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Abstract
Automatic evaluation methods for translation
often require model training, and thus the avail-
ability of parallel corpora limits their appli-
cability to low-resource settings. Round-trip
translation is a potential workaround, which
can reframe bilingual evaluation into a much
simpler monolingual task. Early results from
the era of statistical machine translation (SMT)
raised fundamental concerns about the utility
of this approach, based on poor correlation
with human translation quality judgments. In
this paper, we revisit this technique with mod-
ern neural translation (NMT) and show that
round-trip translation does allow for accurate
automatic evaluation without the need for refer-
ence translations. These opposite findings can
be explained through the copy mechanism in
SMT that is absent in NMT. We demonstrate
that round-trip translation benefits multiple ma-
chine translation evaluation tasks: i) predict-
ing forward translation scores; ii) improving
the performance of a quality estimation model;
and iii) identifying adversarial competitors in
shared tasks via cross-system verification.1

1 Introduction

Thanks to the recent progress of neural machine
translation (NMT) and large-scale multilingual
corpora, machine translation (MT) systems have
achieved remarkable performances on high- to
medium-resource languages (Fan et al., 2021; Pan
et al., 2021; Goyal et al., 2022a). However, the
development of MT technology on low-resource
language pairs still suffers from insufficient data
for training and evaluation (Aji et al., 2022; Sid-
dhant et al., 2022). Recent advances in multilin-
gual pre-trained language model explore methods
trained on monolingual data, using data augmenta-
tion and denoising auto-encoding (Xia et al., 2019;

∗Corresponding author.
†Now at Google DeepMind.

1The dataset and code are available at https://
github.com/terryyz/rtt-rethinking.

Figure 1: Given a corpus DA in Language A, we are
able to acquire the round-trip translation (RTT) results
D

′
A and forward translation (FT) results DB via ma-

chine translation. One question was raised and dis-
cussed by machine translation community about two
decades ago, “Can RTT results be used to estimate FT
performance?”. While some early studies show the pos-
sibility (Rapp, 2009), however some researchers tend
to be against round-trip translation due to the poor cor-
relations between FT and RTT scores. Our work gives
a clear and positive answer to the usefulness of RTT,
based on extensive experiments and analysis.

Liu et al., 2020). However, high-quality parallel
corpora are still required for evaluating translation
quality. Such requirement is especially resource-
consuming when working on i) hundreds of un-
derrepresented low-resource languages (Bird and
Chiang, 2012; Joshi et al., 2019; Aji et al., 2022)
and ii) translations for specific domains (Li et al.,
2020; Müller et al., 2020).

Standard MT evaluation requires parallel data
which includes human translations as references,
such that machine translations can be compared
to the references with metrics such as BLEU or
chrF. In contrast, round-trip translation (RTT), as
illustrated in Figure 1, instead uses a translation
system to back-translate the machine translation
into the source language, after which this round-
tripped text can be compared to the original source
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(using standard reference-based metrics). This ap-
proach is compelling, in that it removes the re-
quirement for parallel evaluation corpora, how-
ever influential work showed little correlation be-
tween evaluation scores measured using RTT ver-
sus standard reference-based evaluation (Huang,
1990; Koehn, 2005; Somers, 2005; Zaanen and
Zwarts, 2006), when applied to statistical machine
translation (SMT) and rule-based machine trans-
lation (RMT). Consequently, the RTT method has
seen little use, with a few recent notable exceptions
in recent years, e.g., used to improve quality esti-
mation methods (Moon et al., 2020; Crone et al.,
2021; Agrawal et al., 2022).

In this work, we revisit the dispute on the use-
fulness of RTT evaluation in the modern era of
neural machine translation (NMT). We argue that
the main reason for the negative findings was a
consequence of historical systems using reversible
rules in translation, notably copying, whereby sys-
tems copy unrecognized source tokens into target
languages, which is often penalized in FT evalua-
tion, but rewarded by RTT evaluation. We conduct
extensive experiments to demonstrate the effect of
the copying mechanism on SMT. Later, we illus-
trate strong correlations between FT-SCOREs and
RTT-SCOREs on various MT systems, including
NMT and SMT without a copying mechanism.

The finding sets the basis of using RTT-SCORE

for MT evaluation. Three application scenarios
in MT evaluation have been investigated to show
the effectiveness of RTT-SCORE. Firstly, RTT-
SCOREs can be used to predict FT-SCOREs by
training a simple but effective linear regression
model on several hundred language pairs. The
prediction performance is robust in evaluating mul-
tiple MT systems in transferred domains and un-
seen language pairs including low-resource lan-
guages. Then, RTT-SCOREs are proved effec-
tive in improving the performance of a recently
advanced quality estimation model which further
supports the feasibility of RTT-SCORE. Finally,
a cross-system check (X-Check) mechanism is
introduced to RTT evaluation for real-world MT
shared tasks. By leveraging the estimation from
multiple translation systems, X-Check manages
to identify those adversarial competitors, who know
the mechanism of RTT evaluation and thus utilize
the copying strategy as a shortcut to outperform
other honest participants.

2 Related Work

Reference-based Machine Translation Evalua-
tion Metric. Designing high-quality automatic
evaluation metrics for evaluating translation qual-
ity is one of the fundamental challenges in MT
research. Most of the existing metrics largely rely
on parallel corpora to provide aligned texts as ref-
erences (Papineni et al., 2002; Lin, 2004). The
performance of the translation is estimated by com-
paring the system outputs against ground-truth ref-
erences. A classic school of reference-based eval-
uation is based on string match methods, which
calculate the matched ratio of word sequences as
strings, such as BLEU (Papineni et al., 2002; Post,
2018), ChrF (Popović, 2015) and TER (Snover
et al., 2006). In addition, recent metrics utilize
the semantic representations of texts to estimate
their relevance, given pre-trained language mod-
els, such as BERTScore (Zhang et al., 2020) and
BLEURT (Sellam et al., 2020). These methods are
demonstrated to be more correlated to human evalu-
ation (Kocmi et al., 2021) than string-based metrics.
Some other reference-based evaluation metrics re-
quire supervised training to work well (Mathur
et al., 2019; Rei et al., 2020) on contextual word
embeddings. While these automatic evaluation met-
rics are widely applied in MT evaluation, they are
generally not applicable to low-resource language
translation or new translation domains (Mathur
et al., 2020). Our work demonstrates that reference-
free MT metrics (RTT-SCORE) could be used to
estimate traditional reference-based metrics.

