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Abstract

Adversarial robustness evaluates the worst-case
performance scenario of a machine learning
model to ensure its safety and reliability. For
example, cases where the user input contains a
minimal change, e.g. a synonym, which causes
the previously correct model to return a wrong
answer. Using this scenario, this study is the
first to investigate the robustness of visually
grounded dialog models towards textual attacks.
We first aim to understand how multimodal in-
put components contribute to model robustness.
Our results show that models which encode
dialog history are more robust by providing re-
dundant information. This is in contrast to prior
work which finds that dialog history is negli-
gible for model performance on this task. We
also evaluate how to generate adversarial test
examples which successfully fool the model
but remain undetected by the user/software de-
signer. Our analysis shows that the textual, as
well as the visual context are important to gen-
erate plausible attacks.

1 Introduction

Adversarial robustness has recently gained in-
creased attention within the NLP community (e.g.
Moradi and Samwald, 2021; Chang et al., 2021;
Goel et al., 2021; Wang et al., 2021). In contrast
to this previous wok, which focuses on text-only
models, we evaluate the adversarial robustness of
Visual Dialog (VisDial) models with the aim to un-
derstand how different input components contribute
to robustness. For example, it has previously been
established that multiple input modalities increase
robustness of pre-neural conversational interfaces,
e.g. (Oviatt, 2002; Bangalore and Johnston, 2009).
Here, we want to know which modalities can miti-
gate input attacks on neural visual dialog systems,
and to what extent. This is important, since worst-
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Figure 1: A VisDial agent aims to answer an image-
related question by ranking a list of candidate answers,
given the dialog history. The attacker permutes the text
by replacing a word with its synonym so that the ranking
of the predicted answers changes.

case input permutations can also happen sponta-
neously during user interaction.

A successful attack in our setting is a perturba-
tion which changes the model prediction, but, at
the same time, remains unnoticed by the user/ soft-
ware developer. While this is relatively simple for
pixel-level visual attacks, textual perturbations are
substantially harder to conceal. In the following
we thus investigate the trade-off between effective-
ness and linguistic quality for text-based attacks.
The focus on text-only attacks is further motivated
by our preliminary experiments, which show that
encoding visual information has very little gain for
performance and robustness (around 5%, cf. Ta-
ble 1), confirming previous results (Massiceti et al.,
2018; Agarwal et al., 2020). In addition, we argue
that black box visual attacks are very unlikely (if
not impossible) to occur in the real-world: They are
highly inefficient and expensive to run at real-time
(mainly due to the way features are pre-computed
using FasterRCNN).
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To the best of our knowledge, we are the first to
explore adversarial attacks on VisDial, which was
introduced as a shared task by (Das et al., 2017a).
A visual dialog system consists of three compo-
nents: an image (with a caption), a question and
the dialog history, i.e. previous user and system
turns. In order to answer the question accurately,
the AI agent has to ground the question in the im-
age and infer the context from history, see Fig. 1.
Most existing research has focused on improving
the modelling performance on this task, (e.g. Das
et al., 2017b; Kottur et al., 2018; Jain et al., 2018;
Zheng et al., 2019; Niu et al., 2019; Yang et al.,
2019; Qi et al., 2020; Murahari et al., 2020; Agar-
wal et al., 2020; Nguyen et al., 2020; Wang et al.,
2020; Chen et al., 2022a), whereas our aim is to
evaluate adversarial robustness. In addition, we use
these attacks to improve our understanding of how
the model works (i.e. interpretability). Our main
contributions are:
• We show that dialog history contributes to model
robustness: We attack ten VisDial models which
represent a snapshot of current methods, including
different encoding and attention mechanisms, as
well as graphical networks and knowledge trans-
fer using pretraining. We measure the performance
change before and after attack and show that encod-
ing history helps to increase the robustness against
adversarial questions by providing redundant infor-
mation. We also show that models become more
uncertain when the history is attacked.
• We evaluate adversarial text-generation within
VisDial: We leverage well-established Synonym
Substitution methods for adversarial black-box at-
tack (Jin et al., 2020; Li et al., 2020) and show that
BERT-based models are able to generate more con-
textually coherent perturbations. We also conduct a
detailed analysis to study the trade-off between the
effectiveness of the attack versus the text quality.
• We show that human evaluator are able to iden-
tify an attack from the textual and multimodal con-
text: We conduct a detailed human evaluation to
investigate the trade-off between successful attacks
and their ability to remain unnoticed by humans.
In particular, we evaluate semantic similarity, flu-
ency/grammaticality and label consistency.
All code will be made available.

2 Related Work

Adversarial attacks have been widely investigated
within uni-modal applications, foremost for com-

puter vision (Narodytska and Kasiviswanathan,
2016; Dong et al., 2018; Xie et al., 2019; Mahmood
et al., 2021). Adversarial attacks on text are more
challenging due to its discrete nature, which makes
it harder to stay undetected. Adversarial textual
attack methods can be divided into three levels of
granularity (Zhang et al., 2020; Wang et al., 2019):
character-level, word-level and sentence-level at-
tacks. While the former two are relatively easy to
detect, recent word-level attack methods (e.g. Lee
et al., 2022; Zang et al., 2020; Jin et al., 2020; Li
et al., 2020; Ren et al., 2019), on the other hand, are
more subtle: they are targeted towards ‘vulnerable’
words, which are substituted via their synonyms in
order to preserve semantic meaning. In our paper,
we explore word-level attack methods on VisDial.

Research on adversarial attacks for multi-modal
tasks is relatively scarce, including studies for Op-
tical Character Recognition (Song and Shmatikov,
2018), Scene Text Recognition (Yuan et al., 2020),
Image Captioning (Chen et al., 2017, 2022b) and
VQA (Li et al., 2021; Shi et al., 2018). Most of
these works utilise white box attack, where the pa-
rameters, gradient and architecture of the model
are available, e.g. by attacking attention (Xu et al.,
2018; Sharma et al., 2018). Whereas we follow
a more realistic black-box setting which assumes
that the attacker only has access to the model’s
prediction on test data.

