
Findings of the Association for Computational Linguistics: ACL 2023, pages 3335–3350
July 9-14, 2023 ©2023 Association for Computational Linguistics

Two Examples are Better than One: Context Regularization for
Gradient-based Prompt Tuning

Hyeonmin Ha1 Soyoung Jung1 Jinsol Park1

Minjoon Seo2 Seung-won Hwang1 Byung-Gon Chun1,3

1Seoul National University 2KAIST AI 3FriendliAI
{hyeonmin.ha, sy.jung, jinsolpark, seungwonh, bgchun}@snu.ac.kr

minjoon@kaist.ac.kr

Abstract
Prompting has gained tremendous attention as
an efficient method for the adaptation of large-
scale language models. However, prompts of-
ten act against human intuition and report unsta-
ble performances, which has motivated meth-
ods that automatically find effective prompts.
One popular approach is gradient-based search,
which iteratively updates a (randomly) initial-
ized prompt towards the optimal one with the
guide of gradients. We propose a novel regu-
larization method, CoRe, for gradient-based
prompt tuning techniques, which guides a
prompt to produce a task context properly.
CoRe realizes two regularization effects — con-
text attuning and context filtering — that im-
prove prediction performance in a zero-shot in-
context learning setting where a model makes
inferences only with the prompt tuned by CoRe,
without any demonstration examples for in-
context learning. Context attuning guides the
context generated by the input and the tuned
prompt toward embedding the appropriate con-
text for the task. In our theoretical analysis, reg-
ularizing the context extends to improving zero-
shot in-context learning performance. Context
filtering steers the prompt to select only the
task-related context so that context attuning
solely focuses on creating and sending the right
task context. We evaluate CoRe on natural
language understanding datasets and two large
language models, GPT2-XL and GPT-J. Our
training scheme shows performance improve-
ments up to 11.9% on GPT2-XL, and up to
6.3% on GPT-J in zero-shot settings.

1 Introduction

A prompt is a carefully composed input to adapt a
pretrained language model (LM) with in-context
learning, and has gained attention as a new method
for the adaptation of LMs. Radford et al. (2019)
and Brown et al. (2020) showed that pretrained
LMs can be transferred to various downstream NLP
tasks by designing prompts to be aligned with pre-
training objectives and downstream tasks. This

LM

Attuning Filtering

Pos.. Pos.. Neg..The gorgeously .. Good fun .. This isn't ..

Positive Positive Negative

Figure 1: Abstracted illustration of the two regular-
izers, context attuning (red line) and context filtering
(blue line), of CoRe with sentiment analysis data. The
black line indicates regular gradient-based prompt tun-
ing where an input sequence consists of one data exam-
ple (x0 and y0) and the prompt ω0 is optimized with
respect to y0 only.

method has a unique capability in that it does not
mandatorily require training examples or parame-
ter access for LM adaptation. Moreover, Radford
et al. (2019) suggested, and Brown et al. (2020)
systematically explored that providing demonstra-
tion examples in the prompt can also boost the
performance of prompting.

Initially, a prompt is manually crafted by a de-
veloper with human intuition. However, because
of the unstable performances and unpredictable
behaviors of manual prompts (Liu et al., 2021),
automatic methods for prompt tuning have been
proposed. One of the most popular paradigms is
optimizing prompts using stochastic gradient de-
scent (SGD) (Lester et al., 2021; Shin et al., 2020;
Liu et al., 2021; Zhong et al., 2021) — gradient-
based prompt tuning, which updates prompt tokens
or parameterized embeddings with a guide of gra-
dients.

To further boost the performance of gradient-
based prompt tuning methods, this paper suggests
a new context regularization scheme, CoRe. CoRe
introduces two regularizers: context attuning and
context filtering. Context attuning guides a prompt
ω and an example {x, y} to generate an appropri-

3335

ate task context without being biased towards the
example. This is realized as a concatenation of
multiple examples, resulting in a single sequence
including the examples, as the concatenation of the
three examples in Figure 1. Context attuning then
optimizes the first prompt (ω that comes before x0)
towards minimizing the losses of the succeeding
examples (y1, y2). Therefore, the prompt does not
become biased to {x0, y0}, but is generalized for
the appended examples as well and generates less
biased task contexts.

However, context attuning alone does not show
the effect of regularization because the following
examples receive too diverse contexts, such as
styles, topics, relationships between entities, or
task information. Such diversity hinders the opti-
mization of the regularizer towards the task context.
To resolve this problem, we add another regular-
izer, context filtering, to adequately extract the task
context from the preceding examples. Specifically,
following the example in Figure 1, context filter-
ing (blue line) optimizes prompts given preceding
examples — optimization of ω1 with respect to y1
when {x0, y0, x1} is given.

We evaluate the effect of CoRe in a zero-shot
in-context learning (ICL) setting as most prompt
tuning methods have focused on the setting. In
zero-shot ICL, a tuned prompt and a test input is
only given without any additional demonstration
examples. While ICL often assumes demonstration
examples are given, for simplicity we call this set-
ting zero-shot ICL. It can be also seen as a typical
zero-shot instruction following.

Context attuning and context filtering improve
the model’s performance in a zero-shot in-context
learning (ICL) setting even though the prompts
have been trained in a few-shot ICL setting (i.e.,
concatenation of examples). We conjecture that
this successful transfer from a few-shot setting to
a zero-shot setting is possible since prompts have
been tuned with the guide of CoRe to generate
a more generalized task context. Such a general-
ized task context is effective regardless of concate-
nated examples, thus improving the performance
in a zero-shot setting. We highlight that this trans-
ferability from few-shot settings to zero-shot set-
tings is noteworthy and verify it on a theoretical
framework based on the hidden Markov model and
Bayesian inference (Xie et al., 2022).