Reference-free Quality Estimation. In recent
years, there has been a surge of interest in the task
of directly predicting human judgment, namely
quality estimation (QE), without access to paral-
lel reference translations in the run-time (Specia
et al., 2010, 2013; Bojar et al., 2014; Zhao et al.,
2020). The recent focus on QE is mainly based on
human evaluation approaches, direct assessment
(DA) and post-editing, where researchers intend to
train models on data via human judgment features
to estimate MT quality. Among these recent QE
metrics, learning-based models, YiSi-2 (Lo, 2019),
COMET-QE-MQM (Rei et al., 2021), to name a
few, demonstrate their effectiveness on WMT shared
tasks. Our work shows that RTT-SCORE promotes
a recently advanced QE model.
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Figure 2: The comparison of the forward translation (FT) and round-trip translation (RTT) performance of two
translation systems, System 1 and System 2 are based on Statistical Machine Translation (SMT) and Neural Machine
Translation (NMT), respectively. The conflict conclusions by FT Scores (System 1 < System 2) and RTT Scores
(System 1 > System 2) are attributed to the translation of the underlined words, ‘reclassified’ and ‘Biotech’.

3 Revisiting Round-trip Translation

3.1 Evaluation on Round-trip Translation
Given machine translation systems, TA→B and
TB→A, between two languages (LA and LB), and a
monolingual corpus DA = {ai}Ni=1, FT transforms
ai to b′i = TA→B(ai) and BT translates it back to
A, a′i = TB→A(TA→B(ai)). FT and BT constitute
a round-trip translation (RTT).

The evaluation scores on round-trip translation
(RTT-SCORE) with regard to an automatic evalua-
tion metric M is

RTT-SCORE
M
A⟳B =

1

N

N∑

i=1

M(TB→A(TA→B(ai)), ai)

(1)
where BLEU (Papineni et al., 2002),
spBLEU (Goyal et al., 2022b), chrF (Popović,
2015) and BERTScore (Zhang et al., 2020) are
target metrics M in our discussion.

On the other hand, traditional MT evaluation on
parallel corpus is

FT-SCORE
M
A→B =

1

N

N∑

i=1

M(TA→B(ai), bi) (2)

given a (virtual) parallel corpus DA||B =

{(ai, bi)}Ni=1. The main research question is
whether FT-SCOREs are correlated to therefore
could be predicted by RTT-SCOREs.

3.2 RTT Evaluation on Statistical Machine
Translation

The previous analysis on the automatic evalua-
tion scores from RTT and FT shows that they are
negatively correlated. Such a long-established un-
derstanding started from the era of RMT (Huang,
1990) and lasted through SMT (Koehn, 2005;
Somers, 2005) and prevented the usage of RTT

to MT evaluation. We argue that the negative ob-
servations are probably due to the selected SMT
models involving some reversible transformation
rules, e.g., copying unrecognized tokens in transla-
tion. As an example illustrated in Figure 2, the MT
System 1 works worse than its competing System
2, as System 1 fails to translate ‘reclassified’ and
‘Biotech’. Instead, it decides to copy the words in
source language (En) directly to the target outputs.
During BT, System 1 manages to perfectly trans-
late them back without any difficulty. For System
2, although translating ‘Biotechnologie’ (De) to
‘Biotechnology’ (En) is adequate, it is not appre-
ciated by the original reference in this case. Con-
sequently, the rankings of these two MT systems
are flipped according to their FT and RTT scores.
Previous error analysis study on SMT (Vilar et al.,
2006) also mentioned that the unknown word copy
strategy is one of the major causes resulting in the
translation errors. We therefore argue that the re-
versible transformation like word copy could have
introduced significant bias to the previous exper-
iments on SMT (and RMT). Then, we conduct
experiments to replicate the negative conclusion.
Interestingly, removing the copying mechanism
can almost perfectly resolve the negation in our
experiments.

3.3 Experiments and Analysis

We compare RTT and FT on SMT following
the protocol by Somers (2005); Koehn (2005).
Moses (Koehn and Hoang, 2009) is utilized to
train phrase-based MT systems (Koehn et al.,
2003), which were popular in the SMT era.2 We
train SMT systems on News-Commentary v8
(Tiedemann, 2012), as suggested by WMT organiz-

2We follow the baseline setup in the Moses’ tutorial
in http://www2.statmt.org/moses/?n=Moses.
Baseline.
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Lang. Pair
K. τ ↑ P. τ ↑

w/ cp w/o cp w/ cp w/o cp
de-en -0.11 0.20 -0.90 1.00
en-de -0.40 0.60 -1.00 1.00
cs-en -0.20 0.30 -0.99 0.99
en-cs -0.40 0.60 -0.90 0.99
fr-en 0.20 0.60 -1.00 1.00
en-fr -0.40 1.00 -0.90 0.99

Table 1: Comparison between RTT-SCORE and FT-
SCORE on two groups of systems with copying (w/ cp)
and without copying (w/o cp) unknown words using
Kendall’s τ on six language pairs.

ers (Koehn and Monz, 2006). We test our systems
on six language pairs (de-en, en-de, cs-en, en-cs,
fr-en and en-fr) in the competition track of WMT
Shared Tasks (Barrault et al., 2020). RTT-SCOREs
and FT-SCOREs are calculated based on BLEU in
this section. Then, we use Kendall’s τ and Pear-
son’s r to verify the correlation of RTT-SCOREs
and FT-SCOREs (Kendall, 1938; Benesty et al.,
2009). We provide more detailed settings in Ap-
pendix C.

During translation inference, we consider two
settings for comparison, one drops the unknown
words and the other one copies these tokens to the
outputs. Hence, we end up having two groups of
six outputs from various SMT systems.

In Table 1, we examine the relevance between
RTT-SCOREs and FT-SCOREs on six SMT sys-
tems. The performance is measured by Kendall’s
τ and Pearson’s r. The correlation is essentially
decided by the copying mechanism. Specifically,
their correlation turns to be much stronger for those
systems not allowed copying, compared to the sys-
tems with default word copy.

Now, we discuss the rationality of using RTT
evaluation for NMT systems, by comparing the re-
liance of copying mechanism in NMT and SMT.
For NMT, we choose MBART50-M2M (Tang et al.,
2020), which covers 50 languages of cross-lingual
translation. Exactly matched words in outputs from
the input words are considered copying, although
the system may not intrinsically intend to copy
them. In Table 2, we observe that copying fre-
quency is about two times in SMT than in NMT. Al-
though NMT systems may copy some words during
translation, most of them are unavoidable, e.g., we
observe that most of these copies are proper nouns
whose translations are actually the same words in
the target language. In contrast, the copied words
in SMT are more diverse and many of them could
be common nouns.

