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Abstract

Many text classification tasks require handling
unseen domains with plenty of unlabeled data,
thus giving rise to the self-adaption or the so-
called transductive zero-shot learning (TZSL)
problem. However, current methods based
solely on encoders or decoders overlook the
possibility that these two modules may promote
each other. As a first effort to bridge this gap,
we propose an autoencoder named ZeroAE.
Specifically, the text is encoded with two sep-
arate BERT-based encoders into two disentan-
gled spaces, i.e., label-relevant (for classifica-
tion) and label-irrelevant respectively. The two
latent spaces are then decoded by prompting
GPT-2 to recover the text as well as to further
generate text with labels in the unseen domains
to train the encoder in turn. To better exploit
the unlabeled data, a novel indirect uncertainty-
aware sampling (IUAS) approach is proposed
to train ZeroAE. Extensive experiments show
that ZeroAE largely surpasses the SOTA meth-
ods by 15.93% and 8.70% on average respec-
tively in the label-partially-unseen and label-
fully-unseen scenario. Notably, the label-fully-
unseen ZeroAE even possesses superior per-
formance to the label-partially-unseen SOTA
methods.1

1 Introduction

Collecting human-labeled data often comes at a
high cost for many NLP tasks, since it typically
requires domain expertise and massive labeling
efforts (Beltagy et al., 2022). It is therefore de-
sirable and beneficial to consider the challenging
(generalized) zero-shot learning (ZSL) that aims
to adapt a learner to unseen domains or even un-
seen tasks without any annotated data (Zhang et al.,
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2020). In particular for the text classification prob-
lem, Yin et al. defines ZSL under two scenarios:
label-partially-unseen and label-fully-unseen. The
former demands domain adaptation that general-
izes the model to classify text of unseen classes
whose labeled data are unavailable during train-
ing. As a further step, the latter requires general-
purpose ZSL models for new task adaption without
requiring labeled data at all. The key to ZSL lies
in improving the generalization performance by
utilizing external knowledge (Chen et al., 2021).

Since pretrained language models (PLMs) mem-
orize rich sources of external knowledge when
being pretrained on a large text corpus, they can
serve as an extremely powerful hammer for ZSL.
Existing PLM-based ZSL approaches concentrate
on either encoder-based (i.e., discriminative) or
decoder-based (i.e., generative) models.2 Specifi-
cally, encoder-based methods (Yin et al., 2019; Ye
et al., 2020; Liu et al., 2021a; Alcoforado et al.,
2022) typically treat text classification as a text en-
tailment (TE) or a QA task, and fine-tune BERT
or RoBERTa (Liu et al., 2019) as the embedding
function to match the texts and labels in the seen
classes. These methods then generalize to the un-
seen classes using the same embedding function
and select labels that can best match the text se-
mantically. As pointed out in (Ma et al., 2021), the
BERT-based models could suffer from the issue of
large uncertainty for unseen class generalization.
Hence, labeled data are still required to stabilize
the performance. On the other hand, decoder-based
methods (Ye et al., 2022; Gao et al., 2022) attack
the ZSL problem from the aspect of data augmen-
tation. They employ GPT-2 to generate training
data for the unseen classes given the labels, and
next train a classifier based on the augmented data.
Unfortunately, the data yielded by GPT-2 (i.e., the
decoder-based methods) may contain a large por-
tion of low-quality samples that are detrimental

2A more comprehensive review is provided in Appendix A.
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to the training of the classifier. Worse still, GPT-
2 in these approaches cannot be fine-tuned in an
end-to-end manner to soften this issue. Although
GPT-3 can alleviate the data quality problem to
some extent, the dauntingly huge size precludes its
widespread use (Brown et al., 2020). One promis-
ing solution to the above issues is to combine the
encoder and the decoder-based models: the former
may help to filter out the data of low quality given
by the latter, while the latter can generate data with
labels to boost the performance of the former.

Apart from PLMs, another source of external
knowledge is unlabeled data. In practice, we of-
ten have access to abundant unlabeled data, and
such data can assist in familiarizing the domain
(or task) agnostic PLMs with the target domain (or
task) (Rahman et al., 2019; Gera et al., 2022). The
resulting zero-shot learning with unlabeled data is
called transductive (generalized) zero-shot learning
(TZSL). One appealing approach for TZSL is to in-
volve the unlabeled data in a self-training loop (Ye
et al., 2020; Wang et al., 2021a, 2022; Gera et al.,
2022) by iterating between 1) estimating pseudo
labels for all unlabeled data given an encoder-based
model (e.g., a BERT-based TE model) and 2) re-
fining the encoder-based model using the pseudo
labels with high confidence. However, these self-
training methods may lead to the problem of error
accumulation (Wang and Breckon, 2020), that is,
the mistakenly pseudo-labeled data in one iteration
can severely affect subsequent iterations and the
final predictions.

In this paper, we propose an autoencoder frame-
work for TZSL. It harnesses the strength of both
PLMs and unlabeled data, while at the same time
bringing the best from the encoder-based and the
decoder-based methods together. We name the re-
sulting model ZeroAE and it is to our knowledge
the first approach that aims to solve the TZSL prob-
lem in NLP from the perspective of autoencoders.
Particularly, we specify the encoder and the de-
coder to be fine-tuned BERT and GPT-2 respec-
tively. To enable the two PLMs to promote each
other and to further self-adapt to the task at hand,
we design two main types of data flows in ZeroAE:
text reconstruction flow and label reconstruction
flow. The first one aims to recover the text data
after inputting it to the encoder and subsequently
the decoder, while the second tries to recover the
label after first generating text given the label via
the decoder and then predicting the label given the

generated text via the encoder. Furthermore, we
assume that the latent space can be split into two
parts: label-relevant and label-irrelevant. These
two parts are discrete (vector-quantized), disentan-
gled, and are given by two different encoders (i.e.,
fine-tuned BERT). Only the label-relevant part is
used for classification to remove the interference
from the label-irrelevant part, while both parts are
required for text reconstruction and generation. Ad-
ditionally, to better handle the unlabeled data, we
also adopt contrastive learning, and further pro-
pose a simple yet effective method named indirect
uncertainty-aware sampling (IUAS) to train Ze-
roAE, allowing the model to pay more attention to
those unlabeled data with high uncertainty as the
training process proceeds and lowering down the
uncertainty with the assistance of GPT-2.

In summary, our key contributions are:
• To our best knowledge, we are among the first

to propose an end-to-end autoencoder, ZeroAE,
for TZSL in NLP, which seamlessly integrates
the encoder and decoder-based models. By de-
signing the text and label reconstruction flows,
we allow BERT and GPT-2 to promote each
other and equip them with the capability of
auto-calibration to unseen domains and tasks.

