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Abstract

Named Entity Recognition (NER), as a cru-
cial subtask in natural language processing
(NLP), suffers from limited labeled samples
(a.k.a. few-shot). Meta-learning methods are
widely used for few-shot NER, but these exist-
ing methods overlook the importance of label
dependency for NER, resulting in suboptimal
performance. However, applying meta-learning
methods to label dependency learning faces a
special challenge, that is, due to the discrep-
ancy of label sets in different domains, the la-
bel dependencies can not be transferred across
domains. In this paper, we propose the Task-
adaptive Label Dependency Transfer (TLDT)
method to make label dependency transferable
and effectively adapt to new tasks by a few sam-
ples. TLDT improves the existing optimization-
based meta-learning methods by learning gen-
eral initialization and individual parameter up-
date rule for label dependency. Extensive ex-
periments show that TLDT achieves significant
improvement over the state-of-the-art methods.

1 Introduction

Named Entity Recognition (NER) aims to locate
spans of text and classify them into the pre-defined
entity categories such as person, location and orga-
nization(Mikheev et al., 1999). In practice, NER
is troubled with annotated data scarcity, known
as few-shot NER. In recent years, meta-learning
is usually used for few-shot NER(Li et al., 2020;
de Lichy et al., 2021). Meta-learning first learns
prior knowledge from rich-source domains, and
then the prior knowledge is used to guide NER
models to adapt to an unseen target domain by a
few samples. It is worth noting that, as a sequence
labeling task(McCallum and Li, 2003), few-shot
NER also benefits from considering the dependen-
cies between labels(Ma and Hovy, 2016; Akbik
et al., 2018; Liu et al., 2019).
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However, meta-learning for label dependency
faces a special challenge. There is a label discrep-
ancy between NER tasks in different domains, that
is, both the number of labels and the label name se-
mantics are different. The label discrepancy blocks
the transfer of label dependencies from source do-
mains to a new domain. For example, the label de-
pendency of “B-company”-“B-project” (financial
domain) can not be used for “B-drugs”-“B-etiology”
(medical domain).

To remedy this, some studies(Hou et al., 2020;
Yang and Katiyar, 2020; Hou et al., 2019; Zhu
et al., 2020) use Linear Conditional Random Field
(CRF)(Qi and Chen, 2010) framework to model the
label dependency as transition probabilities from
abstract labels “B”, “I” and “O” to “sB”, “dB”, “sI”,
“dI” and “O”, where “B”-“sB” means their domain-
specific label semantics are the same (like “B-
weather”-“B-weather”) and “B”-“dB” means they
are different (like “B-weather”-“B-time”). The ab-
stract label transition table is shown in Figure 1
(a). For example, value 0.1 in green denotes the
transition probability from “B” to “sB”. To adapt
to a new domain, the abstract label transition is ex-
panded into the domain-specific transition. Figure
1 shows the expansion process, where positions in
the same color are filled by the same values. For ex-
ample, the value of “B-time”-“B-weather” is filled
with that of “B” -“dB”, i.e., 0.2 in yellow.
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Figure 1: An illustration for abstract label transition
expansion in Hou et al. (2020).

The domain-specific transition is directly ex-
panded by the abstract label transition without fur-
ther updating in the specific task, such domain-
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specific transition lacks task adaptability and thus
leads to inconsistency with reality. For example,
according to the result of Figure 1 (b), the transition
probability of “B-weather”-“B-time” is the same
as that of “B-time”-“B-weather”. It doesn’t match
reality. As shown in Figure 2, people are used to
saying “It’s raining today” instead of “It’s today
raining.”, which means case 1 is more common
than case 2. Therefore, the transition probability of
“B-weather”-“B-time” should be higher than that
of “B-time”-“B-weather”.

It is raining today ✓

O O B-weather B-time

It is today raining ✕

label

case1

case2

Figure 2: An example of different expanded cases of
label “B” to label “dB”

In this paper, to make the domain-specific tran-
sition adapt to the corresponding NER task, we in-
troduce the idea of Model-agnostic meta-learning
(MAML)(Finn et al., 2017). MAML aims to learn
the general initialization which can quickly adapt to
specific tasks with few update steps. Based on the
idea, we regard the abstract label transition as the
general initialization parameters across domains
and use the learning mechanism of MAML to learn
that. Then the domain-specific transition expanded
by the general initial label transition can quickly
adapt to the corresponding task with few update
steps.

In addition, learning the task-adaptive label tran-
sition faces the other challenge. The hyperparam-
eters (learning rate and weight decay coefficient)
for the domain-specific transition update in the spe-
cific task are fixed and uniform, which still limits
adaption to different tasks(Baik et al., 2020). The
methods to generate the variable hyperparameters
for different parameters are widely proposed. Un-
fortunately, the existing methods require consistent
parameters for all tasks, that is, the meaning and
the number of transition probabilities for each spe-
cific task is uniform. Therefore, these methods
cannot be directly used for the task-adaptive label
transition learning because of the label discrepancy.