Lang. Pair
Avg. Copy (%)
SMT NMT

de-en 17.39 9.28
en-de 21.47 9.54

Table 2: Comparison of word copy frequency between
SMT and NMT on two language pairs. We calculate
the average percentage of copied (Avg. Copy) tokens
per sentence. The details of selected Moses system are
reported in Appendix C.

4 Predicting FT-SCORE using
RTT-SCORE

In this section, we validate whether FT-SCOREs
could be predicted by RTT-SCOREs. Then, we
examine the robustness of the predictor on unseen
language pairs and transferred MT models.

4.1 Regression on RTT-SCORE

Here, we construct a linear regressor f to predict
FT-SCOREs of a target translation metric M by
corresponding RTT-SCOREs,

FT-SCOREM
A→B ≈ fM(RTT-SCOREM∗

A⟳B,

RTT-SCOREM∗
B⟳A). (3)

M∗ indicates that multiple metrics are used to con-
struct the input features. We utilize RTT-SCORE

from both sides of a language pair as our primary
setting, as using more features usually provides bet-
ter prediction performance (Xia et al., 2020). We
use a linear regressor for predicting FT-SCORE,

fM(S) = W1 · SM∗
A⟳B +W2 · SM∗

B⟳A + β (4)

where SM∗
A⟳B and SM∗

B⟳A are RTT-SCORE features
used as inputs of the regressor.3 W1, W2 and β
are the parameters of the prediction model opti-
mized by supervised training.4 In addition, when
organizing a new shared task, say WMT, collecting
a parallel corpus in low-resource language could
be challenging and resource-intensive. Hence, we
investigate another setting that utilizes merely the
monolingual corpora in language A or B to predict
FT-SCORE,

FT-SCOREM
A→B ≈ f ′

M(RTT-SCOREM∗
A⟳B),

FT-SCOREM
A→B ≈ f ′

M(RTT-SCOREM∗
B⟳A). (5)

We will compare and discuss this setting in our
experiments on WMT.

3We use M∗ = M as our primary setting, as it is the most
straightforward and effective method to construct features. In
addition, we discuss the possibility to improve the regressor
by involving more features, in Appendix G.2.

4Implementation details can be found in Appendix E.
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Figure 3: The 33 languages in FLORES-AE33 are sep-
arated into two categories, Seen ( ) includes the lan-
guages used in both training and testing, and Unseen
( ) is composed of the languages only used in test-
ing. contains 7 High-resource (H.), 7 Medium-
resource (M.) and 6 Low-resource (L.) languages,
while involves 9 Medium-resource (M.) and 4 Low-
resource (L.) languages. These two sets are used to
construct three types of language pairs for the test.
Type I and Type III target on translation among and

language pairs, respectively. Type II targets on trans-
lation between and . The test setting with more

is usually more challenging, i.e., Type I < Type II
< Type III.

4.2 Experimental Setup

4.2.1 Datasets
We conduct experiments on the large-scale multi-
lingual benchmark, FLORES-101, and WMT ma-
chine translation shared tasks. FLORES-AE33 is
for training and testing on languages and trans-
ferred MT systems. WMT is for testing real-world
shared tasks in new domains.

FLORES-AE33. We extract FLORES-AE33,
which contains parallel data among 33 languages,
covering 1,056 (33×32) language pairs, from a cu-
rated subset of FLORES-101 (Goyal et al., 2022a).
We select these languages based on two criteria: i)
We rank languages given the scale of their bi-text
corpora; ii) We prioritize the languages covered
by WMT2020-News and WMT2020-Bio. As a
result, FLORES-AE33 includes 7 high-resource
languages, 16 medium-resource languages and 10
low-resource languages. We show the construc-
tion pipeline in Figure 3, with more details in Ap-
pendix A.

WMT. We collect corpora from the translation
track to evaluate multiple MT systems on the same

test sets. We consider their ranking based on
FT-SCORE with metric M as the ground truth.
We choose the competition tracks in WMT 2020
Translation Shared Tasks (Barrault et al., 2020),
namely news track WMT2020-News and biomed-
ical track WMT2020-Bio. We consider news and
bio as new domains, compared to our training data
FLORES-101 whose contents are mostly from
Wikipedia.

4.2.2 Neural Machine Translation Systems

We experiment with five MT systems that
support most of the languages appearing in
FLORES-AE33 and WMT. Except for MBART50-
M2M, we adopt M2M-100-BASE and M2M-100-
LARGE (Fan et al., 2021), which are proposed to
conduct many-to-many MT without explicit pivot
languages, supporting 100 languages. GOOGLE-
TRANS (Wu et al., 2016; Bapna et al., 2022)5 is a
commercial translation API, which was considered
as a baseline translation system in many previous
competitions (Barrault et al., 2020). Meanwhile,
we also include a family of bilingual MT mod-
els, OPUS-MT (Tiedemann and Thottingal, 2020),
sharing the same model architecture MARIAN-
NMT (Junczys-Dowmunt et al., 2018). We pro-
vide more details about these MT systems in Ap-
pendix C.

4.2.3 Automatic MT Evaluation Metrics

We consider BLEU (Papineni et al., 2002),
spBLEU (Goyal et al., 2022b), chrF (Popović,
2015) and BERTScore (Zhang et al., 2020) as the
primary automatic evaluation metrics (Freitag et al.,
2020). All these metrics will be used and tested
for both input features and target FT-SCORE. The
first two metrics are differentiated by their tokeniz-
ers, where BLEU uses Moses (Koehn and Hoang,
2010) and spBLEU uses SentencePiece (Kudo and
Richardson, 2018). Both evaluation metrics were
officially used in WMT21 Large-Scale Multilin-
gual Machine Translation Shared Task (Wenzek
et al., 2021). While BLEU works for most language
tokenizations, spBLEU shows superior effective-
ness on various language tokenizations, especially
the performance on low-resource languages (Goyal
et al., 2022a). More details of these metrics are
described in Appendix B

5We queried GOOGLE-TRANS API in August 2022.
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4.3 Experiments and Analysis
Following our discussion in the last section on
SMT, we conduct similar experiments using our
new multilingual NMT systems on Type I test
set of FLORES-AE33. We observe a highly pos-
itive correlation between FT-SCOREs and RTT-
SCOREs, measured by Pearson’s r (Benesty et al.,
2009). Please refer to Appendix G.1 for more de-
tails. Then, we train regressors on RTT-SCOREs
and conduct experiments to examine their perfor-
mance in various challenging settings.