• We propose a novel method named IUAS to
train ZeroAE, gradually focusing on those unla-
beled data with high uncertainty and reducing
the uncertainty with the help of GPT-2.

• We further incorporate several advanced tech-
niques into ZeroAE to boost its performance,
including contrastive learning, latent space dis-
cretization, disentanglement, and prompting.

• We demonstrate the usefulness of ZeroAE
through extensive experiments on four real-
world datasets for TZSL under the two settings:
label-partially-unseen and label-fully-unseen.
ZeroAE greatly outperforms the existing PLM-
based methods by 15.93% and 8.70% on aver-
age respectively in the two settings. Remark-
ably enough, ZeroAE without labels is even
superior to the existing methods with labels.

2 ZeroAE

We begin this section by defining the transductive
(generalized) zero-shot learning (TZSL) problem.
Let DS =

{
(xS

i ,y
S
i )
}

and DU =
{
(xU

i ,y
U
i )

}

denote the data for seen and unseen classes respec-
tively, where xi is the text, yi is the label corre-
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Figure 1: The overall architecture of ZeroAE. ZeroAE consists of five modules, including 1 a label-relevant encoder, 2 a
label-irrelevant encoder, 3 a classifier, 4 a discriminator, and 5 a decoder.

sponding to xi, and i is the sample index. Note
that yi can only take values from {y1, · · · , yC},
where yj denotes the class name for class j and
C is the number of classes. For label-partially-
unseen TZSL, labeled data from DS and unlabeled
data from DU are utilized to train the model. We
then test the model under the assumption that the
labels are from both seen and unseen classes. The
objective of label-partially-unseen TZSL is to con-
duct domain adaption automatically from seen to
unseen classes. On the other hand, for label-fully-
unseen TZSL (a.k.a. extremely weakly supervised
learning (Wang et al., 2022)), we take one step fur-
ther, and only use unlabeled data from both DS

and DU to train the model. This challenging task
requires the model to self-adapt to the new task at
hand given no labeling information for the task.

In order to solve the TZSL problem, we propose
ZeroAE in this paper, whose overall architecture
is shown in Figure 1. As mentioned in the intro-
duction, there are two major types of data flows
in ZeroAE, namely, the text reconstruction flow
(denoted by the blue arrows) and the label recon-
struction flow (denoted by the orange arrows). To
provide an illuminating overview of ZeroAE, we
mainly follow the text reconstruction flow and de-
scribe an example of how ZeroAE processes one
sentence xi for the purpose of topic categoriza-
tion. Suppose that the text xi is “Could stress or

an unhealthy diet trigger lung cancer?”. We first
encode the text into two disentangled latent spaces
zR and zI with two separate encoders (see 1 and
2 ). The first latent space zR characterizes the

label-relevant information, such as “stress”, “un-
healthy diet”, and “lung cancer”, while the second
zI represents the label-irrelevant information, such
as the syntax “Could ... ?”. The label-relevant in-
formation is further inputted into a classifier (see
3 ) in order to find the correct topic, i.e., “health”.

A discriminator (see 4 ) is introduced to guarantee
that the two latent spaces are disentangled so the
label-irrelevant information cannot adversely affect
the classifier. Finally, the two latent embeddings
are fed into the decoder (see 5 ) so as to recover the
original text xi. Next, we elaborate on each mod-
ule of ZeroAE. For ease of exposition, all notations
in this paper are summarized in Table 10.

2.1 Label-Relevant Encoder and Classifier

The label-relevant encoder EncR is a fine-tuned
BERT (L=12, H=768, total parameters=110M). We
fix the first 10 layers and fine-tune the remaining
two layers. Concretely, we follow the framework
of text entailment (Yin et al., 2019), and pack the
input text xi with all C candidate labels y1:C like
“[CLS] xi [SEP] hypothesis of yj [SEP]”, where
j = 1, · · · , C. As EncR aims to extract features
for classification, we regard the [CLS] token in
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BERT as the output of the encoder, namely,

zR
ij = EncR(xi, yj). (1)

For labeled and generated data, we further in-
put the embeddings from all candidate classes
[zR

i1, ...,z
R
iC ] to a linear classifier Cls, and obtain

the C-dimensional vector sRi of the classification
probability as:

sRi = Cls([zR
i1, ...,z

R
iC ]). (2)

The corresponding classification loss is:

Lcls = H(f(yi), s
R
i ), (3)

where H represents the cross entropy, and f(·) is a
function that converts yi to a one-hot vector whose
j-th element equals 1 if yi = yj . Meanwhile,
the predicted class ŷi for xi is given by ŷi = yc,
where the index c = argmaxj s

R
ij and sRij denotes

element j in the vector sRi .
Additionally, contrastive learning is also ap-

plied to train EncR in order to enhance the per-
formance of ZeroAE on the unlabeled data. Given
the text data xi, the easy data augmentation (EDA)
method (Wei and Zou, 2019) is exploited to gener-
ate the positive (i.e., similar) samples x′

i. Specifi-
cally, we perform three random operations on xi

with probability 0.1, including synonym replace-
ment, random insertion, and random deletion of
words. We do not use the swap-two-words opera-
tion in (Wei and Zou, 2019) though, so as to retain
the semantic structure of the sentences. On the
other hand, the negative (i.e., disimilar) samples
of xi are chosen as the remaining texts xj in the
same batch. The resulting contrastive loss can be
expressed as:

Lcon =
cos

(
zR
ic, z

R
ic
′)

∑
j ̸=i cos

(
zR
ic, z

R
jc

) , (4)

where zR
ic = EncR(xi, yc), ŷi = yc is the predicted

class for xi, and cos denotes cosine similarity. Min-
imizing the above loss yields an embedding space
where the semantically similar text pairs are nearby
whereas the dissimilar ones are distant from each
other, and offers the opportunity for discovering
the decision boundaries between different classes.

2.2 Label-Irrelevant Encoder
The label-irrelevant encoder EncI is also a fine-
tuned BERT. As the task here is to extract label-
irrelevant features, which differs substantially from

the pretraining tasks of BERT, we fine-tune the total
12 layers. Since the label-irrelevant features such as
the syntax are related to the entire sentence, we use
the mean pooling of the last layer as the embedding
of the text. In addition, similar to the output zR of
EncR, we also discretize this latent space zI , by
means of vector quantization (VQ) (Van Den Oord
et al., 2017). Discrete latent space is proven to be
advantageous to its continuous counterpart for text
generation due to the discrete nature of NLP (Ji and
Huang, 2021). VQ helps the latent space model
to circumvent the issue of posterior collapse (i.e.,
the latent variables are ignored in the decoder),
which often plagues pretrained VAEs (Li et al.,
2020; Xu et al., 2020). Concretely, we introduce
a codebook e = [e1, · · · , eK ] with size K = 32
to represent the discrete latent space as shown in
Figure 1. The output of the encoder EncI(xi) is
compared to the codebook, and the codeword ek
closest to EncI(xi) in terms of Euclidean distance
is chosen as the latent representation of xi. Framed
mathematically,

zI
i = argmin

ek∈e
∥EncI(xi)− ek∥22. (5)

