We build
on and augment the prior work. The differences in the
number of words, definitions, and examples are due to
updates.

representation. Rather it is to solve sense disam-
biguation tasks. The method also requires an ad-
ditional classifier. Lastly, we propose two tasks
that can measure the capability of model repre-
sentations on human-written definitions (and ex-
amples): DefRank and SenseRank. Compared to
other benchmark datasets that predict how similar
two words or sentences are, we expect these tasks
to be a straightforward benchmark.

3 Preliminary Analyses

The central motivation behind our analysis is to
check whether a word representation in pretrained
language models (in this work, BERT) can indicate
the representation of its definition and vice versa.

3.1 Definition Dataset Collection: Oxford+

In prior work, Chang et al. (2018); Chang and
Chen (2019) collected an online dictionary from
lexico2 (Oxford University Press, 2020). Since
our work requires up-to-date definitions, we re-
collected the dataset based on the vocabulary of the
original work.

Table 2 shows the comparison and statistics of
the dictionary data. The number of unique vocab-
ulary is slightly different from the previous one.
However, when considering the number of defini-
tions and the number of examples increases, we
think that the difference is due to the updates of
lexico dictionary. Dictionaries usually order word
senses by how frequently the senses are used, so
the order information is important for investigating
major versus minor definitions. Due to the more
extensive coverage of usage and definitions, and ad-
ditional information, we call our dataset Oxford+.

2https://www.lexico.com but recently it is redirected
to https://www.dictionary.com

From Oxford+, we take two sets of pairs and
calculate the distances: one is a pair between a
word and its definition (W-D), and the other is a pair
between a definition and its usage (D-E) where the
pairs are embedded by pretrained language model.

3.2 Distance Measures

Embedding scheme. We use bert-base-uncased
in HuggingFace (Wolf et al., 2019) as a backbone
model.3 Although there are several different ways
to represent a word or sentence using BERT (e.g.,
averaging [CLS] in every hidden layer, concatenat-
ing [CLS], etc.), we use the [CLS] token in the last
hidden layer, as the original BERT paper proposed.

For all definition-example pairs, we first input
the example through BERT and then use the target
word tokens in the example instead of using the
[CLS] token (see Figure 1). We average their vec-
tors if the target word is tokenized by more than
one token.

Let i be the word index, i j be the definition index
of the j-th definition of the i-th word, and i jk be
the index of the k-th example of the j-th definition
for word i. Following our central motivation, the
distance |Wi − Di j| between a word Wi and one of
its definitions Di j is calculated by mean squared
distance. Likewise, the distance |Di j −Ei jk| between
a word used in an example Ei jk and its definition
Di j is calculated by mean squared distance.4

In order to compare BERT’s ability to cap-
ture human-written definitions, we need to control
BERT’s inputs and weights. We thus use (1) [PAD]
masked inputs on the target word and (2) BERT
with random weights. or example, suppose the em-
bedding of empty input (BERT([PAD] ... [PAD]))
is closer to the definition embedding (BERT(D))
than a single word embedding (BERT(W))). In that
case, BERT does not seem to capture definition in-
formation through the inputs. The controls by [PAD]
will be denoted as W[PAD] for word and E[PAD] for
usage example, respectively. The [PAD] controlled
inputs are also illustrated in Figure 1. Likewise,
if BERT with random weights performs better,
BERT’s pretrained weights do not have informa-
tion about human-written definitions. We denote
the controlled model as Rand. With this idea, we
can define distance types.

3In the experiment (§5.1), further fine-tuning through
masked language modeling loss over collected definition
datasets improves model performances a little. However, we
focus on the pretrained representation of vanilla BERT.

4Likewise, |Wi − Ei jk | can be measured but it is out of our
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Figure 1: Illustration of word-definition distance and definition-example distance from embedded vectors of the
word ‘cinderella’ (left), the definition “a person or thing ... ignored”(middle), and example “this is the cinderella of
... erratic funding.” (right). The target token is underlined and highlighted with the boxes. [PAD] means an empty
token to be considered meaningless. Best viewed in color.

Figure 2: The distribution of |Wi − Dw j | where i is the
index for word ‘love’. The blue bars show log-scaled
counts of all the definitions’ distances from the target
word. The red bars indicate the distance from the differ-
ent senses of the target words’ definitions.