MT System Trans. Metric Type I
MAE ↓ RMSE ↓ P. r ↑

MBART50-M2M

BLEU 1.80 2.70 0.94
spBLEU 2.13 2.99 0.94
chrF 3.51 4.53 0.96

BERTScore 4.98 7.07 0.88

M2M-100-BASE

BLEU 3.86 5.82 0.95
spBLEU 3.97 5.72 0.96
chrF 6.06 7.53 0.96

BERTScore 4.35 6.32 0.91

GOOGLE-TRANS

BLEU 4.09 5.60 0.93
spBLEU 4.22 5.62 0.87
chrF 5.70 6.90 0.93

BERTScore 2.87 3.66 0.80

Table 3: The results of predicted FT-SCOREs of
MBART50-M2M, M2M-100-BASE and GOOGLE-
TRANS on Type I test set based on different translation
evaluation metrics (Trans. Metric). Note that MAE:
Mean Absolute Error, RMSE: Root Mean Square Error,
P. r: Pearson’s r.

4.3.1 Transferability of Regressors
We first investigate the transferability of our regres-
sors from two different aspects, transferred MT
systems and unseen language pairs. We also eval-
uate the regressor on different scales of language
resources.

Settings. We train our regressors on Type I
train set based on the translation scores from
MBART50-M2M. In order to assess system trans-
ferability, we test three models on Type I test set.
In terms of language transferability, we consider
FT-SCOREs of MBART50-M2M (a seen MT sys-
tem in training) and M2M-100-BASE (an unseen
MT system in training) on Type II and Type III
in FLORES-AE33. We further evaluate the trans-
ferability of our regressor on language resources in
Type I test set, with two MT systems, MBART50-
M2M and M2M-100-BASE.

Discussion. In Table 3, we present the perfor-
mance of the regressor across various translation
systems and evaluation metrics. We first analyze
the results on MBART50-M2M, which is seen in

training. The absolute errors between predicted
scores and ground-truth FT-SCOREs are relatively
small with regard to MAE and RMSE. Meanwhile,
the correlation between prediction and ground truth
is strong, with all Pearson’s r above or equal to
0.88. This indicates that the rankings of predicted
scores are rational. The results of M2M-100-
BASE and GOOGLE-TRANS demonstrate the per-
formance of predictors on unseen systems. Al-
though the overall errors are higher than those of
MBART50-M2M without system transfer, Pear-
son’s r scores are at the competitive level, indicat-
ing a similar ranking capability on unseen systems.
Meanwhile, our model obtains adequate language
transferability results, as demonstrated in Table 4.

In Table 5, we provide the detailed perfor-
mance of our regressor on language pairs of differ-
ent resource categories on FLORES-AE33, with
RTT-SCOREs of MBART50-M2M and M2M-
100-BASE respectively. Specifically, we split the
three categories based on Table 9, which are high,
medium and low. The evaluated regressor is the
same as the one tested in Sections 4.3.1 and 4.3.2.
The results of the two tables show that our regres-
sor is able to predict FT-SCOREs with small errors
and reflect the relative orders among FT-SCOREs,
with high transferability across language pairs and
MT systems.

4.3.2 Predicting FT-SCOREs on WMT
With the basis of the high transferability of the
regressors, we conduct experiments on WMT shared
tasks, namely WMT2020-News, which includes
10 language pairs. In this experiment, we study
spBLEU metric scores.

Settings. We have involved five MT systems 6

We are aware of the cases that collecting corpora
in target languages for competitions might be sig-
nificantly complex, which means only a monolin-
gual corpus is available for evaluation. Thus, we
train predictors f ′ using single RTT-SCOREs in
Equation 5. Note that this experiment covers sev-
eral challenging settings, such as transferred MT
systems, language transferability, single source fea-
tures, and transferred application domains. Another
set of results on WMT2020-Bio can be found in
Appendix G.4.

6We have contacted the competitors to WMT2020-News.
However, we have not received enough valid MT systems to
increase the number of competitors. We show the robustness
of our method to a larger number of pseudo-competitors in
Appendix G.3.
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MT System Trans. Metric Type II Type III
MAE ↓ RMSE ↓ P. r ↑ MAE ↓ RMSE ↓ P. r ↑

MBART50-M2M

BLEU 1.36 1.97 0.93 0.81 0.95 0.96
spBLEU 1.61 2.19 0.93 1.20 1.38 0.94
chrF 3.80 4.89 0.95 3.04 3.89 0.95

BERTScore 4.67 6.38 0.88 5.08 6.88 0.87

M2M-100-BASE

BLEU 3.10 4.16 0.95 2.99 3.76 0.94
spBLEU 3.24 4.18 0.96 3.18 3.88 0.95
chrF 5.53 6.70 0.95 5.42 6.54 0.93

BERTScore 4.38 6.51 0.83 4.29 6.65 0.80

Table 4: The results of predicted FT-SCOREs of MBART50-M2M (a seen MT system) and M2M-100-BASE
(an unseen MT system) on Type II and Type III (with unseen languages) test sets based on different translation
evaluation metrics (Trans. Metric).

MAE ↓ RMSE ↓ P. r ↑
H. M. L. H. M. L. H. M. L.

MBART50-M2M

H. 3.17 2.90 2.70 4.02 3.74 4.07 0.94 0.94 0.77
M. 1.51 1.37 1.77 1.95 1.78 2.29 0.97 0.85 0.22
L 1.22 1.27 1.16 1.39 1.43 1.36 0.97 0.87 0.78

M2M-100-BASE

H. 8.72 5.41 3.50 10.82 6.45 4.52 0.51 0.80 0.67
M. 4.86 4.01 2.93 4.71 1.78 4.09 0.86 0.90 0.69
L 1.70 1.67 1.24 1.39 1.86 1.51 0.98 0.97 0.80

Table 5: The results of predicted FT-SCOREs of MBART50-M2M and M2M-100-BASE on nine sets of language
pairs, categorized by different scales of the resources, High (H.), Medium (M.) and Low (L.). The three categories
in rows are source languages, and the ones in columns are target languages. We report Mean Average Error (MAE),
Root Mean Square Error (RMSE) and Pearson’s r.