The codebook is updated along with the parame-
ters of EncI , in analogy to k-means clustering, to
minimize the within-cluster distance. The corre-
sponding VQ loss can be written as:

Lvq =∥ sg[EncI(xi)]− e∥22
+ β∥EncI(xi)− sg[e]∥22, (6)

where sg stands for the operation “stop gradient”
that prevents the gradient from flowing through
that part of the equation. The first term fixes the
encoder and aligns the codebook e such that the K
codewords inside are as close to the encoder output
sg[EncI(xi)] as possible. The second term in turn
fixes the codebook and updates the parameters of
the encoder such that the encoder output commits
as much as possible to its closest codeword. β here
is a tuning parameter dictating the importance of
the second term. We follow (Van Den Oord et al.,
2017) to set β = 0.25.

2.3 Discriminator for Latent Space
Disentanglement

To mitigate the possible negative impact of zI

on the classifier, we borrow the idea from factor
VAE (Kim and Mnih, 2018) and encourage the two
latent spaces zR and zI to be disentangled, that
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is, q(zR, zI) = q(zR)q(zI).3 Let a positive sam-
ple z+ denote the concatenated label-relevant and
label-irrelevant embeddings [f(ŷi), z

I
i ] resulting

from the same text xi and a negative sample z− de-
note the concatenated embeddings [f(ŷi), z

I
j ] that

are never from the same text in one epoch.4 The
independence between zR and zI can be achieved
by firstly training a discriminator to distinguish the
positive samples from the negative ones and sec-
ondly training the remaining parts of ZeroAE to
fool the discriminator. These two steps are iter-
ated in every epoch. To this end, the discriminator
loss function for training the discriminator can be
expressed as:

Ldisc = − log
(
Disc(z+)

(
1−Disc(z−)

))
, (7)

where Disc stands for the linear discriminator. The
disentanglement loss for training the remaining
parts of ZeroAE can be written as:

Ldise = − log
(
Disc(z−)

)
. (8)

Note that we randomly sample M pairs of (z+, z−)
in each epoch and average the above two losses
over them.

2.4 Decoder
After obtaining the label-relevant and label-
irrelevant embeddings (zR

i , z
I
i ) of text xi, we aim

to reconstruct the text given the two latent embed-
dings by means of the decoder, that is,

x̂i = Dec(g(ŷi), z
I
i ), (9)

where Dec is a GPT-2 (L=12, H=768, total parame-
ters=124M). We fix the first six layers and fine-tune
the other six in GPT-2 when training ZeroAE.

In addition, the first input to the decoder is g(ŷi),
where the predicted label ŷi is derived from zR

i (cf.
Section 2.1), and g(·) represents the prompting
function that projects the label name to a sentence
via a template. In the example of topic catego-
rization, suppose the topic ŷi is “health” and the
template is “The news with topic ŷi is: ”, then

3We use q here following the notations in VAE. q(z) =∫
p(x)q(z|x)dx, where p(x) denotes the distribution of the

observed text and q(z|x) denotes the outputs of the encoders.
4To increase the number of positive and negative samples

and to stabilize the performance of the discriminator, we fur-
ther define z+ = [f(ŷi),z

I
i1,z

I
i2] and z− = [f(ŷi),z

I
i1,z

I
j ],

where zI
i1 and zI

i2 are randomly chosen from those that can
be paired with zR

i in this epoch, and zI
j is randomly chosen

from those that can never be paired with zR
i .

the prompting function g will return the sentence
“The news with topic health is: ”. Note that we
use the true and the predicted label name (i.e., yi

and ŷi) respectively for the labeled and unlabeled
data as the input to g. The sentence given by g
then guides GPT-2 to generate x̂i by acting as the
initial condition in the autoregressive model. The
merit of using g(ŷi) is that it converts the “black
box” latent variable zR

i to a sentence that can be
directly interpreted by GPT-2, even without any
fine-tuning, greatly facilitating the reconstruction
and generation of text related to the label.

On the other hand, the label-irrelevant latent vari-
able zI

i is fed into GPT-2 via cross attention and
serves as the key and value in the attention mecha-
nism. Hence, GPT-2 can generate sentences in light
of the label-irrelevant features. Once we obtain the
reconstructed text x̂i from Eq. (9), we can com-
pute the reconstruction loss as the cross entropy
between the original and the reconstructed text:

Lrec =
∑

j
H(f(xij), x̂ij), (10)

where we abuse the notations x̂ij for convenience
to denote the estimated probability of word j in
the reconstructed text x̂i taking the values in a
predefined vocabulary, and f(xij) represents the
one-hot vector corresponding to the true word.

In a nutshell, the overall objective function can
be written as:

min
Θ

Ldisc(Θ) + min
Ψ

Lrem(Θ,Ψ), (11)

where

Lrem = Lrec +Lvq +Lcon +Ldise +Lcls, (12)

and Θ and Ψ respectively denote the parameters
of the discriminator and the remaining parts of
ZeroAE. Note that in the above expression (11)
we recursively update the discriminator (parame-
terized by Θ) and the remaining parts of ZeroAE
(parameterized by Ψ), in a similar manner to GAN.

2.5 Indirect Uncertainty-Aware Sampling
It follows from the above discussion that the
labeled data are invoked in all loss functions
in Eq. (12), and the unlabeled data are concerned
with all but the classification loss, while the gen-
erated data are only used in the classification loss.
Note that both the labeled and generated data are
associated with labels. Unlabeled data, neverthe-
less, may present high classification bias and un-
certainty during training. Pseudo labeling (Wang
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et al., 2021a) may be helpful to reduce the uncer-
tainty, but it typically leads to the problem of er-
ror accumulation (i.e., bias) (Wang and Breckon,
2020). Different from pseudo labeling, we bor-
row the ideas from curriculum learning (Soviany
et al., 2022) and uncertainty sampling in active
learning (Aguilar et al., 2021) and propose an indi-
rect uncertainty-aware sampling (IUAS) procedure
to train ZeroAE. Viewed one way from curricu-
lum learning, we intend to concentrate more on the
“hard” samples with high uncertainty as the training
process proceeds. Curriculum learning is known
to achieve higher convergence speed and better ac-
curacy without extra computational cost (Soviany
et al., 2022). Viewed another way from uncertainty
sampling, in order to reduce the uncertainty, we
would like to simulate similar samples from the
decoder GPT-2. These generated data have labels,
which can help the encoder to better distinguish the
unlabeled data with high uncertainty.