Distance Types. For each word-definition pair
and each definition-example pair,
• |W-D| : computes the distance between the

original input vector (INPUT in Figure 1) and
the definition vector for each layer.
• |W[PAD]-D| : computes the distance between the

padded input vector (PAD INPUT in Figure 1)
and the definition vector for each layer.
• |Rand W-D| : is the same as |W-D|, but all the

model weights are randomly initialized.
• |D-E| : computes the distance between the

definition vector and the target word vector

motivation since the pair does not use definition.

used in the example sentence.
• |D-E[PAD]| : computes the distance between

the definition vector and the padded target
word vector in the example.
• |Rand D-E| : is the same as |D-E|, but all the

model weights are randomly initialized.
To sum up, the padded inputs and the randomized
weights are used to contaminate the model rep-
resentation. If the contaminated embeddings are
closer to definitions than the vanilla input or model
embeddings, the model representation is not mean-
ingful.

3.3 Findings

Distribution of Distances. We visualize the dis-
tances between a target word ‘love’ and all defi-
nitions in Oxford+ (Figure 2). As we showed in
§1, the closest (or most similar) word to ‘love’ was
‘number’. The definitions of ‘love’ are scattered
over the distribution, indicating how BERT’s rep-
resentation of ‘love’ is far from its human-written
definitions. We observe similar patterns in most
words in the dictionary.

The pretrained representation of a word alone
is not indicating its human-written definitions.
Figure 3 (top) shows the averaged word-definition
distances according to hidden layers. The distance
of |W-D| is smaller than |W[PAD]-D| distance across
all the hidden layer depth. Since the difference
between them is only the input, the word itself in-
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Figure 3: The average distances of |W-D| (top) and
|D-E| (bottom) according to distance types (§3.2). Best
viewed in color.

cludes information about the human-written defini-
tions definition. In the same plot, however, the dis-
tance of randomized BERT |Rand W-D| is much
lower than |W-D| and |W[PAD]-D| at upper layers,
which casts doubt about BERT’s pretrained weights
whether they can represent human-written defini-
tions. We thus conjecture that using a word alone is
not appropriate for a contextualized representation
since a single word lacks context.

To provide more context for the model, we con-
duct a second experiment to compare the defini-
tion’s representation to its usage in the example
sentence where pretrained language models have
shown strong performances.

BERT can self-indicate better by using sur-
rounding words but it still fails to capture the
human-written definitions. Figure 3 (bottom)
shows the definition-example distances. The dis-
tances of |D-E| and |D-E[PAD]| shows similar
trends but |D-E[PAD]| is smaller at the last hidden
layer. The result shows the tokens are less self-
indicated in the sentences, while the averaged dis-
tance of the randomized model is much smaller
than in ordinary settings.

From this analysis, the pretrained language
model (especially BERT) seems unable to encode
human-written definitions, as |Rand W-D| and

|Rand D-E| show lower distance than |W-D| and
|D-E|, respectively. Also, the distances between
the vanilla BERT and the padded models are small,
which tells us that it might have potential benefits
by adding semantic information.

4 DefBERT: Definition Induced BERT

Using lexical resources for fine-tuning word em-
beddings is a typical solution to take advantage of
both lexical semantics and distributional semantics.
However, as seen in §3, the lexical relations, such
as antonyms and synonyms, are unnatural to be in-
tegrated with pretrained language models. On the
other hand, dictionary definitions and examples are
expressed as complete sentences, leading to better
settings for optimizing the pretrained models.

Based on the analysis (§3), we present a simple
yet effective method to integrate general definitions
from a dictionary with pretrained representations
while keeping the nature of contextualization. The
setup of BERT for fine-tuning is the same as Fig-
ure 1; we then fine-tune BERT using the distances
as a loss function.

By doing so, we optimize BERT’s representation
to be close to its human-written definitions (W-D)
and its word representation used in the examples
(D-E). The loss functions used for each pair are as
follows:

LW-D =
1

#W × #D

∑

i

∑

j

√
(Wi − Di j)2 (1)

LD-E =
1

#W × #D × #E

∑

i

∑

j

∑

k

√
(Di j − Ei jk)2

(2)

where i is the word index, j is the definition in-
dex of the j-th definition of the i-th word, and i jk is
the index of the k-th example of the j-th definition
for word i. The number of words, definitions, and
examples are denoted as #W, #D, and #E, respec-
tively. We use Adam optimizer (Kingma and Ba,
2014) with learning rate 5e-6, and 32 batch size.
The maximum token length from our definition
data is 191, including special tokens (e.g., [CLS]
and [SEP]), but we utilize the model’s maximum
capacity, which is 512.