Shi et al. (2018) is closest related to our work:
they generate adversarial textual attacks for the
VQA task using contrastive examples and thus
don’t pay attention to semantic similarity. In con-
trast, we are interested in generating adversarial at-
tacks which follow three desiderata, as outlined by
(Morris et al., 2020): An adversarial text should (1)
keep the same semantic meaning (semantic similar-
ity); (2) guarantee fluency and grammar (grammat-
icality); (3) stay unnoticed by humans, i.e. the hu-
man still assigns the correct label, while the model
prediction changes (label consistency).

3 Method

3.1 Problem Formulation

VisDial is formulated as a discriminative learn-
ing task, where the model is given an image I ,
the dialog history (including the image caption
C) H = ( C︸︷︷︸

H0

, (Q1, A1)︸ ︷︷ ︸
H1

, ..., (Qt−1, At−1)︸ ︷︷ ︸
Ht−1

), the

question Qt, and N = 100 candidate answers
At = (A1

t , A
2
t , ..., A

100
t ) to rank, including the
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ground truth (GT), which is labelled Yt, where t
indicates the round ID.

In the following, we focus on generating textual
adversarial examples for the question and history
(including the caption). That is, for a sentence X ∈
{Q,H}, and F (X) = Y , a successful adversarial
attack sentence Xadv should result in F (Xadv) ̸=
Y , while meeting the following requirements:

• Semantic Similarity: Sim(X,Xadv) ≥ ε,
where Sim(·) is a semantic and syntactic
similarity function. The semantic similar-
ity between the original sentence X and
the adversarial attack sentence Xadv should
above a similarity threshold ε; Following (Jin
et al., 2020), we use Universal Sentence En-
coder (Cer et al., 2018) to encode the two
sentences into high dimensional vectors and
use their cosine similarity score as an approxi-
mation of semantic similarity.

• Grammaticality: The adversarial attack sen-
tence Xadv should be fluent and grammatical.

• Label Consistency: Human annotators still
assigns the correct GT label Y after the origi-
nal sentence X changes to Xadv.

3.2 Visual Dialog Models

We explore a wide range of ten recent VisDial mod-
els to attack – representing a snapshot of current
techniques and architectures popular for VisDial.1

Agarwal et al. (2020) experiment with several
multi-modal encodings based on Modular Co-
Attention (MCA) networks (Yu et al., 2019b):
MCA-I encodes the image and question represen-
tation using late fusion; MCA-H only encodes the
textual history with late fusion; MCA-I-H encodes
image and history with late fusion; MCA-I-HGQ
encodes all three input modalities using early fu-
sion between question and history; MCA-I-VGH
is another early fusion variant which first grounds
the image and history.

We also consider Recursive Visual Attention
(RvA) (Niu et al., 2019) as an alternative to MCA,
encoding history and image information.

In addition, we test two variants of causal graphs
from (Qi et al., 2020) by adding to causal princi-
ples P1/P2: P1 removes the history input to the
model to avoid a harmful shortcut bias; P2 adds
one new (unobserved) node U and three new links
to history, question and answer respectively.

1Details on model architecture can be found in the original
papers.

Finally, we test a Knowledge Transfer (KT)
method based on Sparse Graph Learning
(SGL) (Kang et al., 2021), which uses P1/P2 as
pre-trained models.

3.3 Synonym-based Methods
For generating attacks, we explore two popular
synonym-based methods, which first find the vul-
nerable words of the sentence, and then replace
them with a semantically similar word.2

• TextFooler (Jin et al., 2020) performs
embedding-similarity-based perturbations as a
constraint to generate semantically consistent
adversarial examples.

• BERT-Attack (Li et al., 2020) generates
context-aware perturbations using BERT.

Following these previous works, we first detect
vulnerable words by calculating prediction change
before and after deleting a word. We then impose
additional constraints to improve the quality (in par-
ticular the grammaticality) of our attacks, which
we further analyse in Section 6. We apply a stop
word list before synonym substitution, extending
the list by (Jin et al., 2020; Li et al., 2020) for
our domain. We also filter antonyms following the
original BERT-Attack implementation (Li et al.,
2020). We then apply additional quality checks for
selecting synonym candidates: We filter by part-
of-speech (POS)3 to maintain the grammar of the
sentence. We then experiment with a semantic sim-
ilarity threshold ε to choose the top k synonyms.
Finally, we iteratively select the word with the high-
est similarity until the attack is successful. See
Appendix B for further details.

3.4 Adversarial Attack on Visual Dialog
Models

We perform attacks on 2 textual inputs to the model:
The current question and the previous history.

3.4.1 Question Attack
We first attack the current input question in VisDial.
In order to do this, we have to adapt textual attacks
methods to the unique challenges of this setting,
which differs from other common textual attacks
(such as sentiment classification, image caption-
ing or news classification) both in terms of textual

2Note that previous work refers to these methods as
“synonym-based”, e.g. (Morris et al., 2020), but not all of
the substitutions are synonyms. They can also include differ-
ent lemmatas of the same lexeme, such as singular and plural,
as well as different spellings, etc. Also see Table 8.

3Using SpaCy https://spacy.io/api/tagger.
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input, as well as in predicted output: First, the
question in VisDial is generally much shorter than
a typical declarative sentence in the above tasks.
The average length of the question in the VisDial
dataset is 6.2 words, which makes it harder to find a
word to attack. For instance, “Is it sunny?”, “What
color?”, “How many?”, there is only one word left
to attack after filtering out the stop words, i.e. {is,
it, what, how}.

For the VisDial task, the model ranks N possible
candidate answers according to its log-likelihood
scores. The attack is considered successful once
the top ranked answer differs from the GT. How-
ever, there can be several candidate answers which
are semantically similar or equivalent, such as

“yes/yep/yeah”. This is different from other labelling
tasks, such as “positive/neutral/negative” senti-
ment. We account for this fact by considering
several common retrieval metrics before and after
the attack, including R@k (k=1,5,10), Mean Re-
ciprocal Rank (MRR), and Normalized Discounted
Cumulative Gain (NDCG) – a measure of ranking
quality according to manually annotated semantic
relevance scores in a 2k subset of VisDial.