To the best of our knowledge, this work is the
first to leverage interactions between examples in a

sequence for the purpose of regularization. There
are several works training on multiple examples in
a sequence (Min et al., 2021; Chen et al., 2022;
Gao et al., 2021). They focused on improving
few-shot in-context learning by maximizing the
likelihood of an example given demonstration ex-
amples. Our work is distinct from the above works
in two aspects. First, we target zero-shot settings.
Second, we introduce a novel regularization tech-
nique — context attuning— to improve zero-shot
performance by leveraging the influence between
multiple examples within a sequence.

We evaluate CoRe on two large autoregressive
language models, GPT2-XL (Radford et al., 2019)
and GPT-J (Wang and Komatsuzaki, 2021), and
8 NLU datasets: five from SuperGLUE, SST2,
AGNews, SNLI. CoRe enhances the performances
of zero-shot inference up to 11.9% on GPT2-XL
and 6.3% on GPT-J when applied to P-tuning (Liu
et al., 2021), Prefix-tuning (Li and Liang, 2021),
and Softprompt-tuning (Lester et al., 2021).

2 Background

In-context learning (ICL) is a relatively new
paradigm in the adaptation of pretrained language
models (LMs). ICL have been used to adapt pre-
trained LMs to numerous downstream tasks such as
Natural Language Inference (Schick and Schütze,
2020), text classification (Gao et al., 2021; Puri
and Catanzaro, 2019; Schick and Schütze, 2020),
question answering (Jiang et al., 2021; Khashabi
et al., 2020; Raffel et al., 2020) and many more.

In ICL, a prompt is a task specification given as
part of the input and aims to guide the language
model into generating the desired output accord-
ing to the given task. A prompt usually consists
of a task description, a template of the input with
placeholders for data, and optionally demonstra-
tion examples. For example, when given an input
"Translate English to Spanish: I love you →",
the LM is expected to finish the input by gener-
ating the answer "te amo". This is different from
fine-tuning, where the parameters of the LM are
updated to optimize the translation performance.

Compared to fine-tuning, which is a repre-
sentative LM adaptation technique, ICL is more
memory-efficient when we want the LM to process
various different tasks. In ICL, the LM parameters
are typically frozen, and developers only have to
keep at most dozens of tokens per task, which are
task descriptions and input templates. However,

3336

for fine-tuning, developers have to keep different
versions of parameters per task, which can be as
huge as 540 billion parameters (Chowdhery et al.,
2022) in the status quo.

2.1 Manual prompt tuning
In the early stages of prompting, prompts were
often handcrafted with heuristics. Radford et al.
(2019) and Brown et al. (2020) demonstrate the
transferability of pretrained LMs using manual
prompts. These two works show that LMs can
perform well on diverse NLP tasks when provided
with some adequate prompts.

In particular, Brown et al. (2020) highlights in-
context learning, a new training scheme where sev-
eral demonstration examples are appended in front
of the target input. LMs are expected to learn the
task by referring to the prepended demonstrations
only. Like other GPTs, GPT3 is also known to re-
quire carefully crafted prompts to get the task done
adequately.

In subsequent works, manual prompts have been
applied to a number of research areas such as
factual probing (Petroni et al., 2019; Jiang et al.,
2020a), knowledge mining (Davison et al., 2019),
question answering (Khashabi et al., 2020; Raf-
fel et al., 2020), and text classification (Puri and
Catanzaro, 2019; Schick and Schütze, 2020). De-
spite their remarkable adaptation ability, manually
crafted prompts have exhibited unstable perfor-
mances. Besides, prompts that show good per-
formance are, in fact, quite against commonsense,
unable to understand why some specific prompts
work well (Liu et al., 2021).

2.2 Automatic prompt tuning
Along with the unstable performances and unac-
countable behavior of manual prompts, creating
manual prompts involves extensive human effort
in devising and evaluating numerous handcrafted
templates of different patterns. Therefore, recent
studies suggest techniques to automatically search
for an optimal prompt.

One of the most popular methods is gradient-
based methods, which keep updating prompt tokens
or parameterized prompt embeddings leveraging
gradients. For an example, Lester et al. (2021), OP-
TIPROMPT (Zhong et al., 2021), and P-tuning (Liu
et al., 2021) first concatenate initialized embed-
dings for prompts with the embeddings of input
data in a pre-defined order. They then directly opti-
mize prompt embeddings on a given task dataset.

The optimized prompt embeddings are used at in-
ference time without any modification.

Other than gradient-based methods, Jiang et al.
(2020b) proposes a mining-based method that uses
the Wikipedia text corpus to extract a prompt. Gao
et al. (2021) uses the pretrained T5 model (Raf-
fel et al., 2020) to fill in the missing spans of a
given input sentence to construct a prompt. Guo
et al. (2021) proposed an RL method for a con-
trolled generation of LM, and applied it to prompt
generation.

3 Approach

Our key approach to improve SGD-based prompt
tuning is to concatenate multiple examples and reg-
ularize a context generated by them, which trans-
fers to improvement in zero-shot prediction. Our
training scheme first concatenates multiple exam-
ples from the same task. Taking an example of con-
catenating three examples (x0, y0, x1, y1, x2, y2) as
depicted in Figure 1, a model is given an input
S = {ω, x0, y0,ω, x1, y1,ω, x2, y2} where ω is
the tunable prompt. Then, CoRe introduces two
regularizers: context attuning and context filtering.
The context attuning regularizer steers an example
to send the correct task context to the succeeding
examples, while the context filtering regularizer
guides the succeeding examples to receive only the
task context among diverse contexts from preced-
ing examples.

We target zero-shot ICL where only a prompt
and a test input are provided (i.e., no demonstra-
tion examples). During inference, a model is given
ω, xi and expected to predict yi where ω has been
trained with CoRe. We denote this setting as zero-
shot in-context learning to imply that the model
learns from the context provided by the tuned
prompt, but we do not give any demonstration ex-
amples (zero-shot example for in-context learning).
Please note that this differs from the typical zero-
shot setting. Although the model still does not see
any training example for making predictions, train-
ing data has been used when optimizing the prompt
with CoRe.