However, as we observed in the analysis (§3), the
pretrained embeddings of source and target words
(i.e., W, D, and E) might not be appropriate to be
trained. Therefore, we additionally design loss
functions, which utilize the other dictionary infor-
mation: the distance between [CLS] token of W and
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Easy set: target word “love” B D

C∗1 affectionate greetings conveyed to someone on
one’s behalf.

4 1

C2 persist in an activity or process. 1 3
C3 a device for reducing mechanical vibration, in

particular a shock absorber on a motor vehicle.
2 4

C4 denoting popular black culture in general. 3 2

Challenge set: target word “love” B D

C∗1 feelings of deep affection. 4 1
C2 regarded with deep affection. [dear] 2 4
C3 inspiring affection. [endearing] 1 3
C4 deep love and respect. [adoration] 3 2

Neologism set: target word “ohana” B D

C∗1 especially in hawaii: a family, including mem-
bers of an extended family, as well as close
friends and associates.

4 1

C2 a trouser leg. 1 4
C3 absence of difficulty or effort. 2 3
C4 an estimation of the quality or worth of some-

one or something.
3 2

Table 3: Examples in DefRank easy (top), challenge
(middle), and neologism (bottom) set. * indicates the
gold definition. B and D mean the rank predicted by
BERT and DefBERT, respectively.

W tokens itself (W’) to align the token embedding(s)
to [CLS] token. Likewise, the distance between W
and E is used.

LW-W’ =
1

#W

∑

i

√
(Wi − W’i) (3)

LW-E =
1

#W × #D × #E

∑

i

∑

j

∑

k

√
(Wi − Ei jk)2

(4)

We use the additional loss functions for calibration
of DefBERT. As a result, we can provide all the
information in the dictionary self-supervised way.

In the training process, we prepare two BERT
models in order to make the training fast and keep
BERT’s original properties; One of BERT model
makes prediction and update its weights by the
loss(es), while the other BERT model only makes
prediction used for target embedding. The target
BERT is copied in every epoch. After the training,
the fine-tuned BERT is selected.

5 Experiments

5.1 DefRank: Definition Ranking Task

Setup. To evaluate the ability of pretrained word
vectors to capture human-written definitions at
embedding-level (i.e., without classifiers), we
present a task called Definition Ranking (DefRank).

Given a word, the model predicts the closest word
definition among four candidate definitions. The
main idea is similar to Chang and Chen (2019),
but DefRank looks at only a word and does not
require additional mapping function in the evalua-
tion framework, which corresponds to our goal–get
a general embedding model. We assign approxi-
mately 10% of data to test set5.

DefRank has two sets based on task difficulty:
Easy set and Challenge set. The candidate defi-
nitions in the easy set are randomly sampled from
Oxford+. On the other hand, candidate definitions
in the challenge set are selected by the closest three
definitions except for the gold definitions. We use
Sentence-BERT (Reimers and Gurevych, 2019) to
choose similar and negative examples as an adver-
sarial constraint. Therefore, models are supposed
to capture the subtle differences in meaning among
the definitions of words such as love, dear, endear-
ing, and adoration. Table 3 (top) and Table 3 (mid-
dle) show the examples.

Furthermore, the easy set has a sub-set called
Neologism set, which consists of a newly coined
word or expression. Thus, we can evaluate the
models’ ability even when the words never appear
in the (pre-)training data.

To collect neologisms, we refer to the update
notes of Oxford Dictionary and consider ‘new word
entries’ as neologisms. We then process them by
removing words that require a subscription to see
the full definition and references in definitions to
other similar words (e.g., See, Cf. and explanations
after ‘;’). The number of collected neologisms is
345. Table 3 (bottom) presents the example of
neologism.