To overcome this problem, we model hyperpa-
rameters for individual transition probability in-
stead of all probabilities. Specifically, we first
construct sequence features of one individual tran-
sition probability in the iterative update process.
Then we use the features as the input and propose
a Long Shot Term Memory (LSTM) based model

to capture the sequence information to learn the
task-adaptive update rule. The rule helps the model
to generate two variable hyperparameters for the
individual transition probability. This approach fur-
ther enhances task adaptability by assigning vari-
able update hyperparameters to different transition
probabilities learning in the specific task.

In summary, we propose a Task-adaptive Label
Dependency Transfer (TLDT) method which can
be widely used under the CRF framework for label
dependency in the few-shot NER. Our contribu-
tions are summarized as follows:
1. We introduce the idea of MAML to make the

transferable label dependency quickly adapt to
new tasks by a few gradient updates.

2. We propose the update rule learning that gen-
erates task-adaptive hyperparameters for the
domain-specific label dependency to effectively
adapt to the corresponding NER task.

3. Extensive experimental evaluation demonstrates
the outstanding performance of TLDT for few-
shot NER, where TLDT outperforms the state-
of-the-art methods by 6.47 to 14.62 F1 scores in
the 5-shot setting.

2 Background

2.1 Problem Definition
In few-shot learning, NER models aim to output
the label sequence y = (y1, y2, ..., yL) of a given
sentence x = (x1, x2, ..., xL) by just a few train-
ing samples. A domain as a task Ti is a set of
(x,y) pairs. NER models are first trained on source
domains T = {T1, T2, ..., Tm} to learn prior knowl-
edge. Then NER models are tested on unseen target
domains T ′ = {T ′

1, T ′
2, ..., T ′

n} guided by the prior
knowledge, where the T ′

i only contains a few la-
beled examples S called support set.

Formally, the task of K-shot (K samples for
each label) NER is defined as follows: given a
query sentence x and a K-shot support set S, find
the best label sequence y∗ of x:

y∗ = argmax
y

P (y|x, S) (1)

2.2 CRF Framework for NER
Linear Conditional Random Field (CRF) is widely
applied in NER, and it outputs the most likely label
sequence y for a given sentence x, by considering
the connections of entities-labels and labels-labels
respectively. The model for the linear CRF de-
fines the probability p(y|x) over all possible label
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sequences y, given x, by:

P (y|x) = exp(F (y, x))∑
y′∈Y exp(F (y

′, x))
(2)

where F (y, x) calculates the score of assigning y
to x and is defined as

F (y, x) =
L∑

l=1

(fT (yl−1, yl) + fE(yl, x)) (3)

which counts scores about assigning yl to xl at all
positions in the sequence. The score at position
l concludes labels-labels score fT (yl−1, yl) and
entities-labels score fE(yl, x), known as transition
score and emission score in CRF. In our approach,
we focus on improving the transition score for few-
shot NER. Therefore, we do not impose restrictions
on the calculation methods of emission score.
Transition score captures the dependency between
labels, which is the probability P (yl|yl−1) of label
yl−1 to label yl. CRF constructs a N × N transi-
tion matrix to record label-labels transition scores,
where N is the number of labels. As shown in Fig-
ure 1 (b), the row of the matrix represents the label
of the previous word, and the column represents
the label of the current word. The values in the
matrix make up the transition score.

In the CRF model training phase, given a training
set D, the loss function L is minimized on the set,
where L is given by

L =
∑

(x,y)∈D
−logP (y|x) (4)

Based on the trained model, the Viterbi algorithm
(Forney, 1973) is usually used to find the best label
sequence for each input.

2.3 Meta-Learning
Meta-learning has been wildly used as one strategy
to improve the generalization performance of few-
shot NER. The idea of meta-learning is “learn to
learn”. Specifically, the goal of meta-learning is
to “learn” prior knowledge such that models can
achieve the best generalization performance when
they “learn” new tasks.

To this end, the learning process is divided into
two levels: an inner- and an outer-level. We de-
fine the inner-level parameter as θ and the meta-
parameter at the outer-level is denoted as Φ. At the
inner level, support set S is sampled for Ti to make
a model adapt to Ti guided by meta-parameter Φ,

where S is set to include N labels and each label
has K examples. Formally, the model learns opti-
mal parameter θ for task Ti by minimizing the loss
function in Equation (4) on S which is denoted as
LSTi :

θ∗Ti = argmin
θ

LSTi(θ,Φ) (5)

At outer-level, a new set of samples called query
set Q from Ti is used to evaluate the generalization
ability of the adapted model, which corresponds
to loss function LQTi (Equation (4) on Q). The
feedback from LQTi is then used to adjust the meta-
parameter Φ to make the model achieve higher
generalization performance. Finally, the optimal
meta-parameter Φ∗ is determined across all tasks.