We would like to highlight our finding that
prompts tuned with CoRe in a few-shot ICL set-
ting show improved performances in a zero-shot
setting. CoRe’s two regularizers – context attuning
and context filtering– are applied on a concate-
nation of multiple examples (i.e., few-shot ICL),
and the regularizers steer the prompt during train-

3337

ing time to generate a more generalized task con-
text for following examples (x1, x2) in a sequence.
Such a well-generated task context (generated by
ω) is propagated not only to the following exam-
ples (x1, x2) but also to the example (x0) paired
with the prompt. Therefore, a prompt tuned with
CoRe helps the model’s prediction when given an
input of a single example (S = {ω, xi}), which is
equivalent to a zero-shot ICL setting.

Throughout this section, we use a simple form
of prompt for conciseness of the explanation but
without loss of generality: {ω, xi, yi} where ω is
a tunable prompt. Our work focuses on autoregres-
sive language models (LMs), so our method is not
explored or analyzed upon autoencoding LMs such
as BERT (Devlin et al., 2019).

3.1 Context attuning
Context attuning prevents a prompt from being bi-
ased to a single example for generalization on the
zero-shot ICL setting, using regularization on a con-
text. In detail, this regularizer guides a prompt ω
and an example {x, y} to create an appropriate task
context without being biased towards the example.

3.1.1 Mechanism
To realize the goal, we first put multiple examples
in an input sequence so that examples can exchange
the task context with one another. This is different
from typical SGD-based prompt tuning where each
input sequence has only one training example, and
the gradients cannot flow between the examples.
In the sequence, the appended examples attend to
the preceding examples and are influenced by the
context of preceding examples during predictions.
The prompt of the first example plays a key role in
context attuning— it minimizes not only the losses
of the first example (black line in Figure 1) but also
the losses of the succeeding examples (blue line
in Figure 1). We hypothesize that such optimiza-
tion inherently regularizes a task context from the
prompt and prevents the prompt from being too
biased to a single example, ultimately achieving
better generalization ability.

We give a formal definition of the context attun-
ing regularizer. In autoregressive LMs, as depicted
in Figure 1 with the red lines, our training method
optimizes as the following:

ω ←− ω − ϵ · ∇ω0

∑

k>0

pθ(yk|S<k,ωk, xk), (1)

where Sk = {ωk, xi,k, yi,k} is the k-th example in

the sequence, S<k = {Sj |j < k}, ωk is a trainable
parameterized prompt, s is the number of concate-
nated examples, and θ is the parameters of the LM.
ωk(k ̸= 0) is the same with ω0 but regarded as
a constant and not optimized. We introduce k to
represent the positions of the prompts and indicate
which prompts are optimized. On our method, the
prediction of each example Si,j is conditioned on
the prompt ω0 paired with the first example, "The
gorgeously.." in Figure 1 for an example, and the
prompt is optimized for multiple examples.

We were inspired by few-shot ICL (Radford
et al., 2019; Brown et al., 2020) when designing the
context attuning regularizer. When predicting the
answer for a new input, few-shot ICL prepends a
few demonstrations — input-answer pairs — to the
new input and condition on those demonstrations
to understand the task. The success of few-shot
in-context learning has shown that prepended ex-
amples provide some meaningful information (e.g.,
task context) to succeeding data. Few-shot ICL
leverages the interaction among examples during
inference; our method can be considered as lever-
aging the same advantage during training (prompt
tuning) to achieve better generalization.

3.1.2 Theoretical analysis
We analyze how the regularizer affects context at-
tuning using a theoretical framework from Xie et al.
(2022) and verify that context attuning improves
zero-shot inference. Xie et al. (2022) designed
the framework to explain what enables in-context
learning of LMs. They viewed an LM as Bayesian
inference with a hidden Markov model (HMM),
and the transitions of the HMM are parameterized
by a latent concept c, which represents a task. On
their framework, our regularizer can be expanded
as follows:

p(yk|S<k,ωk, xk) ∝∫

c

∑

hs
k

p(yk|xk, hsk, c)p(hsk|S<k,ωk, xk, c)

p(S<k,ωk, xk|c)p(c) dc, (2)

where hsk is a hidden state corresponding to xk.
Note that we omit the index of sequence i as our
analysis is done on a single sequence.

We are interested in how the regularizer at-
tunes the task context and generalizes to maximize∑

i p(yi,0|ω0, xi,0), which is zero-shot inference.
On the framework, our regularizer affects the terms

3338

that ω0 is involved in: p(hsk|S<k,ωk, xk, c) and
p(S<k,ωk, xk|c). We analyze the two terms to
identify the effect of the cross-data regularizer on
zero-shot inference.

First, optimizing p(hsk|S<k,ωk, xk, c) prevents
the prompt from being biased towards a single data
instance by optimizing the task context passed to
the following examples. The term we optimize can
be expanded as follows:

p(hsk|S<k,ωk, xk, c) =∑

hs
0

p(hsk|hs0, S−ω0
<k−1,ωk, xk, c)p(h

s
0|ω0, x0, c),

(3)

where S−ω0
<k−1 = S<k−1 − {ω0}. Optimizing only

zero-shot inference p(y0|ω, x0) may cause the hid-
den state hs0 to be biased to the data instance. How-
ever, with our regularization, the prompt ω0 is
tuned to pass the proper task context via the hidden
state hsk to the following examples. To increase the
probability of such hidden state, the prompt should
be tuned to increase the probability p(hs0|ω0, x0, c)
where hs0 is likely to transit to the proper hidden
state hsk, where the first term of RHS of Equation 3,
p(hsk|hs0, S−ω0

<k−1,ωk, xk, c), is high. Since hs0 is
unlikely to transit the hidden states that embed
the proper task context when hs0 has already been
biased to a specific data instance, the bias is nat-
urally avoided. Finally, the unbiased hidden state
hs0 improves the average zero-shot inference per-
formance, which is the average of Equation 2 over
the dataset where k = 0.