Discussion. In Table 6, we display the results
on WMT2020-News. Although MAE and RMSE
vary among experiments for different language
pairs, the overall correlation scores are favorable.
Pearson’s r values on all language pairs are above
0.5, showing strong ranking correlations. While
prediction performances on A ⟳ B have some
variances among different language pairs, the re-
sults of the experiments using B ⟳ A are com-
petitive to those using both A ⟳ B and B ⟳ A
features, showing the feasibility of predicting FT-
SCORE using monolingual data. We conclude that
our regression-based predictors can be practical in
ranking MT systems in WMT-style shared tasks.

5 RTT-SCOREs for Quality Estimation

In this section, we demonstrate that the features
acquired by round-trip translation benefit quality
estimation (QE) models.

Dataset. QE was first introduced in WMT11
(Callison-Burch et al., 2011), focusing on auto-
matic methods for estimating the quality of neural
machine translation output at run-time. The esti-
mated quality should align with the human judg-
ment on the word and sentence level, without ac-
cessing the reference in the target language. In this
experiment, we perform sentence-level QE, which
aims to predict human direction assessment (DA)

scores. We use DA dataset collected from 2015 to
2021 by WMT News Translation shared task coor-
dinators. More details are provided in Appendix D.

Settings. Firstly, we extract RTT features RTT-
BLEU, RTT-spBLEU, RTT-chrF and RTT-
BERTScore. Then, we examine whether QE
scores could be predicted by these RTT features
using linear regression models. We train the re-
gressors using Equation 5 with only A ⟳ B fea-
tures. Finally, a combination of COMET-QE-DA
scores and RTT-SCOREs are investigated to ac-
quire a more competitive QE scorer.

Discussion. Both Kendall’s τ and Pearson’s r
provide consistent results in Table 7. The mod-
els merely using RTT-SCOREs could be used to
predict DA scores. We also observe that RTT-
SCOREs can further boost the performance of
COMET-QE-DA. We believe thatRTT-SCORE ad-
vances QE research and urges more investigation
in this direction.

6 Towards Robust Evaluation

On the basis of our findings in Section 3.2, RTT
evaluation could become potentially vulnerable
when MT systems with word copy are involved in.
Specifically, the adversarial system may achieve
unexpectedly high RTT-SCOREs due to the large
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Lang. Pair A ⟳ B B ⟳ A A ⟳ B & B ⟳ A
MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K. τ ↑ P. r ↑

cs-en 4.01 4.34 0.20 0.45 8.92 9.08 0.60 0.91 8.53 8.71 0.60 0.88
de-en 13.23 13.26 0.80 0.95 1.69 1.77 0.80 0.95 1.26 1.38 0.80 0.96
de-fr 10.45 10.53 1.00 0.99 1.72 2.05 0.80 0.97 1.59 1.93 1.00 0.97
en-cs 6.96 7.49 0.20 0.25 1.39 1.79 0.60 0.94 1.25 1.80 0.60 0.95
en-de 2.96 4.00 0.40 0.59 2.29 2.70 1.00 0.92 2.75 3.12 1.00 0.93
en-ru 1.98 2.40 0.20 0.40 7.41 7.53 0.40 0.85 7.48 7.60 0.60 0.86
en-zh 2.96 3.93 0.20 0.19 1.36 1.60 0.80 0.80 1.23 1.50 0.80 0.82
fr-de 2.89 3.70 0.80 0.90 2.99 3.56 1.00 0.94 2.59 3.17 1.00 0.93
ru-en 9.83 9.97 1.00 0.78 1.16 1.72 0.80 0.85 1.44 1.78 0.80 0.88
zh-en 12.44 12.77 0.00 0.26 3.04 3.55 0.20 0.50 2.62 3.56 0.20 0.50

Average 6.77 7.24 0.48 0.58 3.20 3.54 0.70 0.86 3.07 3.41 0.74 0.87

Table 6: The results of our predictors on ranking the selected MT systems on WMT2020-News shared tasks.

QE model zh-en en-de
K. τ ↑ P. r ↑ K. τ ↑ P. r ↑

RTT-BLEU 15.17 21.76 11.83 19.71
RTT-spBLEU 13.55 18.30 11.49 19.00
RTT-chrF 15.52 21.74 13.57 22.93
RTT-BERTScore 15.70 21.96 25.89 44.10
RTT-ALL 15.90 22.36 26.02 44.33
COMET-QE-DA 32.83 46.91 42.71 64.36

+ RTT-ALL 33.52 47.88 44.23 66.74

Table 7: Comparisons of RTT-SCORE for QE. RTT-
ALL refers to the combination of RTT-BLEU, RTT-
spBLEU and RTT-chrF. COMET-QE-DA + RTT-
ALL incorporates both COMET-QE-DA and all RTT-
SCOREs.

portion of preserved words inside the original con-
text via RTT, while its FT-SCOREs remain low.

In order to mitigate the vulnerability, we first
validate RTT evaluation on WMT2020-News with
A ⟳ B direction. One of the advantages of RTT
is that multiple MT systems could be used to ver-
ify the performance of other systems via checking
the N ×N combinational RTT results from these
N systems, coined X-Check. Finally, we demon-
strate that the predicted automatic evaluation scores
could be further improved via X-Check when ad-
versaries are included.

6.1 Cross-system Validation for Competitions
Given FT MT systems {Fi}Ni=1, BT MT systems
{Bi}Mi=1, and a regression model M on predicting
the target metric, we can estimate the translation
quality of i-th FT system on j-th BT system:

Si,j = fM(Bj(Fi(x)), x),

where S = {Si,j}N×M . The estimated translation
quality of Fi is the average score of the i-th col-
umn,

Si,: =
1

M

M∑

j=1

Si,j .

Note that the same number of FT and BT sys-
tems are considered for simplicity, i.e., N = M .

6.2 Experiments and Analysis

Settings. We conduct experiments on
WMT2020-News similar to Section 4.3.2.
We rank the system-level translation quality via
the regressor trained on RTT-SCOREspBLEU. We
challenge the evaluation paradigm by introducing
some adversarial MT systems, e.g., SMT with
copying mechanism. Specifically, we introduce
basic competition scenarios with 3-5 competitors
to the shared task, and we consider different
numbers of adversarial systems, namely i) no
adversary; ii) one adversarial SMT with word
copy; iii) two adversarial SMT systems with word
copy. We provide details of two SMT systems in
Appendix G.5. The experiments with adversarial
systems are conducted on four language pairs,
cs-en, de-en, en-cs and en-de, as the
corresponding adversarial systems were trained in
Section 3.3.