In detail, the meta-learning objective is to mini-
mize the loss function of the model predictions on
the query sets of all tasks:

Φ∗ = argmin
Φ

∑

T

LQTi(θ
∗(Φ)) (6)

3 Task-adaptive Label Dependency
Transfer

We aim to apply the meta-learning idea to learn the
general knowledge of transition scores under the
CRF framework, which makes the transition scores
effectively adapt to new tasks by a few samples.
Since the transition scores learned by the existing
methods lack the task adaptability, we introduce the
general initialization learning mechanism based on
the idea of MAML, to learn the general initial tran-
sition scores that can quickly adapt to the specific
tasks by few update steps.

In addition, the fixed and uniform update hyper-
parameters (learning rate and weight decay coeffi-
cient) for the transition scores update in the specific
task also result in the limitation of task adaptability.
However, due to the label discrepancy, the exist-
ing meta-learning methods to generate the variable
hyperparameters cannot be used for the transition
scores update. To remedy this, we propose the up-
date rule learning mechanism to assign the variable
hyperparameters for different transition scores.

Based on the above two mechanisms, we pro-
pose TLDT and the framework of TLDT is shown
in Figure 3. At outer-level, TLDT learns the gen-
eral initial transition scores shared between tasks
to make a model fast adapt to new tasks. In ad-
dition, TLDT learns an update rule to generate
adjustable hyperparameters for transition scores
update at inner-level. At inner-level, based on the
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initialization and adjustable hyperparameters, the
transition scores effectively adapt to a new task by
a few samples. The specific details of the approach
are as follows.

General initialization 
learning

Update rule learning

Few-shot task-
specific learning

general initial 
transition scores

variable
hyperparameters

Outer-level Inner-level

Figure 3: The framework of proposed TLDT

3.1 General Initialization Learning

Learning initial values of transition scores makes
training begin from a beneficial starting point that
not only reduces the risk of overfitting but also al-
lows the model to adapt to new tasks rapidly(Ravi
and Larochelle, 2017). However, the general initial
transition scores learned by the existing methods
do not follow the entire meta-learning processing
and thus lack task adaptability. To solve this prob-
lem, TLDT adopts the CDT mechanism(Hou et al.,
2020) to construct the abstract transition scores as
the general initialization. Then TLDT follows the
idea of MAML to learn the general initialization
that can further adapt to a specific task with only a
few gradient updates.

Let transition score θi ∈ RN
2

be a vector flat-
tened by an N ×N dimensional transition matrix.
At the inner-level, the initial value of θi of a spe-
cific task Ti is given by the expanded abstract tran-
sition score γ, which is defined as θi = E(γ) and E
is the mapping function of CDT mechanism. Then,
as shown in Equation (5), θi is further updated in
the new task Ti according to the loss LSTi .

At outer-level, the shared initial parameter γ
is meta-parameter and updated on query sets of
all task T according to Equation (6). The com-
plete training procedure is displayed in Algorithm
1 shown in Appendix A.1.

3.2 Task-adaptive Update Rule Learning

Although general initialization learning mechanism
can improve the adaptability of transition scores,
using a fixed learning rate for task-specific tran-
sition scores update still limits adaptation to dif-
ferent tasks(Baik et al., 2020). In this section, we
propose an update rule learning mechanism for
task-adaptive transition scores optimization. Fol-
lowing the works(Ravi and Larochelle, 2017; Li
et al., 2017; Baik et al., 2020), the update rule focus

on producing two variable hyperparameters for dif-
ferent transition scores in the specific task, namely,
learning rate α and weight decay coefficient β. Dif-
ferent from conventional meta-learning methods,
we build the update rule model for each individual
transition score of transition scores in the specific
tasks, to avoid the problem caused by label discrep-
ancy. Specifically, we construct sequence features
based on the optimization process. The features of
one individual transition score are the input. Given
the input, we propose an LSTM-based model to
generate two appropriate hyperparameters for the
individual transition score. Next, we detail our
method which is divided into three parts: feature
construction, model framework and learning mech-
anism.

Feature Construction We define the learning
state as τ = [θp,∇θpLSTi] to construct features for
the individual parameter, namely, the p.th element
of θ. More importantly, we consider multi-step
learning states, where we use a learning rate δ to
update the transition score θ in J steps. Intuitively,
compared to only considering the learning state at
a single step, multi-step learning states can provide
more information to the model. Noting that it al-
lows the model to learn the downward trend from
the current point to the convergence point, and fur-
ther produce more appropriate hyperparameters.

In addition to the learning state τ , we also con-
sider the distance d between the parameter θp at the
current step j and the previous step j−1 to provide
guidance for model learning, which is denoted as
dpj = θpj − θpj−1. Intuitively, a large distance means
that the current point is far from the optimal point,
and the learning rate should be large.