Moreover, the optimization also calibrates
p(S<k,ωk, xk|c) to align the input data to the opti-
mal concept. Comparing that the original method
only optimizes p(ω0, xi,0|c), S<k contains y0 so
we can align the input to the task additionally con-
sidering the answer for the input.

3.2 Context filtering
The context filtering regularizer guides prompts
to filter and receive only the task-related context
(task context). With context attuning regularizer,
CoRe help LMs to obtain unbiased hidden states
for zero-shot inference but the context attuning
regularizer alone cannot realize the regularization
effect if hidden states of succeeding examples are
too noisy.

Hidden states deliver various contexts, including
not only task contexts but also contexts related to
the style, topics, or content of preceding examples.

The following examples’ predictions depend on
the mixed contexts. Such phenomenon has been
empirically reported in the work of Liu et al. (2022)
where each example has a unique set of optimal
demonstrations.

We conjecture that contexts that are not directly
related to the task add noise to optimization on
hidden states, undermining the regularization effect
of context attuning regularizer. Thus, there should
be some auxiliary mechanism that selects only the
set of hidden states that convey task-related optimal
signal and the context filtering regularizer serves
that role.

Context filtering regularizer steers a parameter-
ized prompt to filter only the set of hidden states
that convey task contexts. We maximize the like-
lihood of an example given prepended demon-
stration examples, and this is the same loss with
MetaICL (Min et al., 2021) and ICT (Chen et al.,
2022) but without meta-learning. Specifically, we
use the following SGD step:

ω ←− ω − ϵ ·
∑

k>0

∇ωk
pθ(yk|S<k,ωk, xk), (4)

as depicted in Figure 1 with the blue lines. The only
required context for inference with demonstrations
is the task context extracted from the preceding
demonstrations because the task is the only corre-
lation between multiple examples. Therefore, this
regularizer intrinsically leads the prompt to extract
a proper task context from preceding examples.

3.3 Practical objectives
Our SGD step consists of the original likelihood
maximization and the two regularizers:

ω ←− ω −∇ω0pθ(y0|ω0, x0)

−∇ω0pθ(y1|ω0, x0, y0,ω1, x1)

−∇ω1pθ(y1|ω0, x0, y0,ω1, x1), (5)

when we place two examples in a sequence. This
can be implemented by simply concatenating ex-
amples and minimizing the cross entropy of all of
the answers. However, when we concatenate more
than two examples, we need a more complex im-
plementation and multiple iterations for a sequence
because some prompts should be regarded as con-
stants. For efficient training, we modify the losses
by allowing ωk>0 to be optimized for the cross-
data regularizer so that we can simply compute
the required gradients in a single iteration. We de-
scribe the modified losses and the complexity of
the original loss in detail in Appendix A.

3339

4 Experimental Setup

In this section, we briefly specify the setup that our
experiments are conducted on: models, datasets,
and hyperparameters. For more details, please
check Appendix B.

Model and Dataset We evaluate our training
method on two large language models, GPT2-
XL (1.5B parameters) and GPT-J (6B parameters),
and seven classification datasets (CB (de Marn-
effe et al., 2019), RTE, WSC, WiC (Pilehvar
and Camacho-Collados, 2019), COPA (Roemmele
et al., 2011), BoolQ (Clark et al., 2019), Mul-
tiRC (Khashabi et al., 2018)) from SuperGLUE
benchmark (Wang et al., 2019). The benchmark
has English datasets from various tasks and do-
mains such as news, blogs, or encyclopedia. We
downloaded the model checkpoints from Hugging-
face transformers (Wolf et al., 2020) and datasets
from Huggingface datasets (Lhoest et al., 2021).

Baselines We evaluate our method on three
gradient-based prompt-tuning baselines: P-
tuning (Liu et al., 2021), Prefix-tuning (Li and
Liang, 2021), and Softprompt (Lester et al., 2021).

Input Construction for CoRe In our exper-
iments, the input is formed by simply adding
several trainable prompt embeddings in front of
each element of a data instance. This way of
constructing an input is highly convenient because
it does not require manual human effort and addi-
tional tuning for each task. For example, a single
data instance of natural language inference tasks
consists of three elements: premise, hypothesis,
and label. We transform the data instance into
(e0, premise, e1, hypothesis, e2, label) where
ei ∈ Rn×h is a parameterized prompt that we
optimize, and h is the hidden state size. We
use n = 1 for P-tuning and Softprompt. For
Prefix-tuning, we use a different template since
prefix-tuning appends prompts only at the front of
a data instance. We transform the data instance
into (e0, premise, hypothesis, label) where ei is
a parameterized prompt of size 5.

Sequence Size and Batch Size We intro-
duce a special hyperparameter used in CoRe,
named sequence size. This refers to the
number of data instances concatenated for
a single training example when CoRe. For
example, an input for CoRe of sequence size
2 and 3 becomes {ω0, x0, y0,ω1, x1, y1} and
{ω0, x0, y0,ω1, x1, y1ω2, x2, y2}, respectively.
Please note that CoRe of sequence size 1 is

equivalent to the standard SGD training. To make
a fair comparison, we keep the size of batch size
= (number of sequences in a batch) × (sequence
size) to be a constant. This way, a model sees an
equal amount of data for every iteration of CoRe
across all sequence sizes.

Evaluation We use accuracy averaged over dif-
ferent random seeds. We use ten seeds for GPT2-
XL experiments, and five for GPT-J experiments
except for MultiRC experiments, where we use five
and three seeds respectively.