Discussion. From Table 8, we observe that the
overall system ranking could be severely affected
by the adversarial systems, according to Pearson’s
r and Kendall’s τ . The adversarial systems are
stealthy among normal competitors, according to
Hit@K and Avg. Rank. X-Check evidently suc-
cessfully identifies these adversarial systems in all
our experiments and manages to improve the cor-
relation scores significantly. With the empirical
study, we find that X-Check is able to make RTT
evaluation more robust.

7 Conclusion

This paper revisits the problem of estimating FT
quality using RTT scores. The negative results
from previous literature are essentially caused by
the heavy reliance on the copying mechanism in
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# Sys. Method No Adversary One adversarial SMT Two adversarial SMTs
K. τ ↑ P. r ↑ Hit@1 ↑ Avg. Rank ↓ K. τ ↑ P. r ↑ Hit@2 ↑ Avg. Rank ↓ K. τ ↑ P. r ↑

3 Sing-Check 0.07 0.17 0.50 2.00 0.33 0.51 0.00 4.75 -0.15 -0.30
X-Check 0.47 0.43 1.00 1.00 0.33 0.98 1.00 1.50 0.55 0.98

4 Sing-Check 0.33 0.37 0.25 2.75 0.40 0.39 0.00 5.75 -0.03 -0.33
X-Check 0.57 0.81 1.00 1.00 0.60 0.97 1.00 1.50 0.70 0.98

5 Sing-Check 0.48 0.58 0.25 3.25 0.30 0.25 0.00 6.75 -0.05 -0.40
X-Check 0.42 0.52 1.00 1.00 0.50 0.93 1.00 1.50 0.62 0.92

Table 8: Results of the competition from 3 to 5 honest competitors, with a combination of additional adversarial
competing systems (No Adversary, One adversarial SMT (X = 0.1) w/ copy, Two adversarial SMTs (X = 0.1 and
X = 0.5) w/ copy). We measure the identifiability of the adversarial MT systems by Hit@K, where K is decided
by the number of adversarial systems. We also report the average ranking (Avg. Rank.) of the adversarial systems,
and correlation scores, Kendall’s τ and Pearson’s r.

traditional statistical machine translation systems.
Then, we conduct comprehensive experiments to
show the corrected understanding of RTT benefits
several relevant MT evaluation tasks, such as pre-
dicting FT metrics using RTT scores, enhancing
state-of-the-art QE systems, and filtering out un-
reliable MT competitors in WMT shared tasks. We
believe our work will inspire future research on
reference-free evaluation for low-resource machine
translation.

Limitations

There are several limitations of this work. First,
while we have observed positive correlations be-
tween FT-SCOREs and RTT-SCOREs and con-
ducted experiments to predict FT-SCOREs using
RTT-SCOREs, their relations could be complicated
and non-linear. We encourage future research to
investigate various RTT-SCORE features and more
complex machine learning models for better pre-
diction models. Second, we have examined the
prediction models on low-resource languages in
FLORES-101, but have not tested those very low-
resource languages out of these 101 languages. We
suggest auditing FT-SCORE prediction models on
a small validation dataset for any new low-resource
languages in future applications. Third, our assess-
ment has been systematic and thorough, utilizing
datasets such as FLORES-101, WMT2020-News,
and WMT2020-Bio. Despite this, the nature of our
study is constrained by the timeline of the data uti-
lized. The WMT data we used is from 2020, open-
ing up the possibility that more recently proposed
metrics could potentially outperform the ones pro-
posed in this work.
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jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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A Dataset Construction

Resource Language Scale Usage

High

English -
Spanish 315M
French 289M
German 216M

Portuguese 137M
Russian 127M
Italian 116M

Medium

Dutch 82.4M
Turkish 41.2M
Polish 40.9M

Chinese 37.9M
Romanian 31.9M

Greek 23.7M
Japanese 23.2M

Czech 23.2M
Finnish 15.2M

Bulgarian 10.3M
Lithuanian 6.69M
Estonian 4.82M
Latvian 4.8M
Hindi 3.3M

Javanese 1.49M
Icelandic 1.17M

Low

Tamil 992K
Armenian 977K

Azerbaijani 867K
Kazakh 701K
Urdu 630K

Khmer 398K
Hausa 335K
Pashto 293K

Burmese 283K
Gujarati 160K

Table 9: The statistics of FLORES-AE33. 20 languages
are used in both training and test ( ), the other 13
languages are used in test only ( ).

We provide the statistics of all languages cov-
ered by FLORES-AE33, categorized by different
scales of the resource (high, medium and low) and
usage purpose ( and ) in Table 9. Scale is
counted by the amount of bi-text data to English in
FLORES-101 (Goyal et al., 2022a).

To construct FLORES-AE33, we partition these
33 languages into two sets, i) the languages that

are utilized in training our models ( 7) and ii) the
others are employed used for training the predic-
tors but considered for test purpose only ( ). We
include 20 languages to , with 7 high-resource, 7
medium-resource and 6 low-resource. The rest 13
languages fall into , with 9 medium-resource and
4 low-resource. Combining these two categories of
languages, we obtain three types of language pairs
in FLORES-AE33.

Type I contains pairs of languages in , where
a train set and a test set are collected and utilized
independently. For each language pair, we collect
997 training samples and 1,012 test samples. The
test set of Type II is more challenging than that
of Type I set, where the language pairs in this set
are composed of one language from set and the
other language from set. Type III’s test set is the
most challenging one, as all its language pairs are
derived from languages. Type II and Type III
sets are designed for test purposes, and they will
not be used for training predictors. Overall, Type I,
Type II and Type III sets contain 380, 520 and 156
language pairs, respectively.

B Automatic Evaluation Metrics for
Translation

For BERTScore, Deberta-xlarge-mnli (He et al.,
2021) is used as the backbone pre-trained lan-
guage model, as it is reported to have a sat-
isfactory correlation with human evaluation in
WMT16. While BLEU, spBLEU and chrF are
string-based metrics, BERTScore is model-based.
The selection of these metrics is on the basis that
they should directly reflect the translation qual-
ity. We calculate those scores via open-source
toolboxes, EASYNMT8, SACREBLEU-TOOLKIT9

and BERTSCORE10. We use word-level 4-gram
for BLEU and spBLEU, character-level 6-gram for
chrF, and F1 score for BERTScore by default.