To move forward to these goals, we propose to
conduct data selection by removing the unlabeled
data whose probability of belonging to a class is
larger than a threshold τ = 0.8 at the beginning of
every training epoch. In other words, we remove
the data with small uncertainty but retain those
with large uncertainty. Owing to the text recon-
struction flow, GPT-2 can be gradually fine-tuned
to generate samples similar to the retained unla-
beled data. Meanwhile, in the label reconstruction
flow, we further store the generated data from all
previous epochs (denoted as DG), randomly pick
CK samples in each epoch from DG, and use them
to train the label-relevant encoder and the classi-
fier, where C is the number of classes and K is
the size of the VQ codebook. It is noteworthy that
GPT-2 with the prompt acts as regularization here:
the data generated by GPT-2 are usually associated
with proper labels since half of the layers in GPT-2
are fixed, and using the generated data to train the
classifier mitigates the problem of error accumula-
tion in pseudo-labeling. Indeed, as shown in our
experiments, IUAS outperforms pseudo labeling
when coupled with ZeroAE. The overall training
procedure is summarized in Algorithm 1 in the
appendix.

3 Experiments

3.1 Datasets and Experiment Setup

We investigate the effectiveness of ZeroAE on
four real-world datsets, including “Topic”, “Sit-

Table 1: Dataset statistics.

Dataset Version
Seen classes Unseen classes

Train Valid Test

Topic
v0 650000 5000 50000
v1 650000 5000 50000

Situation
v0 2428 240 689
v1 1747 173 1102

Emotion
v0 20465 2405 5101
v1 14204 1419 8901

Complaint - 218 174 94

uation”, “Emotion”, and “Complaint”, under both
label-partially-unseen and label-fully-unseen sce-
narios. The first three datasets are often used for
benchmarking different zero-shot text classification
approaches (Yin et al., 2019), and the last one aims
to assign the customer complaints regarding Alipay
reported by users to the corresponding response
teams. Note that in the label-partially-unseen case,
two different versions (v0 and v1) of the first three
datasets are provided in (Yin et al., 2019) with non-
overlapping labels, in order to prevent the mod-
els from overfitting to some classes. The detailed
statistics regarding how the datasets are split into
training, validation, and testing sets are summa-
rized in Table 1. Please refer to Appendix B for
more details on the datasets.
Experimental Setup: For the first three datasets,
we use the pretrained BERT5 and GPT-26 as the
encoder and decoder in ZeroAE. For the fourth
dataset of customer complaints, we use the pre-
trained ERNIE7 and Chinese GPT-28, since texts
in this dataset are in Chinese. The templates of the
prompting function for the four datasets are also
different, which is listed in Table 9 in the appendix.
For optimization, we use Adam with learning rate
5 × 10−5 and the linear warm-up scheduler. To
avoid overfitting, we resort to early stopping with
a maximum number of 40 epochs. All results for
ZeroAE shown below are averaged over five trials.

3.2 Results and Analysis

3.2.1 Label-partially-unseen TZSL
We first conduct experiments under the scenario
of label-partially-unseen TZSL (Ye et al., 2020),
as introduced at the beginning of Section 2. We
juxtapose ZeroAE with four SOTA methods. The
first three methods are encoder-based methods, and
the third one further uses self-training to cope with

5https://huggingface.co/BERT-base-uncased
6https://huggingface.co/gpt2
7https://huggingface.co/nghuyong/ernie-1.0-base-zh
8https://github.com/Hansen06/GPT2-Chinese
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Table 2: Macro F1-score resulting from all benchmark methods for label-partially-unseen TZSL. ZeroAE achieves an improve-
ment of 15.93% averaged over datasets and methods.

Methods
Topic Situation Emotion

Complaint
v0 v1 v0 v1 v0 v1

BERT 57.07 45.50 60.23 34.15 16.86 10.21 7.14
BERT-MNLI 54.37 45.80 63.74 50.13 30.21 21.40 -
BERT+RL 73.41 65.53 73.14 52.44 36.98 19.38 31.45
ZeroGen 64.71 54.34 67.97 52.67 26.38 22.44 26.07

ZeroAE-LPU 75.32 71.75 78.58 71.54 42.71 30.75 37.19
ZeroAE-LFU 69.68 66.11 72.87 63.36 31.25 23.31 20.49

unlabeled data, while the last one is a decoder-
based method. More details are provided below:
1. BERT (Devlin et al., 2018): This approach di-

rectly uses BERT as a matching model without
any fine-tuning.

2. BERT-MNLI (Yin et al., 2019): BERT is first
pretrained on the MNLI dataset (Williams et al.,
2018) and then fine-tuned on the training data
with labels. Note that we cannot apply this
method to the dataset of complaints as the cus-
tomer complaints are in Chinese but BERT-
MNLI is pretrained on texts in English.

3. BERT+RL (Ye et al., 2020): BERT plays the
role of a pseudo labeler and reinforcement learn-
ing is utilized to select pseudo-labeled data au-
tomatically and further use them to refine BERT.
Here the labeled data are used to fine-tune BERT
and learn the data selection policy.

4. ZeroGen (Ye et al., 2022): GPT-2 is employed
to generate samples for each unseen class. The
generated data are then combined with the orig-
inally observed labeled data to train a classifier.

In addition, we consider two different settings of
ZeroAE: the first one uses labeled data in the seen
classes DS in the same manner as in the above four
methods, and the second only uses texts xi in both
DS and DU without any labels. We refer to the two
settings as ZeroAE-LPU (label-partially-unseen)
and ZeroAE-LFU (label-fully-unseen) respectively.
We follow the SOTA methods to use macro F1-
score as the criterion to evaluate the performance9,
and the results are summarized in Table 2.

Remarkably, the proposed ZeroAE-LPU signifi-
cantly outperforms the SOTA methods, achieving
at least 1.91%, 5.44%, 5.73%, and 5.74% of gains
in terms of the macro F1-score respectively for the
four datasets. The largest macro F1-score increase
can be as high as 19.10%. The second best ap-

9The code of BERT+RL is not publicly accessible. To
make a fair comparison, here we follow the experiment con-
figuration and evaluation criterion in BERT+RL.

proach, ZeroAE-LFU, also manifests a supremacy
over the SOTA methods, even without using any
information of labels at all. This bolsters our
belief that it is quite beneficial to combine the
encoder-based and decoder-based methods in a uni-
fied framework like ZeroAE.