In conclusion, the [θpj ,∇θpj
LSTi , d

p
j ] is a 3-

dimensional feature vector vj at step j. Finally, we
construct features for θi denoted as a J ×N2 × 3
tensor F , where F:p: ∈ RJ×3 represents J-step
feature for θp and consists of (v1, ..., vJ ), and “:”
denotes all elements within the given index.

Model Framework The parameter updated it-
eratively means that the parameter update at step
j is inflected by the previous update process (i.e.
based on the result of step j−1). Consequently, we
use LSTM to capture the sequence dependencies
of multi-step updates. As shown in Figure 4, For
θp, the feature sequence (v1, ..., vJ ) is the input to
an LSTM model and hidden states of J steps are
concatenated as a hidden size · J vector. Then
the vector is fed to a linear layer and the learning
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Figure 4: LSTM as meta-model

rate αp and weight decay coefficient βp for θp are
obtained after a sigmoid activation function.
Learning Mechanism The update rule learning

process of TLDT is divided into two levels: inner-
and outer-level. At inner-level, the LSTM model
gψ with parameter ψ generates adjustable hyperpa-
rameters αi and βi, given the feature tensor Fi of
θi:

(αi,βi) = gψ(Fi) (7)

Then αi and βi are used for updating parameter θi
of the specific task Ti:

θ′i = βi ⊙ θi −αi ⊙∇θiLSTi(θi) (8)

where ⊙ denotes Hadamard (element-wise) prod-
uct.

At outer-level, the parameter ψ is updated as
meta-parameter on query sets of all task T :

ψ = ψ − η∇ψ

∑

Ti∈T
LSTi(θi) (9)

where learning rate η is used for updating meta-
parameter.

The overall procedure of update rule learning
is summarized in Algorithm 2 shown in Appendix
A.2. At the inner-level (lines 3 to 13), the algorithm
calculates the hyperparameters (αi,βi) and update
the transition score θi to adapt to a specific task. In
detail, the model gψ first constructs J steps features
for parameter θi (lines 6 to 10). For each step, the
current parameter θi,j , the corresponding gradient
∇θi,jLSTi(θi,j) and the distance di,j are concate-
nated as a 3-dimension feature vector (lines 7 to
10). Noting that di,j is set 0 at the last step. The
J steps feature vectors are concatenated into fea-
ture tensor F i. Then, Fi is fed to the model to get
hyperparameters αi and βi (line 11). The hyper-
parameters are used to update θi based on gradient
optimization (lines 12 to 13). At the outer-level,
the model parameter gψ is as the meta-parameter
and updated on all query sets (line 14).

4 Experiment

This section experimentally evaluates the perfor-
mance of TLDT on multiple few-shot NER datasets.
First, we introduce the experiment setting. Second,
we compare TLDT against existing methods in
few-shot NER scenarios to demonstrate the effec-
tiveness of TLDT. Then we design ablation exper-
iments to demonstrate the necessity both of each
component of TLDT and the features constructed
for update rule learning. Finally, We give the effec-
tiveness analysis of TLDT that can improve label
dependency transfer on few-shot NER.

4.1 Settings

Dataset We use 4 different datasets as the bench-
mark dataset following previous studies: 1)
CoNLL-2003(Sang and De Meulder, 2003); 2)
GUM(Zeldes, 2017); 3) WNUT-2017(Derczynski
et al., 2017) and 4) Ontonotes(Pradhan et al., 2013).
To simulate the few-shot situation, we adapt the
method proposed by Hou et al. (2020) to construct
the few-shot datasets from original datasets for 1-
shot/5-shots NER. It is worth noting that, due to
device limitations and time costs, we randomly
sample a part of each original dataset. Therefore,
the number of samples is smaller than that in the
work(Hou et al., 2020). The detailed statistics of
these datasets are shown in Appendix A.3.
Evaluation We conduct main experiments on 1-
shot and 5-shot setting as previous work (Hou et al.,
2020; Wang et al., 2021). We use four-fold cross-
validation to test the robustness of our method on
the four benchmark datasets. For each fold, we use
one dataset as the test set, one as the validation set,
and the remaining two datasets as the training set.
We randomly generate four-fold experimental data
that the same dataset will not be repeated as a test
set or a validation set. F1-score is the evaluation
metric and the results are averaged over 5 runs with
different random seeds ± one standard deviation.
Comparison Methods We divide comparison
methods into two groups based on whether the
label dependency is considered or not. Four meth-
ods without label dependency include (1) Match-
ing Network (MNet)(Vinyals et al., 2016) clas-
sifies each entity according to its similarity with
the samples of each class; (2) WarmProtoZero
(WPZ)(Fritzler et al., 2019) adopts a similar strat-
egy as MNet, except replacing the matching net-
work with the prototypical network; (3) Tap-
Net(Yoon et al., 2019) constructs different mapping

