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Abstract

Word embedding methods like word2vec and
GloVe have been shown to learn strong rep-
resentations of words. However, these meth-
ods only learn representations for words in
the training corpus and therefore struggle to
handle unknown and new words, known as
out-of-vocabulary (OOV) words. As a result,
there have been multiple attempts to learn
OOV word representations in a similar fash-
ion to how humans learn new words, using
word roots/subwords and/or surrounding words.
However, while most of these approaches use
advanced architectures like attention on the con-
text of the OOV word, they tend to use sim-
ple structures like ngram addition or character
based convolutional neural networks (CNN)
to handle processing subword information. In
response to this, we propose SubAtt, a trans-
former based OOV estimation model that uses
attention mechanisms on both the context and
the subwords. In addition to attention, we also
show that pretraining subword representations
also leads to improvement in OOV estimation.
We show SubAtt outperforms current state-of-
the-art OOV estimation models.

1 Introduction

Word embeddings are very useful in natural lan-
guage processing tasks. Methods like word2vec
(Mikolov et al., 2013a,b) and GloVe (Pennington
et al., 2014) train strong semantic representations
of words using co-occurrence statistics on a large
text corpus, and have been shown to be effective at
semantically representing text data. However, one
weakness of these methods is that they only learn
representations for words that exist in the train-
ing corpus, and therefore have no representations
on unknown terms, known as out-of-vocabulary
(OOV) words. Contextualized embeddings like
BERT (Devlin et al., 2018) also suffer from weak
performance on rare and unknown words, despite
being able to build a contextualized representation

of them (Schick and Schütze, 2020). Therefore
learning representations for OOV words is an im-
portant endeavour. In this work, we focus on static
embeddings, where a large amount of OOV work
is focused on, and leave contextualized embedding
to future work.

Current approaches combine subword and con-
text information to estimate OOV words. While
these approaches apply attention mechanisms to
aggregate context representations, they tend to do
very little with subword representations. As a re-
sult, this paper proposes SubAtt, a deep neural net-
work attention model that estimates OOV word rep-
resentations using attention layers (Vaswani et al.,
2017) on the subwords in addition to the contexts.
SubAtt also pretrains subword representations, al-
lowing it to learn quality representations before
combining it with context. We show that both pre-
training and applying attention on subwords im-
proves OOV estimates, and show that SubAtt gen-
erally outperforms state-of-the-art OOV estimation
models in both intrinsic and extrinsic tasks.

2 Related Work

There are multiple strategies to estimate OOV em-
beddings. Some OOV strategies use word roots
of the OOV word to estimate OOV embeddings
(Bojanowski et al., 2017; Pinter et al., 2017; Sasaki
et al., 2019) while other methods use the OOV
word’s context (Lazaridou et al., 2017; Horn, 2017;
Herbelot and Baroni, 2017; Arora et al., 2017; Mu
and Viswanath, 2018; Khodak et al., 2018). How-
ever, more recent attempts combine both subwords
and context approaches. Schick and Schütze pro-
pose the Form-Context model (Schick and Schütze,
2019c), which estimates OOV embeddings by com-
bining the sum of ngram embeddings (learned by
the model) with the sum of word embeddings in
the contexts multiplied by a weight matrix (also
learned by the model). This model has been ex-
tended to the Attentive Mimicking model (Schick
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and Schütze, 2019a) which adds an attention mech-
anism to the context calculations. A second com-
bined approach is the attention based hierarchi-
cal context encoder, known as HiCE (Hu et al.,
2019). HiCE is a transformer based model that
leverages the hierarchical structure of contexts, us-
ing a transformer encoder to encode each context
sentence into a sentence embedding, and then us-
ing another transformer encoder to combine each
sentence embedding into a full context embedding.
It estimates subword information using a charac-
ter based convolutional neural network (CNN),
and then combines each piece into a final OOV
embedding. HiCE also adapts its model to the
OOV word’s corpus using Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017). Another ap-
proach, Estimator Vectors (Patel and Domeniconi,
2020), trains its own word embeddings, along with
subword and context embeddings for OOV estima-
tion. BERTRAM (Schick and Schütze, 2019b) ap-
plies an approach similar to the above models, but
for contextualized embedding models like BERT
(Devlin et al., 2018). While these approaches cre-
ate strong estimates for OOV words, they have
some weaknesses. First, although some use at-
tention mechanisms with the context of an OOV
word, none of the aforementioned combined ap-
proaches use attention for processing the OOV’s
subwords1. Secondly, none of the static embed-
ding approaches pretrain their subwords; they learn
these representations at the same time as the whole
model2. Therefore, we propose SubAtt, a model
that uses attention and pretraining on subwords,
leading to stronger OOV estimates.