As opposed to ZeroAE, the raw BERT model
yields the worst results for all datasets, since the
pretrained BERT without fine tuning cannot self-
adapt to different tasks in practice. After fine-
tuning with the labeled data for each dataset, BERT-
MNLI greatly increases the macro F1-score, but
still compares unfavorably with ZeroAE, proba-
bly because it cannot well generalize to unseen
classes (Ma et al., 2021). On the other hand, Zero-
Gen is on par with BERT-MNLI, showing the ad-
vantages of decoder-based models. The key caveat
with ZeroGen though is that it may generate data
with low quality, since GPT-2 is not fine-tuned
to cope with the task. Hence, its macro F1-score
is worse than that of ZeroAE. Finally, it can be
observed that BERT+RL typically performs bet-
ter than BERT-MNLI and ZeroGen, after reaping
benefits from the unlabeled data. However, this
approach suffers from the problem of error accu-
mulation as pointed out in the introduction. As a
consequence, its performance deteriorates when it
becomes difficult to clear-cut the decision bound-
aries between different classes semantically and
the amount of labeled data are too small to provide
sufficient supervision. This explains its deficiency
in comparison with BERT-MNLI and ZeroGen for
Emotion-v1 (see Appendix B for more details on
this dataset). Note that differentiating between
emotions semantically is a difficult task and the
number of samples for the seen classes is relatively
small in this dataset.

3.2.2 Label-fully-unseen TZSL
Next, we investigate the performance of Ze-
roAE when compared with other label-fully-unseen
TZSL methods based on PLMs, including two

3208



Table 3: Macro F1-score for the ablation study in the case of label-partially-unseen TZSL. IUAS, and the classification,
contrastive, and disentanglement loss are respectively removed from ZeroAE. The relative difference between the ablated and the
original ZeroAE averaged over all datasets is shown in the last column. The results are averaged over 5 trials, and the standard
deviation is presented in the brackets.

Methods
Topic Situation Emotion

Complaint
Average

v0 v1 v0 v1 v0 v1 difference
ZeroAE (ours) 75.32 (1.69) 71.75 (1.00) 78.58 (1.43) 71.54 (1.26) 42.71 (2.35) 30.75 (1.94) 37.19 (1.14) -

−IUAS 55.80 (6.63) 59.98 (1.67) 77.10 (1.46) 62.75 (2.54) 28.72 (4.28) 23.84 (2.45) 25.73 (1.48) -10.56
−IUAS+Pseudo labeling 71.29 (0.91) 63.71 (1.79) 66.90 (3.71) 62.47 (3.16) 38.39 (2.01) 23.04 (0.86) 29.93 (3.41) -7.44
−Classification Loss 69.68 (1.58) 66.11 (1.15) 72.87 (2.14) 63.36 (2.75) 31.25 (3.61) 23.31 (1.37) 20.49 (1.60) -8.68
−Contrastive Loss 72.86 (1.06) 66.87 (1.95) 72.32 (3.19) 63.29 (4.52) 33.46 (2.02) 24.65 (0.72) 30.18 (1.91) -6.31

−Disentanglement Loss 74.59 (1.47) 69.43 (1.38) 74.41 (1.56) 73.12 (1.89) 36.48 (4.48) 29.78 (2.89) 36.27 (0.92) -1.97

Table 4: Weighted F1-score resulting from all benchmark
methods for label-fully-unseen TZSL. ZeroAE achieves an
improvement of 8.70% averaged over datasets and methods.

Methods Topic Situation Emotion Complaint
BERT-TE 45.70 45.23 25.20 5.79

P-ZSC 50.68 58.84 30.22 8.14
ZeroGen 60.15 62.11 24.25 3.14
ZeroAE 62.96 61.68 32.41 12.53

encoder-based methods and the decoder-based
method ZeroGen. In this setting, we merge the
training and testing data in both v0 and v1 for the
datasets Topic, Situation, and Emotion. A summary
of the benchmark methods is given below:
1. BERT-TE (Yin et al., 2019): This approach

exploits pretrained BERT and formulates the
TZSL problem as a text entailment task.

2. P-ZSC (Wang et al., 2022): The label names for
all classes are first expanded by finding the most
semantically similar words or phrases to them
from a text corpus. Self-training is then applied
by pseudo-labeling the data using a BERT-based
matching algorithm that evaluates the similarity
between the texts and the expanded label names.

3. ZeroGen (Ye et al., 2022): Different from the
settings in the previous subsection where both
labeled and generated data are used to train
the classifier, here only generated data result-
ing from GPT-2 are used.

We follow the second and the third method to use
weighted F1-score as the evaluation criterion10.
The results are shown in Table 4. Once again, Ze-
roAE markedly improves the weighted F1-score by
8.70% on average. It achieves the best weighted
F1-score among all methods for three datasets and
only slightly worse performance than ZeroGen for
one dataset, suggesting that ZeroAE can well play
the role of a general-purpose zero-shot learner that

10The corpus for label expansion in P-ZSC is not publicly
accessible. For a fair comparison, we use the same experiment
configuration and evaluation criterion as in P-ZSC.
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Figure 2: Sorted selection probability for all VQ codewords
associated with each class (a) with and (b) without the dis-
criminator. Without the discriminator, each class is highly
correlated with a few codewords, limiting the modeling power
of ZeroAE.

allows for auto-calibration to different tasks with
the assistance of unlabeled data.

3.2.3 Ablation Study
Impact of different modules in ZeroAE: We con-
duct an ablation study to verify the effectiveness
of different modules in ZeroAE, and display the
results in Table 3. More details regarding the ex-
periment settings and results can be found in Ap-
pendix C. There are three major findings that can
be gleaned from Table 3:
1. The training procedure IUAS contributes the

most to the superior performance of ZeroAE
on TZSL. Ablating IUAS from ZeroAE leads
to a dramatic drop of 10.56% in terms of the
macro F1-score averaged over all datasets. Fur-
thermore, by replacing IUAS with pseudo label-
ing, the resulting macro F1-score is reduced by
7.44%. This observation implies that pseudo la-
beling can help ZeroAE to handle the unlabeled
data, but IUAS is a better option, since it adopts
GPT-2 as regularization and alleviates the issue
of error accumulation in pseudo labeling.
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Table 5: Ablation study on the PLM backbone.

Backbones
Topic Situation Emotion

v0 v1 v0 v1 v0 v1
BERT+GPT2 75.32 71.75 78.58 71.54 42.71 30.75

BART 76.49 74.11 77.14 69.51 45.37 28.47

Table 6: Ablation study on the number of fixed layers in the
PLMs, including 1 the label-relevant encoder, 2 the label-
irrelevant encoder, and 5 the decoder.

#Fixed
Topic Situation Emotion

v0 v1 v0 v1 v0 v1

M
od

ul
e

1 0 71.23 67.54 78.47 70.84 41.20 24.39
2 72.41 68.62 79.21 69.02 42.11 27.93
6 73.95 70.11 78.38 71.79 42.52 29.19
10 75.32 71.75 78.58 71.54 42.71 30.75

M
od

ul
e

2 0 75.32 71.75 78.58 71.54 42.71 30.75
2 76.53 68.42 77.92 72.54 41.47 28.14
6 74.39 70.64 75.24 70.15 35.78 18.55
12 75.41 72.98 73.11 70.92 30.07 15.49

M
od

ul
e

5 0 74.23 67.81 77.61 68.86 40.77 32.56
2 75.55 68.72 78.55 69.22 39.16 30.14
6 75.32 71.75 78.58 71.54 42.71 30.75
10 73.91 70.89 77.19 67.11 38.21 30.53

2. Both the classification (3) and the contrastive
loss (4) provide appreciable improvements to
ZeroAE by helping to clear-cut the decision
boundaries. They increase the averaged macro
F1-score by 8.68% and 6.31% respectively.