We compare BERT variations, such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), Sentence-BERT (Reimers and Gurevych,
2019), and GlossBERT (Huang et al., 2019). Be-
sides, we report the performance fine-tuned by
masked language modeling on the definition data.
In the masked language training, we set an artificial
template that “the definition of W is D and its exam-
ple is E.” As we mentioned in §4, W-W’ pairs and
W-E pairs are used for model calibration, denoted
as [+W’] and [+E], respectively.

We also empirically find the optimized pair se-
lection of DefBERT, which shows the best perfor-
mances in DefRank, denoted as BestSelect6).

5After we post-process to clean the test data, the ratio
becomes approximately 9%

6The best sequence of training is [+E]+W-D+D-E+[+W’].
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Model Easy Chal. Neo

Randomized BERT 29.11 26.52 31.01
BERT-base 32.41 25.81 36.52
BERT-base(MLM-FT) 36.32 26.04 29.28
BERT-large 33.91 25.79 36.81
RoBERTa-base 26.07 25.84 62.98
Sentence-BERT 75.08 ∗30.45 65.22
GlossBERT 49.58 26.93 52.17
ConceptNet 83.88 32.58 35.36

DefBERT(W-D) 60.11 27.92 51.59
DefBERT(D-E) 74.28 31.11 70.72

DefBERT([+W’]) 61.65 29.51 49.28
DefBERT([+E]) 78.55 31.53 68.12
DefBERT([+W’]W-D) 74.22 30.59 60.58
DefBERT([+E]W-D) 83.27 32.29 69.28
DefBERT([+W’]D-E) 79.04 32.32 68.99
DefBERT([+E]D-E) 80.73 32.54 67.25

DefBERT(BestSelect) 84.67 33.76 70.43

Table 4: DefRank performance (top-1 accuracy) in
the test set. [+] denotes the model calibrated with the
dataset. ∗We acknowledge that Sentence-BERT is not a
fair comparison in the challenge set, but see its perfor-
mance on the other sub-tasks (easy and neo).

Finally, we will report the BestSelect model per-
formance.

Results. Table 4 shows the performance on the
DefRank task. Considering the high performance
of Sentence-BERT, our tasks are well-designed to
examine the semantics incorporated in model rep-
resentations. The results show that fine-tuning by
masked language modeling is ineffective in the per-
formances. Besides, GlossBERT does not perform
well on these tasks, which implies that the word
disambiguation model largely depends on the clas-
sifiers at the end of the architecture.

Our variations of DefBERT show much better
performance since we train models with a similar
distribution. However, it is interesting that D-E
pairs increase the model performances more, even
though W-D pairs are directly related to the tasks.

The performance gaps between baselines and our
variations are small for the challenge set. Therefore,
the challenge set is very hard to distinguish the
subtle variation of semantics, requiring a deeper
understanding of definitions.

Lastly, we can find several properties of defi-
nition pairs. For example, calibrations with only
[+W’] or [+E] make significant improvements to
the model. The models starting with calibration per-
form much better than the models without calibra-
tions. We guess that BERT’s self-attention success-
fully normalize the model. Moreover, DefBERT

Input example “their love for their country”
for target word “love” B D

C∗1 an intense feeling of deep affection. 3 1
C2 a great interest and pleasure in something. 2 2
C3 affectionate greetings conveyed to someone on

one’s behalf.
4 3

C4 a formula for ending an affectionate letter. 1 4

Table 5: Examples in SenseRank task. * means the
gold definition. B and D mean the rank predicted by
BERT and DefBERT, respectively.

proves to be effective in neologisms. We conjecture
that DefBERT learns unseen words (and their to-
kens) through other words’ definitions. We also re-
port the performance of ConceptNet vector (Speer
et al., 2017). The representation is a strong baseline
since the embeddings are fine-tuned and special-
ized in a number of tasks regarding word seman-
tics. When evaluation, the sentence vectors are
made by averaging the word vectors. ConceptNet
shows good performance on the easy set and the
challenge set, which also tells us that DefRank
correlates with word semantics tasks while hardly
being correct in neologism. The combination of
various types of lexical resources (e.g., dictionary,
relation, WordNet) remains an interesting direction
for future work.

5.2 SenseRank: Sense Disambiguation Task
Setup. Extending from DefRank, we propose an-
other task SenseRank that distinguishes the differ-
ent senses of definitions for the same word. In
this setting, we provide a word and its usage, an
example sentence. Then, models select the most
appropriate sense of definitions among the word’s
definitions. Compared to Chang and Chen (2019),
SenseRank has to choose a gold definition among
the candidate definitions from the same target word.
Therefore, the task can be used to measure the
model’s ability to do fine-grained sense disam-
biguation.