3 SubAtt

We now present SubAtt, a transformer (Vaswani
et al., 2017) based model for OOV estimation. First,
we describe pretraining the subword representa-
tions in Section 3.1, then how the model encodes
each context sentence in Section 3.2, and finally
how SubAtt combines subword and context infor-
mation in Section 3.3.

1(Sasaki et al., 2019) does use attention on subwords, but
the resulting method is not a combined approach, and therefore
doesn’t show its strength in state-of-the-art settings.

2BERTRAM is the exception to this, as it pretrains sub-
words separately. However, SubAtt is the first to do this on
static embeddings.

3.1 Pretraining Subword Representations

First, SubAtt learns subword representations for the
current set of word embeddings. SubAtt learns em-
beddings for character ngrams of each vocabulary
word. This is accomplished by adding a beginning
and end special token to the word, and then tak-
ing each character subset of that word. We learn
representations using the following formulation:

subwt =
1

|Gwt |
∑

g∈Gwt

zg (1)

where Gwt is the set of character n-grams (the sub-
words) of the word wt, and z is the embedding
of the subwords. Subword representations z are
learned by maximizing the cosine similarity be-
tween subwt and the corresponding word embed-
ding vwt . Once these subword representations are
trained, they are used in the main SubAtt model.
An OOV word is broken down into its character
ngrams, which are then converted to the set of cor-
responding subword embeddings Z.

3.2 Context Encoder

SubAtt encodes sentences using a context encoder
similar to the one in HiCE (Hu et al., 2019). For
each word, an input embedding is built by combin-
ing its word embedding and a position embedding.
The set of input embeddings for context j (denoted
context words Qj) are then inputted into a trans-
former encoder:

Q′
j = Encoder(Qj) (2)

which is then averaged for a final context represen-
tation cj . These representations make up the set of
context embeddings C.

3.3 Full SubAtt Model

SubAtt is composed of a subword half and a context
half. The subword inputs Z are the OOV word’s
ngram subword representations learned in Section
3.1. For the list of contexts, the context repre-
sentations C are calculated using the architecture
described in Section 3.2.

Each type is processed through their own sets
of multi-head self attention encoders3. (Vaswani

3We use different encoders for two reasons; first to avoid
input length impacting one input type’s influence over another,
and secondly to allow different attention calculations to oc-
cur for different types; subword tokens may have a different
relationship with each other compared to context tokens.
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Bio-NER Rare-NER POS AnEM MovieMIT CoNLL 2003
AM 0.6593 0.1042 0.3041 0.2704 0.5135 0.5848
HiCE 0.6758 0.0954 0.4453 0.2812 0.5240 0.6105
HiCE 8 Layer 0.6683 0.0972 0.4338 0.2660 0.5197 0.6141
SubAtt 0.6785 0.0982 0.5098 0.2494 0.5603 0.6306

Table 1: Downstream Tasks - Macro F1 of OOV words. SubAtt outperforms or ties other models in most cases.

et al., 2017):

Zself = Encoder(Z) (3)

Cself = Encoder(C) (4)

Finally, we combined the representations for a fi-
nal estimate of the OOV embedding. Subwords and
contexts can vary in how informative they are to the
OOV word, and so it is important to combine them
in a fashion that weighs each estimate accordingly.
SubAtt uses an adaptive weighting strategy used in
the Form Context Model and Attentive Mimicking
Model (Schick and Schütze, 2019c,a), known as
the gated model. The subword outputs Zself and
context outputs Cself are separately averaged into
ṽsubword and ṽcontext respectively. They are then
combined by a weighted sum:

ṽfinal = αṽsubword + (1− α)ṽcontext (5)

The weight α is calculated as follows:

α = σ(wT [ṽsubword, ṽcontext] + b) (6)

where w and b are learned parameters, and σ is
the sigmoid function. ṽfinal is the final estimate of
the OOV word embedding. SubAtt has eight layers
of self attention for the subword inputs and eight
layers for the context input.