5 Experimental Results

We evaluate CoRe on the setup we presented in
Section 4. We first show the performance gain
of our method on the three baselines. Then, we
present how the performance changes according to
sequence sizes, and further analyze the effect of
two regularizers of CoRe with the ablation studies.
In addition, we present how the similarity of con-
catenated examples affects performance. Finally,
we present the performance of CoRe in few-shot
inference settings.

5.1 Main result

We first experiment with our method on the three
baselines, which use parameterized continuous
prompts. Table 1 compares the zero-shot perfor-
mances of prompts trained only with baseline tun-
ing methods against prompts trained with CoRe on
top of the methods. On GPT2-XL, CoRe shows
improvements in accuracy compared to P-tuning,
Prefix-tuning, and Softprompt, up to 11.9%. On
GPT-J, CoRe also shows consistent enhancements
up to 6.3% for the three methods. The absolute
gains are reduced on GPT-J, compared to the gains
on GPT2-XL. This is expected as it is typically
hard to earn a large gain as the baseline perfor-
mance increases.

Interestingly, we found that our method shows a
higher accuracy gain for NLI tasks — SuperGLUE
CB and RTE — on GPT2-XL across all three base-
lines. We can hypothesize that there are some cor-
relations between NLI tasks and the pretraining
objective, or between the tasks and the pretraining
dataset of GPT2-XL. It is worth analyzing the rela-
tionship between the pretraining and downstream
tasks to further improve the gains for other datasets
as a future work.

We observe that there are mainly two cases
where CoRe does not show performance gain. First,

3340

Model Method CB RTE WSC WiC COPA BoolQ MultiRC

GPT2-XL P-tuning 76.79 68.84 64.23 63.01 57.60 70.90 67.64
+ CoRe 81.79 72.13 64.23 66.91 58.80 71.75 65.52
Softprompt 73.57 68.66 63.65 63.90 60.50 68.01 70.48
+ CoRe 82.32 73.50 64.42 64.95 58.90 71.77 69.87
Prefix 65.90 59.35 63.56 53.12 57.70 62.56 72.24
+ CoRe 79.46 61.66 64.14 53.64 56.40 67.40 69.58

GPT-J P-tuning 94.64 79.93 65.19 69.03 70.20 78.36 84.45
+ CoRe 97.50 84.98 65.77 70.85 67.20 84.01 84.12
Softprompt 91.07 82.24 65.00 67.43 61.80 82.31 82.26
+ CoRe 95.36 83.25 65.19 67.09 62.60 82.50 80.27
Prefix 94.20 81.88 65.19 70.50 66.60 83.38 84.21
+ CoRe 94.64 82.46 65.77 66.96 65.20 82.81 81.61

Table 1: Comparison of zero-shot evaluation results between three baselines and applying CoRe to the baselines
across various NLU datasets. For the evaluation metric, we used averaged accuracy. We highlight the better one
among a baseline and that with CoRe.

1 2 3 4

0.96

0.98

1

1.02

1.04

1.06
Dataset

CB

RTE

WSC

WiC

COPA

BoolQ

MultiRC

Sequence size

N
or

m
al

iz
ed

ac
cu

ra
cy

Figure 2: Zero-shot evaluation on varying sequence
sizes. Accuracy for each dataset is normalized with
respect to its accuracy when the sequence size is 1.

CoRe performs worse than the baseline on Super-
GLUE MultiRC. We conjecture that task context
does not get properly propagated since training
samples of MultiRC are far longer than samples of
other SuperGLUE subsets.

Another observation is that CoRe generally does
not work well for Prefix-tuning on GPT-J. We hy-
pothesize that this might have some correlation
with Rotary Positional Embedding (RoPE) of GPT-
J. It has not yet been explored how the mechanism
of Prefix-tuning (appending prompts to all the key
and values of each layer) interact with RoPE and
this may undermine the proper working of CoRe.

5.2 How many examples to concat?

To see how the sequence size of CoRe affects the
performance, we train prompts on GPT2-XL and
GPT-J using varying sequence sizes from one to
four. Figure 2 shows the result of P-tuning on GPT-
J with zero shot evaluation, and Table 7, Table 8,
and Table 9 in Appendix C presents the results of
all of the baselines on both models with the exact
numbers.

Method Task orig. + A + F + both
(CoRe)

P-tuning RTE 68.84 69.86 68.48 72.13
CB 76.79 76.07 73.57 81.79

Softprompt RTE 68.66 69.31 69.71 73.14
CB 73.57 75.00 75.89 75.89

Prefix RTE 59.35 55.56 53.72 61.66
CB 65.90 73.39 71.07 79.46

Table 2: Ablations studies on the effect of context attun-
ing regularizer (A) and context filtering regularizer (F)
where sequence size is 2.

In most cases, a sequence size of 3 or 4 exhibits
the best performances on GPT-J, but CoRe shows
better performance with smaller sequence sizes, 2
or 3, on GPT2-XL. This shows that context attun-
ing leads to context with less bias when given more
data in a sequence, and provides effective regular-
ization. Increasing the sequence size over a certain
level results in accuracy drops. From this, we infer
that too many examples in a single sequence lead
to causing noise to become part of the context.

5.3 The impact of each regularizer

To see how context attuning and context filter-
ing each contributes to the performance gain from
CoRe, we conduct ablation studies with gradients
involved in CoRe. We factorize the gradients as in
Equation 5 with a sequence size of 2, and the gradi-
ents represent the gradient in the baseline method,
context attuning, and context filtering, respectively.
We then test the effect of each type of gradients.

As presented in Table 2, in general, CoRe ex-
hibits the best performance when all three gradients
(baseline, context attuning, and context filtering)

3341

Method Task orig. + CoRe

P-tuning RTE 0.024 0.050
CB 0.261 0.286

Softprompt RTE 0.006 0.014
CB 0.137 0.157

Prefix RTE 0.013 0.020
CB 0.015 0.037

Table 3: Comparison of one-step generalization ra-
tio (Liu et al., 2020) before and after applying CoRe.

are involved. Context attuning alone has no gain or
shows smaller gains than applying both regulariz-
ers. It requires a mechanism to filter unnecessary
contexts and make context attuning focus on the
task context, and our context filtering serves that
role. There is one unexpected behavior in Soft-
Prompt on CB that applying the filtering gradient
alone shows performance on par with CoRe. We
hypothesize that filtering appropriate task context
alone shows good enough performance for this spe-
cific case.

