@inproceedings{aralikatte-etal-2023-varta,
title = "Varta: A Large-Scale Headline-Generation Dataset for {I}ndic Languages",
author = "Aralikatte, Rahul and
Cheng, Ziling and
Doddapaneni, Sumanth and
Cheung, Jackie Chi Kit",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.215/",
doi = "10.18653/v1/2023.findings-acl.215",
pages = "3468--3492",
abstract = "We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowledge, this is the largest collection of curated news articles for Indic languages currently available. We use the collected data in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pre-train strong language models that outperform competitive baselines in both NLU and NLG benchmarks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aralikatte-etal-2023-varta">
<titleInfo>
<title>Varta: A Large-Scale Headline-Generation Dataset for Indic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Aralikatte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziling</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sumanth</namePart>
<namePart type="family">Doddapaneni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowledge, this is the largest collection of curated news articles for Indic languages currently available. We use the collected data in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pre-train strong language models that outperform competitive baselines in both NLU and NLG benchmarks.</abstract>
<identifier type="citekey">aralikatte-etal-2023-varta</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.215</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.215/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>3468</start>
<end>3492</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Varta: A Large-Scale Headline-Generation Dataset for Indic Languages
%A Aralikatte, Rahul
%A Cheng, Ziling
%A Doddapaneni, Sumanth
%A Cheung, Jackie Chi Kit
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F aralikatte-etal-2023-varta
%X We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowledge, this is the largest collection of curated news articles for Indic languages currently available. We use the collected data in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pre-train strong language models that outperform competitive baselines in both NLU and NLG benchmarks.
%R 10.18653/v1/2023.findings-acl.215
%U https://aclanthology.org/2023.findings-acl.215/
%U https://doi.org/10.18653/v1/2023.findings-acl.215
%P 3468-3492
Markdown (Informal)
[Varta: A Large-Scale Headline-Generation Dataset for Indic Languages](https://aclanthology.org/2023.findings-acl.215/) (Aralikatte et al., Findings 2023)
ACL