4 Experiments

4.1 Training Corpus and Word Embeddings
The goal of SubAtt is to estimate representations
for OOV words given existing word embeddings.
For the gold standard word embeddings, we use
the embeddings provided by Herbelot and Baroni
(Herbelot and Baroni, 2017), as done in previous
OOV models like (Schick and Schütze, 2019c) and
(Hu et al., 2019). For training models, contexts
are taken from the Westbury Wikipedia Corpus
(WWC) (Shaoul, 2010). We use the version from
(Khodak et al., 2018) with certain words filtered out
for the Contextualized Rare Word Task (see Sec-
tion 4.3). Additionally, as Van Hautte et al. (2019)
note, current OOV evaluation tasks benefit from

words of the same stem in the training set, even if
the original word is filtered out. To combat this, we
filter out all words that share a stem with words in
the Contextualized Rare Words task similar to the
approach in (Van Hautte et al., 2019). The filtered
WWC was preprocessed using the preprocessing
script provided by Schick and Schütze (2019c), cre-
ating a set of words to learn along with context
sentences those words appear in. All models are
trained using subword and context input from this
dataset, by comparing the model’s predicted em-
bedding with its gold standard embedding.

4.2 Baselines and Hyperparameters

We now demonstrate the effectiveness of SubAtt.4

We compare it to Attentive Mimicking5 (AM) and
HiCE6, as they are OOV models that use both sub-
words and context on existing static word embed-
dings. Two versions of HiCE are examined; the
default with a 2 layer context aggregator, and a
version with 8 layers to be more comparable to
SubAtt. Also, we do not use MAML in the HiCE
experiments, in order to focus on how the architec-
ture adapts to multiple OOV tasks. The dataset and
vocab are split into a training and validation set for
hyperparameter tuning (discussed in more detail in
Appendix A).

Ten final trials of each model are trained and
then each model is evaluated on various OOV tasks.
The results are tested for statistical significance
using a one-way ANOVA with a post-hoc Tukey
HSD test with a p-value threshold equal to 0.05.
The best score is presented in bold, along with any
scores that are not significantly different from the
best.

4.3 Tasks

We now evaluate SubAtt on various OOV tasks. We
focus on OOV tasks in English, matching previ-
ous work. As SubAtt mixes both subwords and

4https://github.com/rajicon/SubAtt
5https://github.com/timoschick/form-context-model
6https://github.com/acbull/HiCE
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Figure 1: CRW Task

contexts, we select OOV tasks that build OOV rep-
resentations using both information types.

Contextualized Rare Word Task For intrinsic
analysis, we apply the Contextualized Rare Word
task (CRW) (Khodak et al., 2018). CRW is built
off the Rare Word dataset (Luong et al., 2013),
which is a list of rare words paired with other words,
along with human similarity scores. Khodak et al.
(2018) added contexts to this set, allowing for OOV
words to be estimated using both subwords and
context. The goal is to output an OOV embedding,
compare it to the other words, and evaluate the
scores’ correlation with human judgements. CRW
has a large range of context sizes, from 1 to 128,
so the quality and informativeness of the context
can vary wildly. However, the words gathered for
the Rare Word set have intentionally informative
word roots, and therefore we expect subwords to
be fairly informative.

The results of the CRW task are shown in Fig-
ure 1. SubAtt significantly outperforms all com-
petitors in all contexts, showing its effectiveness
as an OOV estimator. This shows the strength of
pretrained subwords and subword attention.