3284



spaces for different tasks. In these mapping spaces,
entities corresponding to the same label are close to
each other. (4) LSTM+CRF(Lample et al., 2016),
a traditional sequence labeling method for NER
by using LSTM to consider token-label relation-
ship under the CRF framework. (5) SpanNER(Ma
et al., 2022), a span-level NER method that divides
the NER task into two subtasks: span detection and
entity typing, which bypass the token-wise label
dependency. To consider label dependency, the
above three methods including MNet, WPZ, and
TapNet are as emission modules. The state-of-the-
art method CDT(Hou et al., 2020) which constructs
an abstract label transition score is used for label
dependency transfer in the specific few-shot task.
Hyperparameters We use the uncased BERT-Base
(Kenton and Toutanova) to calculate contextual em-
beddings for all baseline models and our model.
We use Adam optimizer (Kingma and Ba, 2015) to
train the models with batch size 4 and the learning
rate is selected from {1e-4, 1e-5, 1e-6}. For CDT
and TLDT which are used for transition score, we
set the learning rate η for the meta-parameter up-
date, which is taken from {1e-2, 1e-3, 1e-4}. The
learning rate α only for learning initialization pa-
rameters (LIP) update at inner-level is selected
from {1e-1, 1e-2, 1e-3}. For feature construction
of learning the update rule (LUR) in TLDT, the
update step J and the learning rate δ are taken from
{1, 3, 5, 7, 9, 11} and {0.1, 0.2, 0.3, 0.4, 0.5} re-
spectively. We run all experiments on NVIDIA
RTX 3090 GPU.

4.2 Main Results

Table 1 shows the 1-shot/5-shots NER results of
TLDT and all baselines. Each row represents F1-
scores of test domains using the corresponding
method.
Result of 1-shot setting For 1-shot, there are three
main observations as follows.

(1) Our TLDT performs significantly better than
baseline methods without label dependency. TLDT
improves at least 21, 5, 6, 7 and 8 F1-score points
respectively on average, compared with methods
including LSTM+CRF, SpanNER, MNet, WPZ
and TapNet. These results illustrate the significance
of our work to consider the label dependency for
few-shot NER.

(2) TLDT combing with the emission modules
(MNet, WPZ and TapNet) achieves better perfor-
mance than CDT with these modules for consider-

ing label dependency. While using the same emis-
sion module, TLDT outperforms CDT on all do-
mains and improves more than 10 F1-score points
on the OntoNotes dataset. The reason is that CDT
transfers the label dependency by using the abstract
transition matrix without further update, which re-
sults in a lack of task-adaptability of the label de-
pendency in a specific task. This indicates the ef-
fectiveness of TLDT to learn task-adaptive transfer
for capturing label dependency in few-shot NER.

(3) TLDT maintains excellent prediction perfor-
mance with all emission modules. Equipped with
different emission modules, TLDT always achieves
the best performance. Specifically, compared to
CDT, TLDT improves 3.37, 2.94 and 4.00 F1-score
points respectively on average. This demonstrates
that TLDT is a general label dependency transfer
method under the CRF framework and has superior
improvement on few-shot NER.
Result of 5-shots setting The result of 5-shots
NER shows that TLDT also achieves the best per-
formance. Compared to the baselines that ignore
or weaken the label dependency, TLDT improves
at least 9 F1-score points on average. In the case of
considering label dependency, TLDT improves at
least 7 F1-score points over CDT on average under
the same emission module. The results are consis-
tent with the 1-shot setting, which demonstrates
the generalization ability of TLDT in more shots
situations.

4.3 Analysis

Ablation Study In this section, we first conduct
ablation analysis to indicate the necessity of each
component in our method (TLDT). Second, we
analyze the effectiveness of three features for the
update rule learning of TLDT, namely parameter,
gradient, parameter distance in the optimization
process.
Necessity of each component To verify that the
components including LIP and LUR in TLDT are
all essential, we perform the ablation experiments
for TLDT with MNet, WPZ and TapNet in 1-shot/5-
shots situations and remove each component re-
spectively. Table 2 shows the averaged F1-score of
all domains on 1-shot/5-shots. We can see TLDT
is more advantageous than LIP and LUR under
three emission modules. Specifically, when LUR is
removed, the F1-scores decrease both on 1-shot/5-
shots. This demonstrates that it’s crucial to learn up-
date rule for task-adaptive label dependency trans-
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K-shot Model Wiki SocialMedia OntoNotes News Ave.