3.4.2 History Attack
We also attack the textual history using the same
procedure. The use of history is the main dis-
tinguishing feature between the VisDial and the
VQA task, and thus of central interest to our work.
History is mainly used for contextual question un-
derstanding, including co-reference resolution, e.g.
“What color are they?”, and ellipsis, e.g. “Any oth-
ers?” (Yu et al., 2019a; Li and Moens, 2021).

Our preliminary results indicate that attacking
history is hardly ever successful, i.e. does not result
in label change. This is in line with previous work,
which suggests that history only plays a negligi-
ble role for improving model performance on the
VisDial task, e.g. (Massiceti et al., 2018; Agarwal
et al., 2020). However, there is also some evidence
that history helps, but to a smaller extent. For exam-
ple, Yang et al. (2019) show that accuracy can be
improved when forcing the model to pay attention
to history. Similarly, Agarwal et al. (2020) show
that history matters for a sub-set of the data.

In a similar vein, we investigate how history
contributes to the model’s robustness and, in partic-
ular, can increase the model’s certainty in making a
prediction. We adopt the perplexity metric, follow-
ing (Sankar et al., 2019), to measure the change of
prediction distribution after (unsuccessfully) attack-

ing the history, i.e. after adding the perturbation to
the history while the top-1 prediction is unchanged.
The difference between the perplexity before and
after the attack reflects the uncertainty change of
the model. The perplexity with the original history
input is calculated with the following equation:

PPL(F (X), Y ) = −
∑

X

F (X)log2Y (1)

And the perplexity after attack is:

PPL(F (Xadv), Y ) = −
∑

Xadv

F (Xadv)log2Y (2)

4 Experimental Setup

4.1 Dataset
We use the VisDial v1.0 dataset, which contains
123,287 dialogs for training and 2,064 dialogs for
validation. The ten target models are trained on the
training set and the adversarial attacks are gener-
ated for validation set (as the test set is only avail-
able to challenge participants).

4.2 Automatic Evaluation Metrics
In order to assess the impact of an attack, we use the
automatic evaluation metrics from (Jin et al., 2020):
The accuracy of the model tested on the original
validation data is indicated as original accuracy
and after accuracy on the adversarial samples – the
larger gap between these two accuracy means the
more successful of our attack (cf. relative perfor-
mance drop [∆]). The perturbed word percentage
is the ratio of the perturbed words and the length
of the text. The semantic similarity measures the
similarity between the original text and the adver-
sarial text by cosine similarity score. The number
of queries shows the efficiency of the attack (lower
better). In addition, we use retrieval based metrics
to account for the fact that VisDial is a ranking
task: original/after R@{5, 10} measures the perfor-
mance of top 5/10 results before and after attack
(where R@1 corresponds to accuracy); we also
report original/after mean reciprocal rank (MRR)
and original/after Normalized Discounted Cumu-
lative Gain (NDCG) which measure the quality of
the ranking. Detailed results with R@k (k=10) are
shown in Appendix B and C. Further implementa-
tion details are given in Appendix A.

5 Results

5.1 Question Attack
Table 1 summarises the results for attacking the
question. Across the ten target models, we first
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Question Attack

Inputs Methods Orig.R@1 Aft.R@1 [∆] Orig.R@5 Aft.R@5 [∆] Orig.NDCG Aft.NDCG [∆] Orig.MRR Aft.MRR [∆] Pert. S.S. Quer.

BERT-Attack

I-only MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 61.5 54.9 [-10.7] 60.0 47.7 [-20.5] 16.7 74.4 5.2
H-only MCA-H 45.9 40.0 [-12.9] 76.8 67.3 [-12.4] 52.2 48.4 [-7.3] 60.0 51.1 [-14.8] 16.7 75.4 5.2

I+H
MCA-I-HGQ 50.8 45.6 [-10.2] 81.7 71.4 [-12.6] 60.0 55.2 [-8.0] 64.3 55.6 [-13.5] 17.1 74.1 5.2
MCA-I-VGH 48.6 43.3 [-10.9] 78.7 68.0 [-13.6] 62.6 57.3 [-8.5] 62.2 53.3 [-14.3] 16.7 74.3 5.2
MCA-I-H 50.0 45.2 [-9.6] 81.4 69.5 [-14.6] 59.6 54.6 [-8.4] 63.8 54.6 [-14.4] 16.7 74.8 5.2

I+H RvA 49.9 43.9 [-12.0] 82.2 72.2 [-12.2] 56.3 50.9 [-9.6] 64.2 54.5 [-15.1] 17.0 74.4 5.2

I-only P1 48.8 43.5 [-10.9] 80.2 69.2 [-13.7] 60.0 54.2 [-9.7] 62.9 54.1 [-14.0] 17.4 74.2 5.2
I+H P1+P2 41.9 37.1 [-11.5] 66.9 57.8 [-13.6] 73.4 67.9 [-7.5] 54.0 46.2 [-14.4] 17.0 73.7 5.2

I+H
SLG 49.1 43.9 [-10.6] 81.1 72.1 [-11.1] 63.4 58.4 [-7.9] 63.4 55.0 [-13.2] 17.5 73.4 5.2
SLG+KT 48.7 42.6 [-12.5] 71.3 60.8 [-14.7] 74.5 68.2 [-8.5] 59.9 50.3 [-16.0] 17.3 74.6 5.2

TextFooler

I-only MCA-I 46.6 36.1 [-22.5] 76.3 63.9 [-16.3] 61.5 53.9 [-12.4] 60.0 47.1 [-20.5] 16.8 74.4 19.7
H-only MCA-H 45.9 39.1 [-14.8] 76.8 68.5 [-10.8] 52.2 48.0 [-8.0] 60.0 51.1 [-14.8] 17.1 74.6 19.7

I+H
MCA-I-HGQ 50.8 44.2 [-13.0] 81.7 71.6 [-12.4] 60.0 54.4 [-9.3] 64.3 54.8 [-14.8] 17.0 74.4 19.9
MCA-I-VGH 48.6 41.5 [-14.6] 78.7 68.2 [-13.3] 62.6 56.5 [-9.7] 62.2 52.3 [-15.9] 16.5 74.4 19.8
MCA-I-H 50.0 43.1 [-13.8] 81.4 71.2 [-12.5] 59.6 53.7 [-9.9] 63.8 54.0 [-15.4] 16.9 74.7 19.8