Downstream Tasks We now demonstrate the
strong performance of SubAtt embeddings extrin-
sically, using downstream tasks. In order to fo-
cus on OOV words specifically, we choose down-
stream tasks that output word level labels; specifi-
cally named entity recognition and parts-of-speech
tagging. For each of these tasks, we train a Bi-
LSTM-CRF (Lample et al., 2016), an approach
similar to the one in (Hu et al., 2019). The input
to these models are normal word embeddings for
words in our vocabulary (ones used in training and
validation of the original OOV models), and each
model’s OOV estimates for unknown words.7 For

7OOV words with invalid subwords (no existing character
ngrams or no CharCNN characters) are assigned a zero vector.
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Figure 2: CRW Task - SubAtt Ablation

each dataset, the Bi-LSTM-CRF is trained for 30
epochs 10 times, with the best epoch selected us-
ing a validation set each time. This approach is
applied to each of the 10 trials of each OOV model.
As our focus is estimating OOV words, we report
the average test macro F1 score of the OOV words
specifically. We also report the results for all words
in Appendix B.

We test on 5 named entity recognition tasks: the
JNLPBA 2004 Bio-entity recognition dataset (Bio-
NER) (Kim et al., 2004), the Rare-NER dataset
(Derczynski et al., 2017), the CoNLL 2003 NER
dataset (Sang and De Meulder, 2003), AnEM (an
anatomy NER dataset) (Ohta et al., 2012), and
MovieMIT, a movie querying dataset (Liu et al.,
2013). In addition, we test on a parts-of-speech tag-
ging dataset, specifically the Twitter social media
POS task (Ritter et al., 2011).

The Downstream Task results are shown in Table
1. SubAtt generally outperforms the competitors,
strictly winning in 3 of the 6 tasks, and tying for
best in one more task, and achieving the second
best score in another task. This demonstrates Sub-
Att’s robust and strong performance on OOV words
in downstream tasks.

Ablation Analysis We now conduct an ablation
study on SubAtt in order to demonstrate the impact
of the pretraining compared to attention. To this
end, we repeat the previous experiments on four
variants of SubAtt; the original model, the model
without attention (SubAtt No Att), the model with-
out pretrained subwords (SubAtt No Pre), and the
model without both (SubAtt No Pre No Att). The
results are shown in Figure 2 and Table 2.

In the CRW Ablation study, SubAtt outperforms
the other models. especially in smaller context
sizes. This gap closes as the size of contexts in-
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Bio-NER Rare-NER POS AnEM MovieMIT CoNLL 2003
SubAtt No Pre No Att 0.6503 0.0747 0.3754 0.1904 0.5129 0.5783
SubAtt No Pre 0.6662 0.0940 0.4813 0.2091 0.5336 0.6081
SubAtt No Att 0.6721 0.0898 0.4619 0.2311 0.5326 0.6018
SubAtt 0.6785 0.0982 0.5098 0.2494 0.5603 0.6306

Table 2: Downstream Tasks - Macro F1 of OOV words. SubAtt outperforms or ties other models in most cases.

creases8. This makes sense, as the influence of
subwords decreases as our model gains more and
more context information, which in turn lowers the
impact of the pretraining and attention on subwords
in general. Similarly, SubAtt performs strongly in
the Downstream Ablation, performing the best or
tied for the best in all six tasks. The results also
demonstrate that pretraining and subword attention
individually have a high impact on results, and both
combined leads to an even stronger improvement.

5 Conclusion

We propose SubAtt, an attention based model that
estimates OOV words by using pretrained sub-
word embeddings and subword attention. We
show through various experiments that this model
estimates more accurate representations of OOV
words.