5.4 Measurement of bias caused by prompts

To showcase the regularization effect of CoRe, we
compare how much prompts are biased to training
data samples before and after applying CoRe. For
quantifying the amount of bias, we use ’one-step
generalization ratio (OSGR)’ suggested by (Liu
et al., 2020), which is a validation loss drop during
a single training step divided by a training loss
drop during the step. We calculate the training loss
only on the single batch of data used in the training
step, not the entire training set, to represent how
much the prompt is over-fitted (biased) to the batch.
The higher the OSGR, the faster the validation loss
drops with respect to the training loss, meaning
the smaller generalization gap between the training
batch and the validation set. Note that a model sees
the exact same training data in a single training step
regardless of applying CoRe, as we mentioned in
Section 4. In Table 3, we report results for three
baselines on CB and RTE datasets, measured for
100 training steps after 3 epochs, and averaged over
10 seeds.

Despite training for the same batch of data exam-
ples, all three baselines show a smaller OSGR than
the baselines with CoRe. This result implies that
vanilla prompt-tuning is prone to make a prompt
more biased toward data examples that the model
has seen during training. CoRe produce prompts
that can mitigate such bias which aligns with the

Similarity CB RTE WiC

max 78.93 67.22 62.79
max (10%) 76.96 70.43 64.70

standard 81.79 72.13 65.03
min (10%) 77.68 62.13 64.67

min 81.07 69.35 64.48

Table 4: Comparison of zero-shot performance of vari-
ous sampling methods considering semantic similarity.
Standard is CoRe without such sampling.

performance gain shown in Table 1.

5.5 Which examples to concat?

Previous studies show that concatenating semanti-
cally similar examples improves downstream task
performances. Liu et al. (2022) empirically shows
that demonstration examples that are semantically
similar to the target example improve in-context
learning performances. Some studies also show
that placing semantically similar examples in an
input sequence during finetuning (Gao et al., 2021)
or pretraining (Levine et al., 2021) improves down-
stream task performance. We experiment how se-
mantic similarity between examples in an input
sequence affects the performance of CoRe. We
consider CoRe with sequence size 2.

For the experiment, we first sample batch size/2
samples for each iteration during prompt tuning.
For each sampled example, we select the most sim-
ilar example (max) or the least similar example
(min) among the unseen examples in the epoch,
and append the selected example after the sampled
example. We also experiment with less extreme
similarity by sampling an example to be appended
from 10% most similar (max 10%) or 10% least
similar (min 10%) examples of the unseen exam-
ples in the epoch. We measure the semantic sim-
ilarity between examples using stsb-roberta-large
model from sentence transformers (Reimers and
Gurevych, 2019).

As presented in Table 4, sampling considering
semantic similarity degenerates the performances
of CoRe compared to the standard sampling, where
demonstrations are sampled at random. This shows
that CoRe also benefits from concatenating seman-
tically similar examples — standard sampling re-
ports better evaluation result compared to min and
min 10%. However, choosing to concatenate the
more similar example (max and max 10%) intro-
duces a bias to the prompt, and the bias depresses
the regularization effects of CoRe.

3342

0 1 2 3
Number of demonstrations (x num_labels)

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d
Ac

cu
ra

cy

cb-P
cb-CR
wic-P
wic-CR
rte-P
rte-CR

Figure 3: Comparison of few-shot in-context learning
performance between P-tuning and P-tuning with CoRe,
normalized by zero-shot performance of P-tuning. Num-
ber of demonstrations we use is a multiple (x axis) of
the number of each dataset’s classes.

5.6 Few-shot in-context learning

We also evaluate our method in a few-shot in-
context learning setting, where we prepend multi-
ple examples as demonstrations to a target example
during evaluation. Although the few-shot setting is
not originally our target, the objective of two regu-
larizers — to optimize a prompt towards sending
and receiving a proper task context — naturally
contributes to improving the predictions prepended
with demonstrations — that is, few-shot in-context
learning. Figure 3 shows the result of few-shot
evaluation on three different datasets with prompts
from P-tuning and CoRe on P-tuning.

We observe that both P-tuning and CoRe on P-
tuning report degradation in general as the number
of demonstrations increases. However, CoRe on
P-tuning exhibits far less accuracy drop across dif-
ferent numbers of demonstrations and even perfor-
mance gain in the case of CB dataset. We assume
that less degradation compared to P-tuning comes
from two regularizers of CoRe.

6 Conclusion

CoRe is a novel gradient-based prompt tuning
method that regularizes task contexts among mul-
tiple examples, which finally regularizes a prompt
to improve zero-shot performance. Two regular-
izers of CoRe, context attuning and context filter-
ing, regularize the prompt to create proper task
context and guides the prompt to convey only the
task-related context to succeeding examples on the
concatenation of multiple examples. We provide
a theoretical analysis for the effect of context at-
tuning and context filtering and our experimental

results back this up. Following the theoretical anal-
ysis, CoRe achieves performance gain over three
different baseline prompt tuning methods in zero-
shot setting up to 11.9% on GPT2-XL and 6.3% on
GPT-J. It implies that CoRe can serve as an effec-
tive and memory-efficient adaptation method for
hyper-scale LMs.

Limitations

Our study has three limitations:

• As reported in Section 5.1, NLI tasks signif-
icantly benefit from CoRe while other tasks
marginally do, or there is no benefit at all. We
suppose that such a difference comes from
characteristics of a task. However, we have
not yet thoroughly explored which character-
istics of a task attribute the performance gain.
To solve this problem, we need a novel deep
learning interpretation method to probe latent
contexts of LM, or a thorough analysis on rela-
tionship between the pretraining objective and
downstream tasks and how prompting bridges
two distinct phases. We leave these research
questions as our future work.