I+H RvA 49.9 43.6 [-12.6] 82.2 73.2 [-10.9] 56.3 50.2 [-10.8] 64.2 55.3 [-13.9] 16.9 74.9 19.9

I-only P1 48.8 42.6 [-12.7] 80.2 71.1 [-11.3] 60.0 53.5 [-10.8] 62.9 54.4 [-13.5] 17.3 74.3 20.1
I+H P1+P2 41.9 35.8 [-14.6] 66.9 56.9 [-14.9] 73.4 66.9 [-8.9] 54.0 45.1 [-16.5] 17.1 73.7 19.8

I+H
SLG 49.1 43.1 [-12.2] 81.1 73.4 [-9.5] 63.4 57.8 [-8.8] 63.4 55.3 [-12.8] 17.3 74.2 19.9
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 74.5 67.6 [-9.3] 59.9 49.8 [-16.9] 17.1 74.6 19.9

Table 1: VisDial model performance before attacking question (Orig.) and after (Aft.). In addition to standard
metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and the number of queries
(Quer.) to assess BERT-Attack vs. TextFooler. The relative performance drop is listed as [∆]. Highlights indicate
the least robust and most robust model.

compare different input encodings and fusion
mechanisms, answering the question whether mul-
tiple inputs can help robustness. We find that MCA-
I (with image input only) is the least robust model
with a relative performance drop of over 22% on
R@1 using TextFooler. MCA-H (with no image
input) is vulnerable with respect to R@1, but does
well on NDCG, suggesting that history helps to
produce a semantically similar response despite
the lack of encoding the input image. One possi-
ble explanation of these results is given by previ-
ous research claiming that VisDial models mainly
pay attention to text while ignoring the image, e.g.
(Massiceti et al., 2018). However, in contrast to
claims by (Massiceti et al., 2018), we find that his-
tory is important for robustness: In general, models
encoding history are more robust with the MCA-I-H
model being the least vulnerable model. Note that
this is also the best performing model in (Agarwal
et al., 2020).

Next, we compare attention mechanisms on
the input encodings. Recursive visual Attention
(RvA) in general shows lower robustness than
MCA-based methods. Causal encodings using
graphs lead to comparable robustness results for
P1. Adding P2 results in a slight drop in robustness.
This is interesting, because P2 adds an unobserved
node to represent history while avoiding spurious

R@1 AnswerQuestion
Orig.: Is the mannequin a woman?
Aft.:   Is the mannequin a girl?

Orig.: No.
Aft.:   Yes.

Orig.: Are there any pets in the photo?
Aft.:   Are there any animals in the photo?

Orig.: No pets or people.
Aft.:   No.

Orig.: What color is the plane?
Aft.:   What colour is the plane?

Orig.: White.
Aft.:   Not sure.

Figure 2: Examples of answer change after question
attack on MCA-I-H model with BERT-Attack.

correlations from training data. This drop thus
might suggest that previous robustness is due to
the very same bias. Additionally, we observe that
knowledge transfer (KT) via pre-training for the
SLG method helps to boost the performance of
NDCG, however not the robustness.

We further perform an example based analysis of
the top-1 predicted answer changes after a success-
ful question attack, see Fig. 2. We observe answer
changes to the opposite meaning (e.g. from “no”
to “yes”), which can be considered as a maximum
successful attack. Some answers, however, change
to a very similar meaning in context (e.g. from

“No pets or people” to “No”), which is reflected
in fewer NDCG changes. In some cases, the an-
swer changes from certain / definite to uncertain /
noncommittal and the other way round (e.g. from

“white” to “Not sure”).
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TextFoolerBERT-Attack

N/A
Orig.: Is it a flat screen?
Aft.:   Is it a loft screen?

Orig.: Is it a close up of their faces or their bodies?
Aft.: Is it a close up of their confront or their bodies?

Orig.: Is it a close up of their faces or their bodies?
Aft.: Is it a close up of their face or their bodies?

Orig.: What color is the house?
Aft.:   What color is the home?

Orig.: What color is the house?
Aft.:   What color is the residence?

Orig.: Are there trees no the mountain?
Aft.:   Are there woods on the mountain?

Orig.: Are there trees no the mountain?
Aft.:   Are there sapling on the mountain?

Figure 3: Example attacks on the MCA-I-H target model
generated by BERT-Attack and TextFooler.

History Attack

Orig.PPL Aft.PPL [∆]

MCA-I - -
MCA-H 53.2 60.0 [+6.8]
MCA-I-HGQ 49.4 52.2 [+2.8]

MCA-I-VGH 52.3 52.3 [0]

MCA-I-H 49.5 51.9 [+2.4]

RvA 53.4 56.4 [+3.0]

P1 - -
P1+P2 77.0 77.0 [0]

SLG 52.7 53.4 [+0.7]

SLG+KT 65.0 65.3 [+0.3]

Table 2: Comparison of perplexity increase [∆] when
attacking the history of different VisDial models with
BERT-Attack.

Next, we compare the two attack methods. We
find that TextFooler is more effective: It achieves
up to 4.5% higher drop than BERT-Attack. How-
ever, BERT-Attack is more efficient: It reduces the
number of queries (Quer.) about four times com-
pared to TextFooler. Efficiency is important in at-
tack settings, as attackers always run into danger of
being discovered. Furthermore, the perturbed word
percentage (Pert.) for both methods is around 17%,
which means the average perturbation is about one
word for each question (since the average length of
the question is 6.2). Similarly, the semantic simi-
larity (S.S.) is over 70% which is about the same
across all models.

We further compare TextFooler and BERT-
Attack using an example-based analysis, see Fig. 3.
We find that TextFooler is not able to distin-
guish words with multiple meanings (homonyms),
whereas BERT-Attack is able to use BERT context-
embeddings to disambiguate. Consider the exam-
ples where TextFooler replaces “flat” (adverb) with
“loft” (noun) and “faces” (noun) with “confront”
(verb), which POS tagger failed to catch.