6 Limitations

One limitation of this work is the lack of diversity
in the downstream tasks. In our experiments, five
of the tasks are named entity recognition and one
is a parts-of-speech task. As OOV words make
up a small portion of a sentence in the text for our
downstream tasks, (the number of OOV words with
valid characters ranges from 3% to 12%), analyz-
ing the impact of higher quality OOV estimates is
not trivial. For example, in document classifica-
tion, the predictions depend on each word in the
document, and thus the evaluation of OOV esti-
mation will not just be based on the quality of the
OOV embeddings, but also on their effect on the
result compared to known embeddings. This makes
assessing OOV estimation quality more challeng-
ing. As such, it is better to focus on tasks with
word level output, so the quality of the OOV esti-
mates can be directly judged. However, this limits
the types of downstream tasks being analyzed. A
second limitation is the fact that all tasks use the
English language. As subword impact is depen-
dent on the morphology of a language, the contri-

8For easier comparison, we report the actual values of the
CRW Ablation in Appendix C.

butions of subword pretraining and attention will
vary with the language. However, previous OOV
works evaluate on English tasks, and as a result for
comparison this paper does the same.
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A Hyperparameter Selection and
Implementation

For the competitors, we use the implementations
from the original authors. Attentive Mimicking
was implemented in Tensorflow (Abadi et al.,
2015), while HiCE, SubAtt, and the Downstream
Bi-LSTM-CRF were implemented and trained us-
ing Pytorch (Paszke et al., 2019). SubAtt uses trans-
former code implemented in the HiCE (Hu et al.,
2019) code.

All model (SubAtt and competitors) hyperparam-
eters were determined using Grid Search, between
learning rates 0.00001, 0.0001, 0.001, 0.01, and
subword dropout probabilities from 0.0 to 90.0, in-
cremented every 10.0. The hyperparameters with
the best validation loss were chosen.

For training, we use the Adam optimizer and
train each model for 30 epochs, saving each epoch
and picking the model with the best validation loss.
The training size was around 300,000 and the vali-
dation size was around 78,000 (there is some vari-
ance in how many examples are generated).

B Downstream Task Full Results

The results of the Downstream Tasks for all words
(not just the OOV ones) are reported in Table 3.
In addition, the Ablation Downstream results are
shown in Table 4. These results are a lot closer,
which is to be expected, as most words are not
OOV and therefore use the standard embeddings.
Despite being close, SubAtt still performs the best
or ties for the best in all tasks. We also emphasize
that although OOV improvement does not make a

huge difference in the overall results, it is important
to note that looking at overall averages may not be
the best way to measure impact, as OOV/unknown
words tend to be more important to the meaning
of a sentence, as domain specific terms or proper
nouns are often OOV words. This is especially true
in problems like Named Entity Recognition.

C Ablation CRW Values

For clarity, in Table 5 we report the numerical val-
ues corresponding to the plots given in Figure 2.
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Bio-NER Rare-NER POS AnEM MovieMIT CoNLL 2003
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SubAtt 0.7379 0.1890 0.6447 0.4286 0.6595 0.5405

Table 3: Downstream Tasks - Macro F1 scores of All Words in Task

Bio-NER Rare-NER POS AnEM MovieMIT CoNLL 2003
SubAtt No Pre No Att 0.7269 0.1859 0.6326 0.4169 0.6419 0.5365
SubAtt No Pre 0.7323 0.1913 0.6325 0.4182 0.6462 0.5379
SubAtt No Att 0.7368 0.1880 0.6477 0.4263 0.6509 0.5363
SubAtt 0.7379 0.1890 0.6447 0.4286 0.6595 0.5405

Table 4: Downstream Tasks - Macro F1 scores of All Words in Task

1 2 4 8 16 32 64 128
SubAtt No Pre No Att 0.1880 0.2559 0.3297 0.3919 0.4291 0.4514 0.4617 0.4691
SubAtt No Pre 0.2943 0.3275 0.3642 0.4042 0.4312 0.4490 0.4575 0.4632
SubAtt No Att 0.2959 0.3360 0.3762 0.4133 0.4383 0.4552 0.4632 0.4696
SubAtt 0.3366 0.3655 0.3943 0.4256 0.4462 0.4609 0.4673 0.4719

Table 5: CRW Ablation

3599



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The data set used was publicly available, and intended for evaluation.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The text data does not contain personal information. It is built out of available, general text.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
Left blank.

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In terms of GPU hours and computing infrastructure, the implementations of competitors varied,
and so it would hard to include a "fair" comparison.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3600

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix A.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

3601