• CoRe does not work for cases where the train
dataset has too long sequence texts. CoRe
requires multiple examples to be concatenated,
so developers cannot benefit from CoRe if a
majority of concatenated examples from their
dataset exceed the maximum sequence length
of an LM.

• We have not yet analyzed whether CoRe is ap-
plicable to natural language generation (NLG)
tasks. NLG is undoubtedly an important pillar
in natural language processing research, along
with NLU, with many interesting applications.
We believe that the concept of context attuning
and context filtering can be of help to major
challenges in NLG, for example, controlled
NLG. We plan to explore CoRe on NLG tasks
after this submission.

Acknowledgements

This work was supported by SNU-Naver Hyper-
scale AI Center.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

3343

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022. Meta-learning via language model
in-context tuning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 719–730,
Dublin, Ireland. Association for Computational Lin-
guistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Joe Davison, Joshua Feldman, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 con-
ference on empirical methods in natural language
processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP),
pages 1173–1178.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric P Xing,
and Zhiting Hu. 2021. Text generation with efficient
(soft) q-learning. arXiv preprint arXiv:2106.07704.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki,
Haibo Ding, and Graham Neubig. 2020a. X-
factr: Multilingual factual knowledge retrieval
from pretrained language models. arXiv preprint
arXiv:2010.06189.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020b. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface:a challenge set for reading com-
prehension over multiple sentences. In Proceedings
of North American Chapter of the Association for
Computational Linguistics (NAACL).

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single qa system. arXiv preprint
arXiv:2005.00700.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yoav Levine, Noam Wies, Daniel Jannai, Dan Navon,
Yedid Hoshen, and Amnon Shashua. 2021. The in-
ductive bias of in-context learning: Rethinking pre-
training example design.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What

3344

https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.48550/ARXIV.2110.04541
https://doi.org/10.48550/ARXIV.2110.04541
https://doi.org/10.48550/ARXIV.2110.04541
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.deelio-1.10

makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Jinlong Liu, Yunzhi Bai, Guoqing Jiang, Ting Chen,
and Huayan Wang. 2020. Understanding why neural
networks generalize well through gsnr of parameters.
In International Conference on Learning Representa-
tions.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Raul Puri and Bryan Catanzaro. 2019. Zero-shot
text classification with generative language models.
arXiv preprint arXiv:1912.10165.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Melissa Roemmele, Cosmin Bejan, and Andrew Gordon.
2011. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning.

Timo Schick and Hinrich Schütze. 2020. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting knowledge from language models with auto-
matically generated prompts. In Empirical Methods
in Natural Language Processing (EMNLP).

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. In North American Association for Computa-
tional Linguistics (NAACL).

A Practical Objective

As we mentioned in Section 3.3, when we con-
catenate more than two examples, we need a more
complex implementation and multiple iterations
for a sequence because some prompts should be
regarded as constants. For the implementation, we
consider PyTorch-like frameworks, where a back-
propagation iteration computes the gradients of a
single scalar loss for listed parameters, and autore-
gressive LMs.

On such frameworks and LMs, CoRe requires
n − 1 backpropagation iterations, where n is the
number of concatenated examples. For example,
when n = 3, CoRe needs to compute the gradi-
ent of the original likelihood G00, context attun-
ing {G01, G02}, and context filtering {G11, G22},
where Gij = ∇ωipθ(yj |S<j ,ωj , xj). We can

3345

https://doi.org/10.18653/v1/2022.deelio-1.10
https://openreview.net/forum?id=HyevIJStwH
https://openreview.net/forum?id=HyevIJStwH
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

compute G00, G01, G02, and G22 at the first back-
propagation iteration, and G11 at the second, result-
ing in two iterations. This is not scalable because
we need more iterations as the number of concate-
nated examples increases.

For efficient training, we modify the losses by
allowing ωk(k > 0) to be optimized for the cross-
data regularizer so that we can simply compute the
required gradients in a single iteration. As a result,
the final SGD step of CoRe is as follows:

ω ←− ω −
∑

i<n

∑

j<i

Gij , (6)

where n is the number of concatenated examples.
The modified CoRe step is similar to the com-

bination of the original CoRe step with vari-
ous number of concatenated examples. If we
assume Gii ≈ ∇ωipθ(yi|ωi, xi), the set of
the gradients of the new CoRe objective is the
same as the union of the original CoRe gradi-
ents on n inputs — {ωi, xi, yi|i < j} where
j ≤ n — before the modification. For ex-
ample, when n = 3, the original CoRe gra-
dients on {ω0, x0, y0,ω1, x1, y1,ω2, x2, y2} are
the same with {G00, G01, G02, G11, G22}, those
on {ω1, x1, y1,ω2, x2, y2} are the same with
{G11, G12, G22}, and those on {ω2, x2, y2} are the
same with {G22} under the assumption. Therefore,
the gradient sum of the three steps are as follows:

∑

i<n

∑

j<i

Gij +G11 + 2G22 (7)

Suppressing the magnitude of G11 and G22 by mul-
tiplying 1/2 and 1/3 respectively, Equation 7 be-
come the modified CoRe gradients. Therefore, the
modified CoRe gradients are the same with the sum-
mation of the original CoRe gradients on various
sequence lengths with some calibrations.

B Experimental Setup Details

We search for the best set of hyperparameters
(learning rate and batch size) on the search space
presented in Table 5. We use SuperGLUE CB,
the smallest dataset among SuperGLUE subsets,
for quick hyperparameter search. For each search
space of three methods and two models, we train
a prompt using the baseline and the baseline with
CoRe of sequence size 2.