3. The disentanglement loss also helps to increase
the averaged macro F1-score by about 2%, since
it separates the label-relevant features from the
irrelevant ones and so the classifier can better
distinguish between different labels. Indeed, as
shown in Figure 2, after enforcing disentangle-
ment, the label-relevant features become less
correlated with the label-irrelevant features.

Impact of the backbone PLMs: Now let us check
whether the proposed ZeroAE framework is ag-
nostic to the backbone PLMs. Indeed, we replace
BERT and GPT-2 with ERNIE and Chinese-GPT
when tackling the customer complaints data in the
previous subsection, and the results are still the
best among the existing methods. Here we fur-
ther replace the two BERTs and the GPT with
the encoders and decoders in BART (Lewis et al.,
2019), and the results are presented in Table 5.
As expected, it can be observed that changing the
backbone PLMs does not affect the superior perfor-
mance of ZeroAE.
Impact of the number of fixed layers in the
PLMs: We further investigate the influence of the
number fixed layers in the PLMs on the perfor-
mance of ZeroAE. The results are summarized in
Table 6. We can find that setting the number of

Table 7: Impact of the IUAS threshold τ .

Threshold
Topic Situation Emotion

v0 v1 v0 v1 v0 v1
0.75 71.56 63.44 70.41 60.50 36.77 17.88
0.8 71.29 63.71 66.90 62.47 38.39 23.04

0.85 68.79 63.89 67.89 61.34 38.85 13.41
0.9 69.01 61.18 68.12 60.82 34.53 20.59

Table 8: Impact of the codebook size.

Codebook
size

Topic Situation Emotion
v0 v1 v0 v1 v0 v1

16 72.14 65.90 69.51 57.86 21.19 20.64
32 75.32 71.75 78.58 71.54 42.71 30.75
64 73.71 71.25 73.21 64.51 37.08 28.73

fixed layers to be 10, 0, and 6 respectively in the
label-relevant encoder, the label-irrelevant encoder,
and the decoder yields the highest averaged macro
F1-score. Therefore, we follow this setting in our
experiments.
Impact of the IUAS threshold τ : We also pro-
vide experimental results for different choices of
τ , namely, τ ∈ {0.75, 0.8, 0.85, 0.9}. τ = 0.8,
which is the default value used in our paper, pro-
duces the highest avarged macro F1-score.
Impact of the codebook size: Lastly, we conduct
an empirical investigation to examine the impact
of codebook size on the performance of our model.
We perform several experiments with varying code-
book sizes and present the results in Table 8. Based
on the table, we observe that the parameter value of
32, as suggested in this paper, outperforms the other
two sizes. This finding suggests that a codebook
size that is too small may not provide adequate
diversity to the decoder in ZeroAE, while a size
that is too large may be superfluous for the given
datasets.

4 Conclusion

In this paper, we propose a PLM-based autoen-
coder named ZeroAE for zero-shot text classifi-
cation. The autoencoder framework enables the
pretrained encoder and decoder to further comple-
ment and promote each other. Furthermore, the
proposed IUAS training algorithm helps ZeroAE
to deal with unlabeled data. Experiments on real-
world datasets demonstrates that ZeroAE provides
a much better solution to the domain adaptation
(i.e., label-partially-unseen) and task adaptation
(i.e., label-fully-unseen) problems in comparison
with the SOTA methods.
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5 Limitations

There are two limitations of our work: 1) As the
overall loss function (12) comprises five compo-
nents, we propose to directly add these components
together. Although this simple summation already
yields better results than the SOTA methods, we
believe that it is better to tune the weights of these
components based on expert knowledge, empirical
experiments, or other machine-learning techniques.
2) In ZeroAE, we use three PLMs, including two
BERTs and a GPT-2. Moreover, contrastive learn-
ing typically requires a relatively large batch size
in order to collect a sufficient number of negative
samples and achieve satisfying performance (Chen
et al., 2020). The batch size in our experiments is
typically 32. As a result, training ZeroAE incurs
relatively large resource cost. In practice, we find
that using four NVIDIA TESLA V100 GPUs with
32G memory works well, and further reducing the
resources hurts the performance.

6 Ethical Considerations

We consider four datasets in our experiments, in-
cluding Topic, Situation, Emotion, and Complaint.
The first three are publicly accessible. The last
one will be released upon publication. In particu-
lar for this dataset, 1) it does not contain any Per-
sonal Identifiable Information (PII); 2) This dataset
is desensitized and encrypted; 3) Adequate data
protection was carried out during the experiment
to prevent the risk of data copy leakage, and the
dataset was destroyed after the experiment; 4) This
dataset is only used for academic research, and it
does not represent any real business situation.
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A Related Works

In this section, we first provided a more detailed
review of the literature on zero-shot text classifica-
tion. Next, since autoencoders have already been
used for zero-shot image classification, we further
review autoencoder-based approaches in this field.

A.1 Zero-shot text classification

We hereby review the aforementioned two ap-
proaches for PLM-based zero-shot text classifica-
tion: encoder-based and decoder-based models.
Encoder-based Methods (a.k.a discriminative or
embedding-based methods) typically learn a pro-
jection to associate the texts and labels via BERT
or RoBERTa (Liu et al., 2019). Some attempts have
been made to formulate the text-label pair as a text
entailment (TE) representation (Yin et al., 2019;
Sainz and Rigau, 2021; Alcoforado et al., 2022),
and the [CLS] token is then used to evaluate their
similarity. Alternatively, the relation between the
text-label pair can also be formulated as question-
answering (QA) tasks (Puri and Catanzaro, 2019;
Zhong et al., 2021). The corresponding classifi-
cation results depend on the answer “yes/no” to
the question of whether the text belongs to a cer-
tain category. These methods take advantage of
the semantic correlation between texts and labels
implied by BERT (Yin et al., 2019), but they may
fail to adapt to different domains and tasks without
labeling information (Ma et al., 2021). To alle-
viate this difficulty, one may introduce additional
information such as knowledge graphs (Liu et al.,
2021a,b) and label semantic information (Zhang
et al., 2019).