Table 5 shows four definitions for the target word
‘love’. Given an example sentence, DefBERT cor-
rectly predicts the most similar sense of the def-
initions, while BERT fails. Similar to the chal-
lenge set of DefRank, the candidate definitions in
SenseRank are semantically very similar (i.e., the
variation of their senses), but this task has more
contexts than DefRank.

We filter out the words for which the number of
definitions is fewer than four. We then sample 10%
(115,849) as a test set.
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Model SenseRank

BERT-base 54.83
BERT-base(MLM-FT) 41.33
BERT-large 27.78
RoBERTa-base 43.23
Sentence-BERT 86.59
GlossBERT 52.25
ConceptNet 39.38

DefBERT(W-D) 74.94
DefBERT(D-E) 97.54
DefBERT([+W’]) 90.02
DefBERT([+E]) 93.76
DefBERT([+W’]W-D) 92.67
DefBERT([+E]W-D) 96.24
DefBERT([+W’]D-E) 97.02
DefBERT([+E]D-E) 96.51

DefBERT(BestSelect) 97.27

Table 6: SenseRank performance in the test set.

Results. Table 6 shows the performances on
SenseRank. Similar to the DefRank, the accuracies
from BERT variants are relatively low except for
Sentence-BERT, which is good at encoding seman-
tics. Apart from D-E pairs that is closely related
to SenseRank, other types of data pairs (i.e., W-D),
and +W’ and +E for calibration) increase the model
performances. Also, DefBERT with best selection
shows the largest improvement. The results indi-
cate that the setup of DefBERT learns the sense-
specific patterns between definitions and examples.
Moreover, ConceptNet performs worse than most
of the BERT-variants, showing that context is an
important factor in this task.

5.3 Downstream Task 1: Word-Similarity
Setup. Word similarity tasks can be used to evalu-
ate word representations. They make use of Spear-
mann correlations to assess agreement between
human ratings and computational representations
of the similarity between word pairs. We use the
evaluation tasks–WordSim (Finkelstein et al., 2001;
Agirre et al., 2009), RareWord (Luong et al., 2013),
MEN (Bruni et al., 2012), SemEval (Camacho-
Collados et al., 2017), SimLex (Hill et al., 2015),
and SimVerb (Gerz et al., 2016). For DefBERT, we
choose the best selection model in DefRank. Note
that there is no additional training on the word sim-
ilarity datasets.

Results. Table 7 shows performances on the
word similarity tasks. The other embeddings, ex-
cept for DefBERT show poor performances. Addi-
tional masked language modeling fine-tuning in-
creases the performance only a little. We conjec-

ρ × 100 W-S W-R RW MEN SEM SL SV Avg

BERT 23.1 1.8 5.3 19.1 10.8 7.2 0.8 9.7
BERT(FT) 30.8 13.0 6.5 17.7 10.5 5.6 2.5 12.4
Sent-BERT 33.1 23.2 40.6 60.6 49.3 61.9 49.9 45.5
GlossBERT 26.6 -3.6 25.7 30.8 30.7 28.3 15.0 21.9
DefBERT 71.6 51.8 46.7 76.5 58.7 53.2 41.1 57.1

Table 7: Model performances on word similarity tasks.
WordSim dataset is categorized into semantics (W-S) and
relation (W-R).

TREC SST2 IMDB

BERT 97.1(.3) 92.7(.2) 93.4(.1)
BERT(MLM-FT) 97.3(.3) 91.4(.4) 93.5(.1)
Sent-BERT 97.3(.2) 91.6(.3) 93.4(.1)
GlossBERT 96.8(.4) 91.3(.3) 92.9(.1)
DefBERT 97.3(.2) 92.7(.4) 93.3(.1)

Table 8: We reported five times averaged performance
on the text classification datasets. The dataset is ordered
by its average word length in instances, which is approx-
imately 10, 19, and 234, respectively.

ture that word similarity/relatedness tasks are very
challenging for pretrained and contextualized mod-
els because no context is given (see §6 for fur-
ther discussion). The result is the same as what
we found in our preliminary distance analysis on
word-definition pairs. On the other hand, DefBERT
largely closes the gaps among word, definition, and
usage, which leads to significant improvements
from BERT in all the datasets.