Batch Size We use batch size 32 for all three
methods at GPT2-XL and GPT-J. Note that the

batch size equals (number of sequences in a batch)
× (sequence size), as we described in Section 4.

Learning Rate In Table 6, we report learning
rate selected for each method at GPT2-XL and
GPT-J. Both the baseline and the baseline with
CoRe show the best performance at the same learn-
ing rate except for Prefix-tuning at GPT-J. There-
fore, for this specific case, we use the optimal learn-
ing rates for each setting (1e−4 for baseline and
2e−4 for CoRe). We use the same learning rate
and batch size for all datasets.

Training Steps We train prompts for 30 epochs
on SuperGLUE CB, WSC, and COPA, which are
small datasets, and 20 epochs on SuperGLUE RTE
and WiC, which are large datasets. The size of
SuperGLUE BoolQ (9K) and MultiRC (27K) are
fairly larger than other SuperGLUE subsets (< 5K),
so we match the number of training iterations for
those two datasets to that of SuperGLUE RTE in-
stead of setting epochs for them.

C CoRe’s effect at various sequence size

Table 7, Table 8, and Table 9 present the full result
of experiment in Section 5.2 on GPT2-XL and GPT-
J. For SuperGLUE MultiRC, we experiment up to
sequence size of 2 as its training samples are fairly
longer than other SuperGLUE subsets.

D Assets used

We present assets used and their licenses in Ta-
ble 10. We did our best to use models, datasets,
and prompt tuning methods according to their orig-
inal intended usage.

3346

Hyperparameter Method GPT2-XL GPT-J

LR P-tuning {2e−4, 4e−4, 8e−4} {1e−4, 2e−4, 4e−4, 8e−4}
Softprompt {2e−3, 2e−2, 2e−1} {2e−3, 1e−2, 5e−2}
Prefix {8e−6, 4e−5, 2e−4} {2e−5, 1e−4, 2e−4, 4e−4}

Batch size All {32, 64} {32, 64}

Table 5: Hyperparameter search space for P-tuning, Softprompt, and Prefix-tuning at GPT2-XL and GPT-J

Method GPT2-XL GPT-J

P-tuning 4e−4 2e−4
+ CoRe 4e−4 2e−4
Softprompt 2e−2 1e−2
+ CoRe 2e−2 1e−2
Prefix 2e−4 1e−4
+ CoRe 2e−4 2e−4

Table 6: Learning rate for P-tuning, Softprompt, and Prefix-tuning at GPT2-XL and GPT-J

SuperGLUE
Model s CB RTE WSC WiC COPA BoolQ MultiRC

GPT2-XL 1 (P-tuning) 76.79 68.84 64.23 63.01 57.60 70.90 67.64
2 81.79 72.13 64.23 65.03 58.70 70.16 65.52
3 77.50 63.54 64.04 66.91 58.30 71.02 –
4 78.39 71.95 63.94 63.43 58.80 71.75 –

GPT-J 1 (P-tuning) 94.64 79.93 65.19 69.03 70.20 78.36 84.45
2 96.43 84.55 64.81 70.81 67.20 84.01 84.12
3 96.43 84.98 65.77 69.78 66.40 84.01 –
4 97.50 84.26 65.00 70.85 62.20 79.60 –

Table 7: The performance of P-tuning (s = 1) and CoRe on P-tuning where s is the sequence size. We highlight the
best performance among all sequence sizes.

SuperGLUE
Model s CB RTE WSC WiC COPA BoolQ MultiRC

GPT2-XL 1 (Softprompt) 73.57 68.66 63.65 63.90 60.50 68.01 70.48
2 75.89 73.14 64.42 64.80 58.20 70.31 69.87
3 78.39 71.88 63.85 64.11 57.90 71.77 –
4 82.32 73.50 63.85 64.95 58.90 70.74 –

GPT-J 1 (Softprompt) 91.07 82.24 65.00 67.43 61.80 82.31 82.26
2 95.36 83.25 65.00 67.09 62.00 82.50 80.27
3 95.36 83.11 65.19 65.36 62.60 82.34 –
4 95.36 82.89 64.42 66.21 61.00 81.26 –

Table 8: The performance of Softprompt (s = 1) and CoRe on Softprompt where s is the sequence size. We
highlight the best performance among all sequence sizes.

3347

SuperGLUE
Model s CB RTE WSC WiC COPA BoolQ MultiRC

GPT2-XL 1 (Prefix) 65.89 59.35 63.56 53.12 57.70 62.56 72.24
2 79.46 61.66 64.14 53.64 56.40 67.40 69.58

GPT-J 1 (Prefix) 94.20 81.88 65.19 70.50 66.60 83.38 84.21
2 94.64 82.46 65.00 66.96 65.20 82.81 81.61

Table 9: The performance of Prefix-tuning (s = 1) and CoRe on Prefix-tuning where s is the sequence size. We
highlight the best performance among all sequence sizes.

Asset License

SuperGLUE benchmark MIT
P-tuning MIT
Softprompt MIT
Prefix-tuning Not specified
GPT-J apache-2.0
GPT2-XL MIT

Table 10: Assets used and their licenses.

3348

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

the section 7 after the conclusion section

�7 A2. Did you discuss any potential risks of your work?
Our work have no risk such as privacy or ethical risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstraction and section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5

�3 B1. Did you cite the creators of artifacts you used?
Section 5

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix D

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix D

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The benchmark we used is one of the most popular benchmark with 1000 citations. To the best of our
knowledge, there is no such risk in the benchmark.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
The datasets we used are public datasets, and such statistics are also previously reported.

C �3 Did you run computational experiments?
Section 5

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We did report the number of parameters of models used, but we did not report GPU hours as we
ran experiments on various GPUs. Plus, as our method is lightweight enough, we did not consider
measuring GPU hours during our experiments.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3349

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix B

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We reported the average performance of multiple runs up to 10 runs.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

3350