1-shot

LSTM+CRF 1.26±0.10 1.34±0.23 0.45±0.07 4.08±0.34 1.78±0.35
SpanNER 5.45±0.14 19.57±1.05 9.33±1.59 39.18±1.36 18.38±0.82
MNet 2.96±0.07 20.59±0.64 6.42±0.82 39.44±0.95 17.35±0.32
MNet+CDT 3.45±0.38 24.55±2.09 9.38±2.29 42.87±1.29 20.06±1.36
WPZ 2.91±0.24 20.50±0.82 6.23±0.43 34.06±1.05 15.93±0.26
WPZ+CDT 4.11±0.64 24.01±1.47 8.78±1.75 42.11±1.90 19.76±1.34
TapNet 3.30±0.47 19.00±0.79 8.32±0.54 28.66±3.46 14.82±1.06
TapNet+CDT 3.40±0.44 22.50±2.15 11.51±1.66 41.60±1.11 19.75±1.02
MNet+TLDT (ours) 3.95±0.39 25.56±1.93 22.07±1.06 42.16±2.66 23.43±1.30
WPZ+TLDT (ours) 5.74±0.74 27.67±1.69 18.91±2.60 38.47±7.98 22.70±2.84
TapNet+TLDT (ours) 5.74±0.79 27.94±1.42 18.27±1.91 43.05±1.70 23.75±1.04

5-shot

LSTM+CRF 4.35±0.09 4.79±0.22 4.81±1.07 11.06±0.31 6.25±0.25
SpanNER 4.74±0.78 16.38±7.30 9.66±0.31 39.59±2.24 17.59±1.88
MNet 3.80±0.82 18.45±2.78 9.58±1.23 40.70±4.86 18.13±1.61
MNet+CDT 6.17±0.63 20.58±3.70 14.62±1.93 48.87±4.19 22.56±1.14
WPZ 2.77±0.34 17.03±3.28 9.41±0.82 28.84±3.91 14.51±0.92
WPZ+CDT 2.20±1.17 19.69±2.96 17.45±1.92 37.65±3.84 19.25±1.84
TapNet 3.04±0.56 14.37±1.69 10.85±0.96 31.69±2.40 14.99±0.26
TapNet+CDT 5.34±1.60 22.12±2.46 15.66±2.66 40.46±4.45 20.89±0.88
MNet+TLDT (ours) 8.26±1.65 27.93±1.74 31.03±3.07 49.31±4.99 29.13±1.90
WPZ+TLDT (ours) 10.14±1.60 24.42±3.13 30.65±1.92 44.02±1.65 27.30±1.26
TapNet+TLDT (ours) 6.66±0.88 29.08±2.70 30.41±3.31 45.95±1.83 28.02±0.92

Table 1: F1-scores with standard deviations on the four benchmark datasets

Model 1-shot 5-shot
MNet+LIP 22.08±1.45 26.78±1.96
MNet+LUR 18.29±1.71 24.11±2.08
MNet+TLDT 23.43±1.30 29.13±1.90
WPZ+LIP 21.86±1.24 21.60±2.10
WPZ+LUR 20.27±3.29 23.40±1.52
WPZ+TLDT 22.70±2.84 27.30±1.26
TapNet+LIP 21.75±0.74 21.82±0.54
TapNet+LUR 20.47±0.70 23.95±2.70
TapNet+TLDT 23.75±1.04 28.02±0.92

Table 2: Ablation test over different components of
TLDT on few-shot NER. Results are averaged F1-score
of all domains.

fer. Similarly, if LIP is removed, the F1-scores also
decrease both on 1-shot/5-shots. This shows that
it’s important to learn initialization parameters for
label dependency transfer in few-shot NER.
Effectiveness of three features We aim to prove
the effectiveness of three features used for LUR,
we combine these features in pairs to illustrate the
significance of the remaining feature and the four
domains in 5-shots situation are used for evalua-
tion. Table 3 shows the results of the combination
in pairs and considering all features. In the table,
we can see that the combination including all fea-
tures achieves the best performance on average. In
other words, the absence of any one of the features
makes the F1-score decrease, which demonstrates
the three features are all necessary for TLDT.

Features Ave.
parameter+gradient 18.76
parameter+distance 20.47
gradient+distance 24.59
parameter+gradient+distance 29.32

Table 3: F1-scores of different features on 5-shots name
entity recognition

Inside study of TLDT In this section, we first indi-
cate why LIP and LUR work for label dependency
transfer in few-shot NER. Then we further validate
the generalization ability of TLDT, that is, the pre-
dictive performance in test domains by the model
trained on a few samples.

We conduct the following experiments. To ver-
ify the effectiveness of LIP, which learns initializa-
tion by updating in the specific task, we design a
comparison method, called CDT-adapt, that CDT
further adapt (CDT-adapt) to the specific task by up-
dating the expanded matrix. To demonstrate the ad-
vantages of LUR, we compare to a method that ran-
domly initializes parameters and uses fixed learn-
ing rate and weight decay coefficient (FixedL&W)
to update the parameters in the specific task. Since
LIP and LUR use a one-step update, CDT-adapt
and FixedL&W also adopt one-step for consistency.
To illustrate the better generalizability of TLDT
compared to task-adaptive CDT and FixedL&W,
we select the optimal update step from {1, 3, 5,
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Model Ave.
CDT-adapt (1 step) 19.79
LIP (ours) 21.82
FixedL&W (1 step) 15.62
LUR (ours) 23.95
CDT-adapt (optimal step) 24.43
FixedL&W (optimal step) 21.75
TLDT (ours) 28.57

Table 4: Comparison of generalization between CDT,
FixedL&W and TLDT on 5-shots NER

7, 9} for CDT-adapt and FixedL&W and compare
TLDT to them. All experiments are conducted over
the four domains in 5-shot setting and the learning
rate is set as 0.1.