3213



Another problem with these methods is that they
ignore the unlabeled data which may help to trans-
fer knowledge from seen domains or targets to un-
seen ones. To take unlabeled data into account,
self-training is typically employed (Ye et al., 2020;
Chen et al., 2021; Gera et al., 2022). These meth-
ods iteratively use the BERT-based classifier to
pseudo-label the unlabeled data and further use
the pseudo-labels with high confidence to train the
classifier. These methods can even be extended to
tackle the label-fully-unseen scenario (Wang et al.,
2021a; Shen et al., 2021; Wang et al., 2022), re-
sulting in a general-purpose zero-shot learner for
novel tasks. Unfortunately, the issue that impedes
the use of self-training is error accumulation. The
mistakenly pseudo-labeled data with high confi-
dence could continuously bias the classifier and
lead to inaccurate estimates. In this work, we in-
stead propose an indirect uncertainty-aware sam-
pling (IUAS) method to counteract this problem.
Decoder-based Methods (a.k.a generative-based
methods) address the zero-shot text classification
problem from another perspective. By utilizing
the data synthesis power of GPT-2 (Radford et al.,
2019), they either simulate texts for labels corre-
sponding to unseen classes and tasks (Ye et al.,
2022) or generate labels for unlabeled data (Schick
and Schütze, 2021), and then train a classifier based
on the generated data. However, the potentially
low quality of the generated data may harm the
classifier. This problem can be alleviated by us-
ing a larger PLM such as GPT-3 (Brown et al.,
2020; Wang et al., 2021b) or conducting generated
data selection with a noise-robust framework (Gao
et al., 2022). Nonetheless, in all these approaches,
the PLMs cannot be fine-tuned to be domain or
task-specific. In this paper, we propose an autoen-
coder framework to complement encoder-based
and decoder-based models, thus rendering BERT
and GPT-2 to self-adapt to the domain or task at
hand.

A.2 Autoencoder-based Zero-Shot Image
Classification

Zero-shot learning based on autoencoder has seen
success in the field of image classification, since
it provides a framework to train the encoder and
the decoder simultaneously for automatic domain
adaption, while being able to tackle unlabeled
data (Pourpanah et al., 2022). Thus, we provide a
brief review here.

There are broadly three strategies for
autoencoder-driven zero-shot image classifi-
cation. The first one seeks to learn a better encoder
for the sake of classification with the support
of the decoder (Wang et al., 2016; Annadani
and Biswas, 2018; Liu et al., 2018; Li et al.,
2019). As pointed out in (Annadani and Biswas,
2018), the introduction of the decoder and the
corresponding reconstruction loss improves
the modeling capability of the encoder and the
zero-shot recognition performance. On the other
hand, the second strategy concentrates more on
exploiting the decoder to generate samples for the
unseen classes given the class attributes (Mishra
et al., 2018; Xian et al., 2019; Huang et al., 2019;
Gao et al., 2020; Zhu et al., 2020). Conditional
variational autoencoders (CVAE) are typically
used: the role of the encoder is to adapt the
latent space in CVAE to the domain at hand, and
therefore, facilitates the decoder to synthesize data
for this domain. Different from the above two
strategies, the third one (Schonfeld et al., 2019)
first constructs two VAEs respectively for the
image features and the class attributes and then
aligns the two latent spaces via a cross-alignment
loss. As such, the image and semantic features
are projected into the same latent space that can
be further utilized for classifying samples in the
unseen classes.

Unfortunately, the key bottleneck with the above-
mentioned methods is that the learned latent space,
which is used for classification, is often corrupted
by the label-irrelevant information that adversely
affects the classification performance. One rem-
edy to this problem is to separate the label-relevant
from the label-irrelevant information by promot-
ing disentanglement between them in the latent
space (Schonfeld et al., 2019; Xian et al., 2019;
Gao et al., 2020). In our work, we disentangle the
two types of information via a discriminator in a
similar fashion to (Schonfeld et al., 2019), due to
its advantageous performance as shown in (Kim
and Mnih, 2018).

B Datasets

We demonstrate the advantages of ZeroAE on four
real-world datasets, including “Topic”, “Situation”,
“Emotion” and “Complaint”. The first three datasets
are often used for benchmarking different zero-shot
text classification approaches (Yin et al., 2019),
and the last one aims to find the response team that
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can deal with the customer complaints reported to
Ant Group based on the content of the complaints.
Note that in the label-partially-unseen case, the two
different versions of the first three datasets are pro-
vided in (Yin et al., 2019) with non-overlapping la-
bels, in order to prevent the models from overfitting
to some labels. The detailed statistics regarding
how the datasets are split into training, validation,
and testing sets are summarized in Table 1. More
information on the four datasets is provided below:

1. Topic Categorization: The dataset contains Ya-
hoo news articles with 10 topics, including “So-
ciety & Cultur”,“Health”, “Computers & Inter-
net”, “Business & Finance”, “Family & Rela-
tionships”, “Science & Mathematics”, “Educa-
tion & Reference”, “Sports”, “Entertainment &
Music”, and “Politics & Government”. The ob-
jective is to predict the topic given the news.
The version v0 selects the first five classes as
the seen classes, while the version v1 selects the
other five classes.

2. Situation Detection: The dataset aims to find
the type of an event, including the need sit-
uations (e.g., the need for water or medical
aid) and the issue situations (e.g., crime vio-
lence), given the corresponding news. There
are 12 classes in total, that is, “Regime change”,
“Crime violence”, “Medical assistance”, “Wa-
ter supply”, “Search/rescue”, “Infrastructure”,
“Shelter”, “Utilities, energy, or sanitation”,
“Evacuation”, “Food supply”, “Terrisms”, and
“None”. The version v0 chooses the first six
classes as the seen classes, while the version v1
chooses the other five classes excluding the class
“None”. We further follow the settings in (Ye
et al., 2020) to remove the texts with multiple
labels in our experiments.

3. Emotion Detection: The task here is to detect
the emotion of the posters from the texts such as
tweets, fairy tales, and emotional events. This
dataset involves nine types of emotions, that is,
“Sadness”, “Anger”, “Fear”, “Shame”, “Love”,
“Joy”, “Disgust”, “Surprise”, and “Guilt”. The
versions v0 and v1 respectively treat the first five
and the last four classes as the seen classes. Note
that this task is more difficult than the above two
tasks, since different emotions are often corre-
lated with each other (Gera et al., 2022). For
example, “Guilt” and “Shame” are synonyms,
but represent two distinct classes here.

4. Customer Complaint Triage: The objective

Table 9: Prompt for each datasets.

Dataset Prompt
Topic The news with _ topic is:

Situation The news with _ situation is:
Emotion The news with _ emotion is:

Complaint The customer complaints about _ is:

here is to find the response team in Ant Group
that can deal with the customer complaints given
the corresponding texts. There are 241 classes
in total, but only 12 of them are seen classes in
practice. The number of samples is also very
small in this dataset, since the services provided
by this company are relatively stable and there
are few customer complaints. As a result, this
task is very challenging, due to the data scarcity
and the large number of unseen classes.