Based on the above results, we use BERT-
Attack to attack the MCA-I-H model in the fol-
lowing experiments.

Caption User (question) System (answer)

Attack 44.9% 30.8% 24.3%

Table 3: Comparing which part of History was chosen
for an attack on MCA-I-H model with BERT-Attack.

∆R@1 ∆NDCG ∆MRR

Random -7.6 -6.0 -12.4
Ours -9.6 -8.4 -14.4

Table 4: Effect of vulnerable word attack on MCA-I-H
model with BERT-Attack.

5.2 History Attack

Next, we analyse the results for attacking dialog
history. As explained in Section 3.4.2, we consider
an attack ‘successful’ once the probability of the
corresponding GT decreases and we use perplex-
ity to measure the uncertainty of the prediction.
The results in Table 2 show that attacking history
increases the uncertainty of almost all the mod-
els, especially when the history is the unique input
component (MCA-H model).4 This confirms our
preliminary results that encoding history increases
robustness.

We then analyse which part of history gets at-
tacked the most, see Table 3. We find that 44.9%
of the time the image caption was attacked, fol-
lowed by system answer 30.8% and user question
24.3%. We thus conclude that the image caption,
i.e. a description of what can be seen in the pic-
ture, is the most vulnerable part (and ergo the most
informative) compared to the rest of history. We
hypothesise that the image caption can “replace”
information corrupted by the attack. Thus, history
contributes to robustness by providing redundant
information.

6 Detailed Analysis of Linguistic Quality
Constraints

Next, we analyze the impact of the linguistic qual-
ity constraints. We are interested in the trade-off
between using these constraints to produce high
quality text (which increases the chance of the at-
tack to remain unnoticed by humans) versus an
effective attack (which increases the chance of the
model changing its prediction).

4Attacking the history of MCA-I-VGH model doesn’t
change the prediction distribution because its encoder only
uses a single round of history following (Agarwal et al., 2020).
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∆R@1 ∆NDCG ∆MRR

All -12.6 -9.2 -10.3
Ours -9.6 -8.4 -14.4

Table 5: Effect of stop words set on MCA-I-H model
with BERT-Attack.

ε Num./(%) ∆R@1 ∆NDCG ∆MRR

0.1 219 (10.6%) -10.8 -9.6 -14.1
0.3 215 (10.4%) -10.8 -9.2 -14.1
0.5 198 (9.6%) -9.6 -8.4 -14.4
0.7 135 (6.5%) -6.0 -6.7 -15.2

Table 6: Comparison of number of successful attacks
(total val set n=2064) with different semantic similarity
thresholds ε on MCA-I-H model with BERT-Attack.

Effect of Selecting Vulnerable Words First, we
compare the results of choosing a random word
in text to attack and our vulnerable word attack.
The results in Table 4 confirm that attacking the
vulnerable word achieves a 2.0% higher relative
drop for R@1, NDCG and MRR.

Effect of Stop Words Next, we compare the re-
sults with/without stop words. The results in Ta-
ble 5 show that attacking all words leads to more
successful attack in terms of R@1 and NDCG,
while attacking with stopwords leads more suc-
cessful attacks for MRR. We use stop words list for
all the experiments since attacking question words,
preposition or pronouns result in highly ungram-
matical sentences.

Effect of Semantic Similarity The semantic sim-
ilarity threshold between the original text and adver-
sarial text is used to guarantee the similar meaning
of the attack. In the previous experiments, we set
0.5 as default threshold. Table 6 shows results with
different semantic similarity thresholds (0.1, 0.3,
0.5 and 0.7) respectively. The results show that
when increasing the threshold ε from 0.1 to 0.7,
the number of successful attack decreases 4.1%,
while R@1 and NDCG drop around 3% after attack,
which means there are more successful attacks if
we loosen the semantic similarity constraint. In
addition, the examples in Fig. 4 illustrate that a
lower semantic similarity threshold comes at the
cost of lower fluency and grammaticality, i.e. at the
price of being more easily detectable by humans.
We will explore this trade-off in more detail in the
human evaluation study.

Next, we analyze the combined effect of adding
POS, semantic similarity constraint and grammar

ExamplesConstraints

   (0.7)

Orig.: Is it a large church?
Aft.:   Is it a big church?

Orig.: Is her hair pulled back?
Aft.:   Is her wig pulled back?

+

Orig.: Is the fireplace lit?
Aft.:   Is the furnace lit?

+

Orig.: What color is the wine?
Aft.:   What colour is the wine?

+
Orig.: What is the adult doing?
Aft.:   What is the adult done?

Orig.: Is there buildings?
Aft.:   Is there houses?

+

Orig.: Is the picture outside?
Aft.:   Is the picture beyond?

+

Orig.: Are they titled?
Aft.:   Are they untitled?

+

   (0.5)

   (0.3)

   (0.1)

Figure 4: Attack examples with different semantic sim-
ilarity thresholds ε on MCA-I-H model with BERT-
Attack.

Num./(%) ∆R@1 ∆NDCG ∆MRR

Raw Attack 224 (10.9%) -11.6 -9.9 -13.9
+POS 221 (10.7%) -11.0 -9.7 -14.1
+POS+ε(0.5) 198 (9.6%) -9.6 -8.4 -14.4
+POS+ε(0.5)+Gram. 190 (9.2%) -9.2 -6.2 -13.6

Table 7: Effect of different quality constraints on MCA-
I-H model with BERT-Attack.
check modules – using the same grammar tool as
in (Morris et al., 2020). The results in Table 7 show
that an attack is less successful as the number of
constraints increases – also see examples in Ap-
pendix D Fig. 6. The success from raw attack to
lingustically ‘disguised’ attack decreases 2.4% on
R@1, 3.7% on NDCG, but there is little effect on
MRR.