The results of the averaged F1-scores are shown
in Table 4. First, with the same learning rate and 1
step update, LIP improves CDT-adapt (1 step) 2.03
F1-score points, which indicates the advantage of
task-adaptive initialization learned by LIP is obvi-
ous. Second, LUR outperforms FixedL&W obvi-
ously at least 8 F1-score points. This demonstrates
the necessary of learning variable learning rate and
weight decay items for task-adaptive label depen-
dency transfer. Third, F1-scores of CDT-adapt (op-
timal step) and FixedL&W (optimal step) are both
lower than TLDT by at least 4 and 6 points respec-
tively on average F1-score. It shows that whether
starting from the abstract matrix learned by CDT
or random initialization, or applying multi-step up-
dates with fixed learning rules, the generalization
performance of these learning mechanisms is al-
ways inferior to that of TLDT with only one-step
update. This suggests that their learning methods
may be more prone to trapping the transition score
in a local optimum or suffering the overfitting when
learning on a few samples. On the contrary, TLDT
has excellent generalization performance in few-
shot situations by task-adaptive initialization learn-
ing and variable update rules.

Outside study of TLDT In this section, we de-
sign an analytical experiment to further illustrate
how our method works. In the experiment, we com-
pare the transition matrices learned by TLDT and
CDT with the ground truth, to illustrate whether
the probabilities learned by TLDT more closely
match the actual data. Specifically, we count the
occurrence frequency of label-label pairs in the test
set as the ground truth and extract the two transi-
tion matrices of TLDT and CDT. Then we map
the frequency and the values of the two matrices to
interval [0, 1] respectively, and use heatmaps to rep-

resent them. As shown in Figure 5, the color band
corresponding to [0, 1] is divided into five intervals,
where the darker color indicates the higher label-
label transition probability. For ease of illustration,
we use “ABCDE” to denote these intervals.

From Figure 5, we can draw three observations.
(1) The matrix learned by TLDT matches more
ground truth than that learned by CDT, where the
number of matches is 57 and 43 respectively. It
shows that the transition matrix in TLDT is more re-
alistic than that in CDT. (2) In unmatched transition
scores, the scores learned by TLDT is closer to the
ground truth than that learned by CDT. For exam-
ple, label pairs “B-LOC”-“O”, “B-MISC”-“O” and
“B-ORG”-“O” are “A” in real data. The transition
scores of these label pairs learned by TLDT and
CDT are “B” and “C” respectively. This demon-
strates that TLDT indeed learn transition scores
that more fit real data. (3) For label pairs belong to
“B”-“dB”, the transition scores learned by TLDT
are “C” which are consistent with actual data, but
that learned by CDT are all “D”. The reason is that
the transition matrix learned by CDT is directly ex-
panded by the abstract transition, and the abstract
transition is learned from the train set where “B”-
“dB” may appear with a very low rating. Therefore,
the probabilities of label pairs belong to “B”-“dB”
in expanded matrix are also low. On the contrary,
TLDT has learned a more realistic transition ma-
trix by further updating that in test task by the few
samples.

5 Related work

Few-shot Named Entity Recognition
Conventional few-shot NER methods focus on
modeling the correlation of entities-labels. These
methods(Mettes et al., 2019; Tong et al., 2021; Li
et al., 2021) aim to learn a prototype for each la-
bel and classify an entity by finding the nearest
prototype in a mapping space. But as a sequence la-
beling task, label dependency also need to be taken
into account in few-shot NER. Some works add the
linear CRF layer as the last layer of their models
to learn label dependency(Gong et al., 2021; Ma
and Hovy, 2016; Li et al., 2020). However, the
learned label dependency cannot be transferred to
new tasks due to the label discrepancy.