C Ablation Study

In this section, we elaborate on the experiment
settings in the first ablation study:
• −IUAS: In this experiment, the proposed IUAS

approach is not used for training ZeroAE. In
other words, the unlabeled data are only used
in the text reconstruction flow, and no generated
data are used to train the label-relevant encoder
and the classifier.

• −IUAS+Pseudo labeling: After ablating IUAS,
we instead employ the pseudo labeling approach
to tackle the unlabeled data. Specifically, the
pseudo labels are retained to train the classifier
when the probability that the unlabled text be-
longs to a class is larger than 0.8.

• −Classification Loss: In this experiment, we
remove the classification loss (3) when training
ZeroAE, and treat the labeled data as unlabeled
data. Note that this setting is called label-fully-
unseen TZSL in this work.

• −Contrastive Loss: The contrastive loss (4) is
removed when training ZeroAE.

• −Disentanglement Loss: Both the discriminator
loss (7) and disentanglement loss (8) are removed
during the training process of ZeroAE. As a re-
sult, the two latent spaces are not guaranteed to
be disentangled.
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Table 10: Summary of notations.

Symbol Type (Size) Meaning
C Constant The overall number of classes (both seen and unseen)
K Constant The number of codewords in the codebook
D Constant The dimension of the encoder output
W Constant The size of the vocabulary for the GPT-2
c Constant The index of the class with the highest probability score for one input text
τ Constant The threshold for data selection in IUAS
β Constant The weight of the second term in the VQ loss
DS Dataset Seen dataset
DU Dataset Unseen dataset
DL Dataset Labeled dataset
DG Dataset Generated dataset
EncR Module The label-relevant encoder (i.e., BERT with the [CLS] token as the output)
EncI Module The label-irrelevant encoder (i.e., BERT with the mean pooling of the last layer as the output)
Cls Module The linear classifier
Dec Module The decoder (i.e., prompt-based GTP-2)
Disc Module The linear discriminator
Θ Parameter The parameters of the discriminator
Ψ Parameter The parameters of all modules in ZeroAE except the discriminator
H Function Cross entropy loss function
sg Function Stop gradient operation
f Function The function that converts a label to a one-hot vector
g Function The prompting function
q Function The density function of the latent variables
xi Text The i-th input text of the dataset
x′
i Text The augmented text by applying EDA to xi

x̂i Text The reconstructed or generated text
xij Text The j-th word in text xi

x̂ij Tensor (W ) The vector of the probabilities that the word j in text x̂i takes the values in a predefined vocabulary
yi Text The true label of the i-th input text
ŷi Text The predicted label for i-th input text
y1:C Set The label names for all C classes (both seen and unseen)
yj Text The label name for the j-th class
sRi Tensor (C) The classification probability vector for the input text xi

sRij Constant The classification probability score of the label being yj for input text xi

e Tensor (K ×D) The VQ codebook
ek Tensor (D) The k-th codeword in the codebook
zR
ij Tensor (D) The label-relevant embedding after packing the input text xi and the label name yj under the TE framework

zR
ic
′ Tensor (D) The label-relevant embedding corresponding to the label yc with the highest classification score

zR
i Tensor (C ×D) The label-relevant embedding for all C classes

zI
i Tensor (D) The label-irrelevant embedding for the input text xi

z+ Tensor (C + 2D) The positive samples for the discriminator
z− Tensor (C + 2D) The negative samples for the discriminator
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Algorithm 1 IUAS based Training Procedure for ZeroAE

Require: Texts and labels for the seen classes DS = {(xS
i ,y

S
i )} if available, texts for the unseen classes DU = {(xU

i )}, label
names for all C classes y1:C = {y1, · · · , yC}, and the IUAS threshold τ ;

1: Initialize the generated data as an empty set DG = {};
2: repeat
3: if DG is not empty then
4: Randomly pick CK samples from DG and denote the sample set as DG′

;
5: else
6: DG′

= {};
7: end if
8: The labeled dataset can be computed as DL = DS ∪ DG′

;
9: for (xi,yi) in DL do ▷ Text Reconstruction Flow for Labeled Data

10: Augment xi via EDA to obtain x′
i

11: for yj in y1:C do
12: Pack xi and yj together following the TE framework “[CLS] xi [SEP] hypothesis of yj [SEP]”;
13: Encode the above packed text using the label-relevant encoder to obtain zRij following Eq. (1);
14: end for
15: Calculate the classification loss following Eq. (2)-(3);
16: Pack x′

i and ŷi following the TE framework as the positive sample to obtain zRic
′
;

17: Calculate the contrastive loss following Eq. (4);
18: Obtain the label-irrelevant latent variable zI

i following Eq. (5) and calculate the VQ loss following Eq. (6);
19: Calculate the disentanglement loss following Eq. (8);
20: Reconstruct the text x̂i following Eq. (9) and calculate the reconstruction loss following Eq. (10);
21: end for
22: for (xi) in DU do ▷ Text Reconstruction Flow for Unlabeled Data
23: Augment xi via EDA to obtain x′

i;
24: for yj in y1:C do
25: Pack xi and yj together following the TE framework and obtain zRij following Eq. (1);
26: end for
27: Calculate the classification score following Eq. (2);
28: Pack x′

i and ŷi following the TE framework as the positive sample to obtain zRic
′
;

29: Calculate the contrastive loss following Eq. (4);
30: Obtain the label-irrelevant latent variable zI

i following Eq. (5) and calculate the VQ loss following Eq. (6);
31: Calculate discriminator loss following Eq. (8);
32: Reconstruct the text x̂i following Eq. (9) and calculate the reconstruction loss following Eq. (10);
33: end for
34: Fix the discriminator and update the remaining parts of ZeroAE by minimizing Eq. (12) using gradient descent;
35: for yj in y1:C do ▷ Train Discriminator
36: Randomly pick positive sample and negative sample as in §2.3, and calculate the discriminator loss following Eq. (7);
37: end for
38: Update the discriminator only by minimizing Eq. (7) using gradient descent;
39: for yj in y1:C do ▷ Text Generation in Label Reconstruction Flow
40: for ek in e do
41: Generate data using the decoder x̂ = Dec(h(yj), ek);
42: Put (x̂, yj) in the generated dataset DG;
43: end for
44: end for
45: for (xi) in DU do ▷ Data Selection in Indirect Uncertainty-Aware Sampling (IUAS)
46: for yj in y1:C do
47: Pack xi and yj together following the TE framework and obtain zR

ij following Eq. (1);
48: end for
49: Calculate the classification score following Eq. (2);
50: if max sR

i > τ then
51: Remove xi from DU ;
52: end if
53: end for
54: until the maximum number of epochs is reached or early stop criteria is met.
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