7 Human Evaluation Study

We evaluate the quality of our generated adver-
sarial question attack by asking human judges on
Amazon Mechanical Turk (AMT) to rate three as-
pects: if the generated question preserve the se-
mantic similarity (semantic similarity with/without
given image); if the generated question is natural

Attack Types Percentage Gram. Score

British vs. American English 34.9% 4.923
Synonyms/near synonyms 34.3% 4.417
Singular vs. Plural 19.7% 3.974
Comparatives and Superlatives 4.0% 4.208
Others 7.1% 3.452

Table 8: Percentage and grammaticality score of dif-
ferent types of attack on MCA-I-H model with BERT-
Attack.
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Orig.: Is the fireplace lit ? 
Aft.:  Is the furnace lit ? 

Rate w/o image:
2.33

Rate w/ image:
1.67

Figure 5: The visual context changes the perceived
similarity rating by humans: ‘furnace’ becomes more
dissimilar to ‘fireplace’ in a living room context.

and grammatical (grammaticality); if the human’s
prediction is unchanged for the generated question
(label consistency). We evaluate a total of 198
generated attacks, randomly sampled from the de-
velopment set, where three users are asked to rate
each instance, following best practices for human
evaluation in NLP (van der Lee et al., 2019). 5 See
Appendix for further details.

Evaluation of Semantics We first ask crowd
workers to evaluate whether the original and the ad-
versarial question still have the same meaning on a
scale from 1 to 4, where 1 is “One text means some-
thing completely different” and 4 is “They have
exactly the same meaning”. Appendix E shows the
interface and instructions. We elicit ratings with
and without showing the image in order to measure
the effects of multimodal grounding. Our results
show that the semantic similarity is rated slightly
lower when shown together with the original image
(average score 3.518 / 4) than without image (aver-
age score 3.564 / 4). This indicates that the visual
context can change the semantic similarity ratings,
as illustrated in Fig. 5. Therefore, a promising
future avenue is to use visually grounded word em-
beddings for generating synonyms for V+L tasks.

Evaluation of Grammaticality Next, we evalu-
ate whether the utterance is fluent and grammatical
(as defined in Appendix E) on a scale from 1-5,
where 1 is “Not understandable” and 5 is “Every-
thing is perfect; could have been produced by a
native speaker”. Overall, our attacks are rated as
highly grammatical (average score 4.429 / 5). We
furthermore investigate the effect of different at-
tacks, where we manually label five common types
of successful attacks, see Table 8. We find that

5For example, van der Lee et al. (2019) report that standard
evaluations only include an average of 100 samples rated by a
median of 4 annotators. We chose to increase the sample size
in order to increase the effect and chose 3 annotators in order
to allow for ties.

synonyms/near synonyms is the main type of attack,
closely followed by British vs. American English
(e.g. “color” vs. “colour”). In addition, we iden-
tify Singular vs. Plural, and Comparatives and
Superlatives (e.g. “great/greater/greatest”) , as
well as Others which mainly include grammar op-
erations like uncaught POS change (e.g. “sunny”
vs. “sun”) and tense change (e.g. “eat” vs. “ate”).
Looking at the grammar ratings, we find that sub-
stituting British vs. American English has the least
impact on grammaticality, whereas grammatical
operations, such as replacing singular with plural,
as well as changes classified under Others have the
highest impact on the perceived linguistic quality.

Evaluation of Label Consistency Finally, we
evaluate label consistency by asking users to judge
whether the answer remains unchanged for the ad-
versarial question by selecting among “1 - Yes, an-
swer is correct”, “2 - No, answer is incorrect” and
“3 - Unsure” as shown in Appendix E. We ask three
judges to rate each instance and describe results by
averaging and by (a more conservative) majority
vote to assign a gold label. The results show that
most (82.0% by averaging and 86.4% by majority
vote) crowdworkers think the answer is unchanged,
few (9.6% and 8.1%) think the answer changes,
and the rest (8.4% and 5.5%) are not sure about
the change. We thus conclude that synonym-based
attacks mostly remain undetected by humans.

8 Conclusions and Limitations

We present a detailed study investigating adversar-
ial robustness of visual dialog models. We find
that multiple inputs increase robustness, and in
particular dialog history contributes to robustness,
despite previous results which suggest that history
has negligible effect on model performance, e.g.
(Massiceti et al., 2018; Agarwal et al., 2020). We
investigate the trade-off between effectiveness and
linguistic quality, where we show limitations of
current synonym-based textual attack models, and
stress the importance of context (both textual as
well as multi-modal) to generate semantically co-
herent and grammatically fluent adversarial attacks,
which are likely remain undetected. While the ob-
served effects of visually-grounded interpretations
in our human evaluation were relatively small, we
do believe that it is an important future direction.
For example, we expect improved results by using
synonym substitution methods based on visually-
grounded word embeddings.
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Ethics Statement

We use adversarial attack as a tool to evaluate the
robustness of visual dialog models. However, the
same techniques can also be used to maliciously
attack the system. Our experiments demonstrate
that most synonym-based attacks are successful in
remaining undetected by humans. However, our
results also show that the most effective attacks are
also the ones which are easiest for humans to detect.
Further work is thus needed to automatically detect
malicious attacks, e.g. using our proposed gram-
maticality and contextual multimodal methods.
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A Licence

Visual Dialog annotations and this website are li-
censed under a Creative Commons Attribution 4.0
International License.

B Implementation Details

All models are implemented with Pytorch. We em-
bedded BERT-Attack and TextFooler to our VisDial
system6. We initially set the semantic similarity
threshold 0.5 for attacking both question and his-
tory (but see detailed study of different threshold
in Table 6).

To ensure the high quality of generated attack,
We did the following modifications for original
BERT-attack method:

• We updated the stop-word list by adding some
new words in and removing some words out
due to the visual dialogue domain, compared
to the original stop-word list7.

• We filter by part-of-speech (POS) to maintain
the grammar of the sentence for selecting syn-
onym candidates.

• We used the grammar tool from (Morris et al.,
2020) to check the sentence after the attack.

6BERT-Attack code from https://github.com/
LinyangLee/BERT-Attack and TextFooler code
from https://github.com/jind11/TextFooler.