To solve this problem, the CDT mechanism
is proposed to learn abstract label dependencies
(Hou et al., 2020) and is widely adopted in many
works(Yang and Katiyar, 2020; Hou et al., 2019;
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(a) Occurrence frequency of label pairs (b) Transition matrix learned by TLDT (c) Transition matrix learned by CDT

Figure 5: Comparison of the ground truth with transition matrices learned by TLDT and CDT

Zhu et al., 2020). However, the task-specific la-
bel dependencies obtained by the CDT mechanism
lack task adaptability. In this paper, we propose
TLDT to make label dependencies transferable and
effectively adapt to new tasks in few-shot NER.
Optimization-based Meta-Learning
The studies on optimization-based meta-learning
can be divided into the following two categories:
Initial parameter optimization. A lot of work
focus on learning weight initialization such that
models can fast adapt to new tasks. MAML(Finn
et al., 2017) learned the initialization that makes
a model adapt to new tasks by a few gradient up-
dates. Some work has been proposed to improve
MAML(Rajeswaran et al., 2019; Nichol et al.,
2018; Grant et al., 2018). However, the existing
methods can not be directly applied to our task due
to the label discrepancies. In this paper, we im-
prove MAML by using the abstract initialization.
Hyperparameters learning. The existing studies
learn adjustable hyperparameters for inner-loop pa-
rameter optimization. Ravi and Larochelle (2017)
used an LSTM meta-learner trained to be an op-
timization algorithm. Li et al. (2017) proposed
Meta-SGD to learn a learning rate vector for all
tasks. ALFA is proposed by Baik et al. (2020)
to specify the form of parameter update rule to
include the learning rate and weight decay terms.
These methods require consistent parameters for all
tasks, but in our task, the discrepancy of label sets
causes inconsistency. TLDT models the individual
parameter and captures the sequence information
to generate the task-adaptive hyperparameters.

6 Conclusion

In this paper, we propose an optimization-based
meta-learning approach to transfer label depen-
dency for few-shot NER. To make label depen-
dency transferable and effectively adapt to new
tasks, we propose a general initialization learning

mechanism that learns shared initial label depen-
dency and can quickly adapt to new tasks with a
few gradient updates. In addition, we also propose
an update rule to generate task-adaptive hyperpa-
rameters for label dependency optimization in a
specific task. Experiment results validate that both
the general initialization learning and update rule
learning can improve the few-shot NER accuracy.

7 Limitations

Regarding our work, we summarize the following
three limitations.

(1) TLDT is proposed under the assumption that
entities in a sentence are independent of each other,
that is, they do not overlap. In the case of over-
lapping entities, TLDT cannot capture the label
dependency of these entities.

(2) We tested TLDT on four public datasets and
these datasets contain a part of the same labels.
This may help TLDT to learn the general knowl-
edge of the label dependency. We did not give ex-
perimental proof that if the label sets of the datasets
all totally different, whether the TLDT can main-
tain good robustness.

(3) To overcome the label discrepancy prob-
lem and generate adjustable hyperparameters, we
model for the individual transition score in the spe-
cific task. However, the mechanism neglects the
correlation between parameters, which limits the
ability to update rule learning.
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A Appendix

A.1 Algorithm 1
Algorithm 1 shows the complete training procedure
of the general initial transition scores.

Algorithm 1: Initial parameters learning
process

Input :Source domains T ;
Learning rate α for inner-level;
Learning rate η for outer-level;

Output :Initial parameter γ

1 γ ←− random initialization;
2 while not converged do
3 for each task Ti ∈ T do
4 θi←− expand γ by CDT mechanism;
5 S,Q←− random dataset from Ti;
6 compute∇θiLS

Ti
(θi);

7 compute θ′i = θi − α∇θiLS
Ti
(θi)

8 update γ = γ − η∇γ
∑

Ti∈T L
Q
Ti
(θ′i)

9 return γ

A.2 Algorithm 2
Algorithm 2 shows the overall procedure of update
rule learning mechanism to generate the variable
hyperparameters for different transition scores in
the specific task.

Algorithm 2: Update rule learning process
Input :Source domains T ;

Learning rate η for outer-level;
Learning rate δ and update step k for

extracting features;
Output :parameter ψ

1 ψ←− random initialization;
2 while not converged do
3 for each task Ti ∈ T do
4 S,Q←− random dataset from Ti

5 θi←− random initialization
6 for update step j: 1 to J do
7 compute∇θi,jLS

Ti(θi,j)

8 θi,j+1 = θi,j − δ∇θi,jLS
Ti
(θi,j)

9 di,j = θi,j+1 − θi,j
10 F j:: ←−

[∇θi,jLS
Ti(θi,j),θi,j+1,di,j ]

11 Compute (αi,βi) = gψ(F i)

12 Compute∇θiLS
Ti(θi)

13 Compute
θ′i = βi ⊙ θi −αi ⊙∇θiLS

Ti
(θi)

14 update ψ = ψ − η∇ψ
∑

Ti∈T L
Q
Ti
(θ′i)

15 return ψ

A.3 Statistic of datasets
Tabel 5 shows the detailed statistics of the original
dataset used to construct few-shot experiment data.

3290



Table 5: Statistic of Dataset

Dataset Domain # Labels # Sent
CoNLL News 5 4703
GUM WiKi 12 5300
WNUT Social 7 10433
OntoNotes Mixed 19 3438
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