5.4 Downstream Task 2: Short Text
Classification

Setup. As we mentioned in §1 and showed in
the previous experiments §5, BERT embedding for
a word or short text did not make good represen-
tations. In order to generalize the effect of our
integration, we employ text classification datasets–
TREC (Hovy et al., 2001), SST-2 (Socher et al.,
2013), and IMDB (Maas et al., 2011). All the
datasets are relatively small, and the text length is
short in TREC and SST-2, whereas IMDB is rather
long. We report IMDB performance to show the
performance of long text.

As the original paper did, we use a [CLS] token
at the last hidden layers. The hyperparameters are
2e-5 for learning rate, 32 for mini-batch size. We
use Adam optimizer (Kingma and Ba, 2014). If the
dataset does not have a validation set, we assign
15% of the training set and use them for early-
stopping. The maximum length of tokens is 512.
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Results. We present the performance of text clas-
sification in Table 8. Compared to other meth-
ods, DefBERT shows comparable performance with
other baselines. Although the performance gap is
small (we guess that the baseline is already strong),
DefBERT shows the best performance on the short-
est dataset TREC, which has only maximum 37
words (by space). On the other hand, IMDB has ap-
proximately maximum 3000 words. Though Gloss-
BERT is also fine-tuned by external data (specifi-
cally, gloss), the result indicates that word disam-
biguation tasks are not related to representing a
single word or short sentence.

6 Conclusion and Further Discussion

We present a novel way of combining pretrained
contextualized representations and human-written
definitions from a dictionary. We first collect def-
initions and examples from an online dictionary
Oxford+. Our analyses with the dictionary show
that BERT’s representations do not incorporate
human-written definitions. Motivated by the find-
ings, we develop a new representation DefBERT,
by constraining BERT to human-written definitions
in the dictionary. In the experiments, we first pro-
posed definition ranking (DefRank) and sense dis-
ambiguation tasks (SenseRank) and DefBERT out-
performs other baselines. We also presented the ef-
fectiveness of DefBERT in downstream tasks: word
similarity benchmark and short text classification
tasks.

One of the contributions of this paper is to make
researchers revisit the old and traditional resource,
dictionaries. While resources, including synonyms,
antonyms, and other relations, are widely used to
improve models as a constraint, dictionaries are
less frequently used. However, the dictionary is the
basic form of word semantics and is a relatively ob-
jective resource compared to relational resources.

Furthermore, word-related resources are hard to
align with pretrained language models because the
weights are dynamic according to contexts. There-
fore, pouring resources can occur catastrophic for-
getting that the information previously trained dis-
appears. On this problem, we suggest a potential
approach to enhance semantics on the pretrained
weights, maintaining the nature of contextualized
encoder.

7 Limitations

The performances except for the proposed tasks.
We presented the result of neologism and the per-
formances on two downstream tasks (i.e., word
similarity task and short text classification), which
are closely related to the understanding of word
semantics. The selected downstream tasks are chal-
lenging for the contextualized models; they can use
only a few contexts to make a representation.

The performance in general benchmarks (e.g.,
GLUE) is almost the same as the vanilla BERT
because our model suffers catastrophic forgetting
while learning definition information. Sophisti-
cated modeling and training processes to overcome
the problem could be interesting future work.

The use of other models Other pretrained mod-
els like RoBERTa could be a base model of our
method (e.g., DefRoBERTa). However, we think
that BBPE tokens scarcely have semantic meanings,
which makes it hard to find appropriate tokens to
inject definition information. Therefore, integrat-
ing human-written definitions with other types of
tokens (e.g., Byte-Pair Encoding and Byte-level
BPE) is also a future direction.

The use of all the loss function& Collect more
definition data. Presenting more experiments
with other models, other collections of definition
data, and other loss functions will further support
our idea. Nevertheless, we want to show the per-
formances with the widely-used basic model of
pretrained language models (i.e., BERT), using def-
inition data from the previous work, with various
loss functions (e.g., W-D, D-E, [+W’], [+E])
as many as possible. A fine-grained combination of
all the loss functions could make further improve-
ments.
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