7The stop-word list is updated to {does, do, see, look,
seem, be, some, sort, have, has, had, so, a, about, above,
across, after, afterwards, again, against, ain, all, almost, alone,
along, already, also, although, am, among, amongst, an, and,
another, any, anyhow, anyone, anything, anyway, anywhere,
are, aren, aren’t, around, as, at, back, been, before, before-
hand, behind, being, below, beside, besides, between, be-
yond, both, but, by, can, cannot, could, couldn, couldn’t, d,
didn, didn’t, doesn, doesn’t, don, don’t, down, due, during,
either, else, elsewhere, even, ever, everyone, everything, ev-
erywhere, except, for, former, formerly, from, hadn, hadn’t,
hasn, hasn’t, haven, haven’t, he,hence, her, here, hereafter,
hereby, herein, hereupon, hers, herself, him, himself, his, how,
however, i, if, in, indeed, into, is, isn, isn’t, it, it’s, its, itself,
just, latter, latterly, least, ll, may, me, meanwhile, mightn,
mightn’t, mine, moreover, must, mustn, mustn’t, my, my-
self, namely, needn, needn’t, neither, never, nevertheless, next,
no, nobody, none, noone, nor, not, nothing, now, nowhere,
o, of, off, on, once, only, onto, or, other, others, otherwise,
our, ours, ourselves, out, over, per, please,s, shan, shan’t,
she, she’s, should’ve, shouldn, shouldn’t, somehow, some-
thing, sometime, somewhere, such, t, than, that, that’ll, the,
their, theirs, them, themselves, then, thence, there, thereafter,
thereby, therefore, therein, thereupon, these, they,this, those,
through, throughout, thru, thus, to, too,toward, towards, un-
der, unless, until, up, upon, used, ve, was, wasn, wasn’t, we,
were, weren, weren’t, what, whatever, when,whence, when-
ever, where, whereafter, whereas, whereby, wherein, where-
upon, wherever, whether, which,while, whither, who, whoever,
whole, whom, whose, why,with, within, without, won, won’t,
would, wouldn, wouldn’t, y, yet, you, you’d, you’ll, you’re,
you’ve, your, yours, yourself, yourselves.}

ExamplesConstraints

Raw

Raw + POS

Orig.: Is it a large church?
Aft.:   Is it a big church?

Orig.: What color is the tennis court?
Aft.:   What colour is the tennis court?

+

Orig.: Does the snow appear fresh?
Aft.:   Does the snow appears fresh?

+

Orig.: Can you see the sun?
Aft.:   Can you see the sunlight?

+
Orig.: Are they indoors?
Aft.:   Are they outdoors?

Orig.: Is this inside?
Aft.:   Is this interior?

+

Orig.: Is it red?
Aft.:   Is it reds?

+

Orig.: How tall is the man?
Aft.:   How big is the man?

+

Raw + POS +    (0.5)

Raw + POS +    (0.5) + Gram

Figure 6: Generated adversarial examples under differ-
ent quality constraints on MCA-I-H model with BERT-
Attack.

C Full Table of Question Attack

We show the full table of question attack results in-
cluding R@10 in Table 9 as supplement of Table 1.

D Detailed Results for Lingustic Analysis

The full tables of the in-depths studies are shown
in Table 10, Table 11, Table 12 and Table 13, as
supplement Table 4, Table 5, Table 6, Table 7 re-
spectively.

E Details of Human Evaluation Study

Here, we provide more details on the human study.
We show the interface of semantic similarity ex-
periment for AMT task in Figure 7, including the
instruction (top). Two versions of this interface
are conducted, where one is provided with im-
age, one is without image. The interface of flu-
ency/grammaticality experiment for AMT task is
shown in Figure 8. Two versions of this inter-
face are done as well, where one is with grammar
checker and one is without. Finally, the interface of
label consistency experiment is shown in Figure 9.
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Question Attack

Orig.R@1 Aft.R@1 [∆] Orig.R@5 Aft.R@5 [∆] Orig.R@10 Aft.R@10 [∆] Orig.NDCG Aft.NDCG [∆] Orig.MRR [∆] Aft.MRR Pert. S.S. Quer.

BERT-Attack

MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 86.6 74.1 [-14.4] 61.5 54.9 [-10.7] 60.0 47.7 [-20.5] 16.7 74.4 5.2
MCA-H 45.9 40.0 [-12.9] 76.8 67.3 [-12.4] 86.8 76.6 [-11.8] 52.2 48.4 [-7.3] 60.0 51.1 [-14.8] 16.7 75.4 5.2
MCA-I-HGQ 50.8 45.6 [-10.2] 81.7 71.4 [-12.6] 90.2 80.3 [-11.0] 60.0 55.2 [-8.0] 64.3 55.6 [-13.5] 17.1 74.1 5.2
MCA-I-VGH 48.6 43.3 [-10.9] 78.7 68.0 [-13.6] 88.6 78.4 [-11.5] 62.6 57.3 [-8.5] 62.2 53.3 [-14.3] 16.7 74.3 5.2
MCA-I-H 50.0 45.2 [-9.6] 81.4 69.5 [-14.6] 90.8 80.0 [-11.9] 59.6 54.6 [-8.4] 63.8 54.6 [-14.4] 16.7 74.8 5.2

RvA 49.9 43.9 [-12.0] 82.2 72.2 [-12.2] 91.1 82.6 [-9.3] 56.3 50.9 [-9.6] 64.2 54.5 [-15.1] 17.0 74.4 5.2

P1 48.8 43.5 [-10.9] 80.2 69.2 [-13.7] 89.7 80.7 [-10.0] 60.0 54.2 [-9.7] 62.9 54.1 [-14.0] 17.4 74.2 5.2
P1+P2 41.9 37.1 [-11.5] 66.9 57.8 [-13.6] 80.2 71.1 [-11.3] 73.4 67.9 [-7.5] 54.0 46.2 [-14.4] 17.0 73.7 5.2

SLG 49.1 43.9 [-10.6] 81.1 72.1 [-11.1] 90.4 81.2 [-10.2] 63.4 58.4 [-7.9] 63.4 55.0 [-13.2] 17.5 73.4 5.2
SLG+KT 48.7 42.6 [-12.5] 71.3 60.8 [-14.7] 83.4 74.4 [-10.8] 74.5 68.2 [-8.5] 59.9 50.3 [-16.0] 17.3 74.6 5.2