C Machine Translation Systems

Moses SMT. We train five Moses’ (Koehn and
Hoang, 2009) statistical machine translation sys-
tems using different phrase dictionaries by varying
phrase probability threshold from 0.00005 to 0.5.
The higher threshold indicates the smaller phrase

7Both train and test sets of our corpus will have these
languages.

8https://github.com/UKPLab/EasyNMT.
9https://github.com/mjpost/sacrebleu.

10https://github.com/Tiiiger/bert_score.
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table and hence a better chance of processing un-
known words by the corresponding MT systems. In
Table 2, we use Moses with the phrase probability
threshold of 0.4 for SMT.

MBART50-M2M. MBART50-M2M (Tang
et al., 2020) is a multilingual translation model
with many-to-many encoders and decoders. The
model is trained on 50 publicly available language
corpora with English as a pivot language.

M2M-100-BASE & M2M-100-LARGE. These
two models are one of the first non-English-
centric multilingual machine translation systems,
which are trained on 100 languages covering high-
resource to low-resource languages. Different from
MBART50-M2M, M2M-100-BASE and M2M-
100-LARGE (Fan et al., 2021) are trained on paral-
lel multilingual corpora without an explicit center-
ing language.

OPUS-MT. OPUS-MT (Tiedemann and Thottin-
gal, 2020) is a collection of one-to-one machine
translation models which are trained on correspond-
ing parallel data from OPUS using MARIAN-NMT
as backbone (Junczys-Dowmunt et al., 2018). The
collection of MT models supports 186 languages.

GOOGLE-TRANS. GOOGLE-TRANS (Wu et al.,
2016; Bapna et al., 2022) is an online Transla-
tion service provided by Google Translation API,
which supports 133 languages. The system is
frequently involved as a baseline system by WMT
shared tasks (Barrault et al., 2020).

D Quality Estimation Dataset

The direct-assessment (DA) train set contains 33
diverse language pairs and a total of 574,186 tu-
ples with source, hypothesis, reference and direct
assessment z-score. We construct the test set by col-
lecting DA scores on zh-en (82,692 segments) and
en-de (65,045 segments), as two unseen language
pairs.

E Implementation Details

Regressor. We use the linear regression model
tool by Scikit-Learn11 with the default setting
for the API.

11https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LinearRegression.html

MT Systems. We adopt EasyNMT12 for loading
MBART50-M2M, M2M-100-BASE, M2M-100-
LARGE and OPUS-MT for translation.

Computational Resource and Time. In our ex-
periment, we collect the translation results and com-
pute their FT-SCORE and RTT-SCORE on multi-
ple single-GPU servers with Nvidia A40. Overall,
it cost us about three GPU months for collecting
translation results by all the aforementioned MT
systems.

F Measurement

We evaluate the performance of our predictive
model via the following measurements:

Mean Absolute Error (MAE) is used for mea-
suring the average magnitude of the errors in a set
of predictions, indicating the accuracy for continu-
ous variables.

Root Mean Square Error (RMSE) measures
the average magnitude of the error. Compared to
MAE, RMSE gives relatively higher weights to
larger errors.

Pearson’s r correlation (Benesty et al., 2009) is
officially used in WMT to evaluate the agreement be-
tween the automatic evaluation metrics and human
judgment, emphasizing translation consistency. In
our paper, the metric evaluates the agreement be-
tween the predicted automatic evaluation scores
and the ground truth.

Kendall’s τ correlation (Kendall, 1938) is an-
other metric to evaluate the ordinal association be-
tween two measured quantities.

G Supplementary Experiments

G.1 Correlation between FT-SCOREs and
RTT-SCOREs on FLORES-AE33

Settings. We experiment with MBART50-
M2M and M2M-100-BASE on Type I
test set of FLORES-AE33 by comparing
their RTT-SCOREM

A⟳B , RTT-SCOREM
B⟳A

and FT-SCOREM
A→B using multiple transla-

tion metrics M, BLEU, spBLEU, chrF and
BERTScore. We measure their correlations by
computing Pearson’s r (Benesty et al., 2009)
of (RTT-SCOREM

A⟳B, FT-SCOREM
A→B) and

(RTT-SCOREM
B⟳A, FT-SCOREM

A→B). Note that

12https://github.com/UKPLab/EasyNMT
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Figure 4: The first row is the correlations between RTT-SCOREM
A⟳B and FT-SCOREM

A→B on MBART50-M2M
using (a) BLEU, (b) spBLEU, (c) chrF and (d) BERTScore. The second row is the correlations between
RTT-SCOREM

B⟳A and FT-SCOREM
A→B on MBART50-M2M using (e) BLEU, (f) spBLEU, (g) chrF and (h)

BERTScore. All experiments with overall Pearson’s r.
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Figure 5: The first row is the correlations between RTT-SCOREM
A⟳B and FT-SCOREM

A→B on M2M-100-BASE
using (a) BLEU, (b) spBLEU;, (c) chrF and (d) BERTScore. The second row is the correlations between
RTT-SCOREM

B⟳A and FT-SCOREM
A→B on M2M-100-BASE using (e) BLEU, (f) spBLEU, (g) chrF and (h)

BERTScore. All experiments with overall Pearson’s r.

MT System Comparison BLEU spBLEU chrF BERTScore

MBART50-M2M
A → B vs. A ⟳ B 0.78 0.86 0.63 0.53
A → B vs. B ⟳ A 0.94 0.94 0.96 0.88

M2M-100-BASE
A → B vs. A ⟳ B 0.83 0.93 0.87 0.53
A → B vs. B ⟳ A 0.95 0.96 0.96 0.90

Table 10: Pearson’s r between FT-SCOREM
A→B and RTT-SCOREM (both A ⟳ B and B ⟳ A) using different

automatic evaluation metrics M on Type I test set of FLORES-AE33.

our experiment is beyond English-centric, as all
languages are permuted and equally considered.