TextFooler

MCA-I 46.6 36.1 [-22.5] 76.3 63.9 [-16.3] 86.6 74.9 [-13.5] 61.5 53.9 [-12.4] 60.0 47.1 [-20.5] 16.8 74.4 19.7
MCA-H 45.9 39.1 [-14.8] 76.8 68.5 [-10.8] 86.8 78.3 [-9.8] 52.2 48.0 [-8.0] 60.0 51.1 [-14.8] 17.1 74.6 19.7
MCA-I-HGQ 50.8 44.2 [-13.0] 81.7 71.6 [-12.4] 90.2 81.2 [-10.0] 60.0 54.4 [-9.3] 64.3 54.8 [-14.8] 17.0 74.4 19.9
MCA-I-VGH 48.6 41.5 [-14.6] 78.7 68.2 [-13.3] 88.6 78.9 [-10.9] 62.6 56.5 [-9.7] 62.2 52.3 [-15.9] 16.5 74.4 19.8
MCA-I-H 50.0 43.1 [-13.8] 81.4 71.2 [-12.5] 90.8 81.3 [-10.5] 59.6 53.7 [-9.9] 63.8 54.0 [-15.4] 16.9 74.7 19.8

RvA 49.9 43.6 [-12.6] 82.2 73.2 [-10.9] 91.1 84.2 [-7.6] 56.3 50.2 [-10.8] 64.2 55.3 [-13.9] 16.9 74.9 19.9

P1 48.8 42.6 [-12.7] 80.2 71.1 [-11.3] 89.7 82.2 [-8.4] 60.0 53.5 [-10.8] 62.9 54.4 [-13.5] 17.3 74.3 20.1
P1+P2 41.9 35.8 [-14.6] 66.9 56.9 [-14.9] 80.2 71.8 [-10.5] 73.4 66.9 [-8.9] 54.0 45.1 [-16.5] 17.1 73.7 19.8

SLG 49.1 43.1 [-12.2] 81.1 73.4 [-9.5] 90.4 82.7 [-8.5] 63.4 57.8 [-8.8] 63.4 55.3 [-12.8] 17.3 74.2 19.9
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 83.4 74.9 [-10.2] 74.5 67.6 [-9.3] 59.9 49.8 [-16.9] 17.1 74.6 19.9

Table 9: Comparison of performance before attacking question (Orig.) and after (Aft.) on different VisDial models.
In addition to standard metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and the
number of queries (Quer.) to assess BERT-Attack vs. TextFooler. The relative performance drop is listed as [∆].
Highlights indicate the least robust and most robust model, supplement of Table 1.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

Random
50.0

46.2
81.4

71.7
90.8

81.4
59.6

56.0
63.8

55.9 17.0 73.4 5.2
Ours 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2

Table 10: Effect of vulnerable word attack (full table) on MCA-I-H model with BERT-Attack, supplement of
Table 4.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

All
50.0

43.7
81.4

73.3
90.8

84.3
59.6

54.1
63.8

57.2 16.7 74.4 6.1
Ours 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2

Table 11: Effect of stop words set (full table) on MCA-I-H model with BERT-Attack, supplement of Table 5.

ε Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

0.7

50.0

47.0

81.4

69.2

90.8

79.4

59.6

55.6

63.8

54.1 16.1 82.0 5.8
0.5 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2
0.3 44.6 69.5 79.9 54.1 54.8 16.9 71.8 5.1
0.1 44.6 69.5 80.0 53.9 54.8 17.1 70.9 5.1

Table 12: Effect of semantic similarity threshold ε (full table) on MCA-I-H model with BERT-Attack, supplement
of Table 6.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

Raw Attack

50.0

44.2

81.4

69.8

90.8

80.2

59.6

53.7

63.8

54.9 17.4 70.3 4.9
+POS 44.5 69.5 80.0 53.8 54.8 17.1 70.3 5.1
+POS+S.S.(0.5) 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2
+POS+S.S.(0.5)+Gram. 45.4 70.9 81.2 55.9 55.1 13.0 71.4 5.2

Table 13: Effect of different constraints for adversarial attack (full table) on MCA-I-H model with BERT-Attack,
supplement of Table 7.

3434



Instructions
We give some examples for the different options.
A - One text means something completely different
e.g. "Can you see big ben"/ Can you see huge ben? (Entity changes - independent of picture)
e.g. "Are the planes close to each other" / "Are the planes close to any other?" (Question scope changes)
B - One text means something different
e.g. "Is the dog/ dogs a Cocker Spaniel?" depends on whether there is more than 1 dog.
C - The meaning is somehow similar but one of texts means something slightly different.
e.g. "Are any of them stores?"/"Are any of them retailers?" (Similar meaning)
D - They have exactly the same meaning
e.g. "Does it have color?"/ "Does it have colour?" (Pretty much only applies to BE/ AE spelling?)

 How similar is the meaning of these two pieces of text ? 

QuestionText  (and image)

Figure 7: AMT task description and interface to evaluate semantic consistency before and after the attack w/o
image.

Instructions

'Fluent - could this have been produced by a native speaker?'
'Grammatical - are there any grammar errors, such as verb agreement?'

How fluent/grammatical is the text?
Question

Text

Is the blanket cleaned ?

Figure 8: Interface of ’Evaluation of Grammaticality’ for AMT task.
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Instructions

Is it a correct/resonable answer for the question given
the image?

QuestionText  (and image)

We give some examples for 'unsure' option.
"Unsure - the question doesn't make sense given the picture." (e.g. question asking
about "a man" when there is only a child in the picture.)
"Unsure - I can't verify the answer given the picture." (e.g. question asking whether
someone smiles, but it's hard to see.)
"Unsure - the question is difficult to understand because it's ungrammatical" (e.g. the
question is highly ungrammatical and disfluent)
"Unsure - the question is ambiguous given the picture." (e.g. the question has more
than one answer)

Figure 9: Interface of ’Evaluation of Label Consistency’ for AMT task.
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