Discussion. The overall correlation scores are re-
ported in Table 10. Our results indicate at least
moderately positive correlations between all pairs
of RTT-SCOREs and FT-SCOREs. Moreover, we
observe that RTT-SCOREB⟳A is generally more
correlated to FT-SCORE than RTT-SCOREA⟳B ,
leading to strong positive correlation scores. We
attribute the advantage to the fact that TA→B serves

as the last translation step in RTT-SCOREB⟳A.
We visualize more detailed results of correla-
tion between FT-SCOREs and RTT-SCOREs on
Type I language pairs in FLORES-101, in Fig-
ure 4 (MBART50-M2M) and Figure 5 (M2M-100-
BASE).
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MT System Self-Trans Feature Type I Type II Type III
MAE ↓ RMSE ↓ r ↑ MAE ↓ RMSE ↓ r ↑ MAE ↓ RMSE ↓ r ↑

MBART50-M2M

spBLEU (basic model) 2.13 2.99 0.94 1.61 2.19 0.93 1.20 1.38 0.94
+ MAX-4 COUNT 2.01 2.92 0.94 1.54 2.15 0.94 1.12 1.34 0.94
+ REF LENGTH 2.07 2.96 0.94 1.61 2.21 0.93 1.17 1.45 0.94
+ MAX-4 COUNT & REF LENGTH 2.00 2.92 0.94 1.53 2.16 0.94 1.08 1.33 0.95

M2M-100-BASE

spBLEU (basic model) 3.97 5.72 0.96 3.24 4.18 0.96 3.18 3.88 0.95
+ MAX-4 COUNT 2.95 4.00 0.96 2.74 3.67 0.95 2.82 3.62 0.93
+ REF LENGTH 3.61 5.32 0.96 2.93 3.92 0.96 2.90 3.67 0.94
+ MAX-4 COUNT & REF LENGTH 2.95 4.10 0.96 2.71 3.65 0.95 2.79 3.59 0.93

Table 11: The results of using auxiliary features to spBLEU for training predictors. We test the performance of
MBART50-M2M and M2M-100-BASE cross language pairs in Type I, Type II and Type III of FLORES-AE33.

G.2 Improve Prediction Performance Using
More Features

Settings. We introduce two extra features, MAX-
4 COUNT and REF LENGTH,13 to enhance the pre-
diction of spBLEU. MAX-4 COUNT is the count
of the correct 4 grams and REF LENGTH is the
cumulative reference length. We follow a similar
procedure in RQ2, using the same measurements to
evaluate the predictor performance on MBART50-
M2M and M2M-100-BASE across three types of
test sets in FLORES-AE33.

Results. Table 11 shows the results of those mod-
els with additional features. Both features consis-
tently improve our basic models, and the perfor-
mance can be further boosted by incorporating both
features. We believe that more carefully designed
features and regression models could potentially
boost the performance of our predictors.

G.3 WMT2020-News with Synthetic
Competitors

We increase the scale of competitors to
WMT2020-News by introducing pseudo-
competitors. To mimic the number of a
conventional WMT task, we vary 17 forward
translation systems by randomly dropping 0% to
80% (with a step of 5%) tokens from the outputs
of GOOGLE-TRANS. Then, we utilize the vanilla
GOOGLE-TRANS to translate these synthetic
forward translation results back to the source
language. We conduct experiments on de-fr, en-ta
and zh-en, representing those non-En to non-En,
En to non-En and non-En to En language pairs.

The results in Table 12 demonstrate the predic-
tors’ performances on ranking the pseudo competi-
tors on WMT2020-News based on spBLEU fea-

13MAX-4 COUNT and REF LENGTH are “counts”
and “ref_len” in https://github.com/mjpost/
sacrebleu/blob/master/sacrebleu/metrics/
bleu.py.

tures. The overall ranking errors on 17 MT systems
are small on all three selected language pairs.

Langauge Pair MAE ↓ RMSE ↓ K. τ ↑ P. r ↑
de-fr 2.21 2.67 1.00 0.98
en-ta 0.88 0.98 1.00 0.99
zh-en 1.69 2.37 1.00 0.99

Average 1.59 2.01 1.00 0.99

Table 12: Results of prediction and ranking on trans-
lation quality of WMT2020-News synthetic data for
three language pairs.

G.4 Ranking Experiments on WMT2020-Bio
We display the experimental results on
WMT2020-Bio in Table 13. The overall
performance is positive, while it is relatively worse
than the results of WMT2020-News reported
in Table 6. We attribute this to the fact that the
M used on WMT2020-Bio are calculated on
documents, while our regression models rely on
sentence-level translation metrics in training. The
large granularity difference of text may result in a
distribution shift.

G.5 Benign MT systems and Adversarial MT
Systems for X-Check

The selection of the benign systems is:

• 3 Systems: OPUS-MT, M2M-100-LARGE

and MBART50-M2M;

• 4 Systems: OPUS-MT, M2M-100-LARGE,
M2M-100-BASE and MBART50-M2M;

• 5 Systems: GOOGLE-TRANS, OPUS-
MT, M2M-100-LARGE,M2M-100-BASE

and MBART50-M2M.

SMT (X = 0.1). We train the SMT system on
News-Commentary v8 with the max phrase
length of 4 and the phrase table probability thresh-
old of 0.1.
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Langauge Pair B ⟳ A A ⟳ B & B ⟳ A
MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K.τ ↑ P. r ↑

de-en 10.96 11.06 0.80 0.75 10.15 10.21 0.80 0.76
en-de 5.41 5.69 0.80 0.63 5.94 6.06 0.80 0.63
en-es 6.42 7.95 0.80 0.82 6.31 7.42 0.80 0.83
en-fr 4.03 6.27 0.40 0.19 3.68 5.86 0.40 0.20
en-it 6.13 6.92 0.40 0.56 5.94 6.58 0.40 0.57
en-ru 4.16 5.62 0.20 0.46 4.20 5.18 0.20 0.49
en-zh 2.17 2.73 0.20 -0.04 2.21 2.59 0.00 0.02
es-en 6.58 8.17 0.60 0.75 6.23 7.48 0.80 0.79
fr-en 6.12 8.02 0.60 0.66 5.77 7.13 0.60 0.67
it-en 6.33 7.94 0.60 0.50 5.90 7.13 0.60 0.56
ru-en 5.94 8.51 0.40 0.18 5.51 7.81 0.20 0.23
zh-en 5.67 8.15 0.20 0.22 5.18 7.48 0.20 0.23

Average 5.83 7.25 0.50 0.47 5.59 6.74 0.48 0.50

Table 13: Results of our predictors on ranking the selected MT systems on WMT2020-Bio shared tasks.

SMT (X = 0.5). We train the SMT system on
News-Commentary v8 with the max phrase
length of 4 and the phrase table probability thresh-
old of 0.5.

SMT(X = 0.1) tends to copy fewer words than
SMT(X = 0.5), due to the larger phrase table size
filtered by a lower probability threshold.
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