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Abstract

We present a framework called G3R for com-
plex and cross-domain Text-to-SQL genera-
tion. G3R aims to address two limitations of
current approaches: (1) The structure of the ab-
stract syntax tree (AST) is not fully explored
during the decoding process which is cru-
cial for complex SQL generation; (2) Domain
knowledge is not incorporated to enhance their
ability to generalise to unseen domains. G3R
consists of a graph-guided SQL generator and
a knowledge-enhanced re-ranking mechanism.
Firstly, during the decoding process, an AST-
Grammar bipartite graph is constructed for
joint modelling the AST and corresponding
grammar rules of the generated partial SQL
query. The graph-guided SQL generator cap-
tures its structural information and fuses het-
erogeneous information to predict the action
sequence, which can uniquely construct the
AST for the corresponding SQL query. Then,
in the inference stage, a knowledge-enhanced
re-ranking mechanism is proposed to intro-
duce domain knowledge to re-rank candidate
SQL queries from the beam output and choose
the final answer. The SQL re-ranker is based
on a pre-trained language model (PLM) and
contrastive learning with hybrid prompt tun-
ing is incorporated to stimulate the knowledge
of the PLM and make it more discriminative.
The proposed approach achieves state-of-the-
art results on the Spider and Spider-DK bench-
marks, which are challenging complex and
cross-domain benchmarks for Text-to-SQL se-
mantic analysis.

1 Introduction

Complex and cross-domain Text-to-SQL genera-
tion aims to translate natural language utterances
into structurally complex SQL queries, where no
database overlaps in training and testing. The chal-
lenges mainly lie in two aspects: (1) Zero-shot
cross-domain setting, databases are not overlapped
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NL: How many flights arrive at Luton Airport?
SQL: ... WHERE flights.TargetAirport = “Luton Airport”
NL: List the name of all players in the order of

their date of birth from the oldest to the youngest.
SQL: ... ORDER BY players.birth_date ASC.

Table 1: Two samples that require domain knowledge
to generate correct SQL queries, where the text reflect-
ing domain knowledge is bolded.

between training and test sets and belong to differ-
ent domains. A domain represents a certain type of
application scenario, e.g. medical and geographical.
It is difficult for approaches to understand domain
knowledge properly (Gan et al., 2021a) and gen-
eralise well to unseen databases. (2) Complexity,
SQL queries involving multiple tables, containing
nested queries and clauses such as GROUPBY and
HAVING, are more complex in their structure.

Recently, various works have been proposed for
complex and cross-domain Text-to-SQL genera-
tion based on the encoder-decoder paradigm. In or-
der to improve generalizability to unseen database
schemas, many approaches focus on the encoder
part. Graph-based approaches (Cao et al., 2021;
Wang et al., 2020a) have been proposed for jointly
encoding the natural language utterance and rela-
tional structure of the database schema, thereby
capturing the semantic relationships between them.
For generating complex SQL queries, most de-
coding approaches (Cao et al., 2021; Guo et al.,
2019; Wang et al., 2020a) pre-define abstract syn-
tax description language (ASDL) rules and au-
toregressively generate the SQL query as an AST.
Specifically, an AST is produced progressively in
a pre-order depth-first traversal order based on a
sequence of actions. In this way, the skeleton of
complex SQL queries can be generated flexibly.

Despite much progress on complex and cross-
domain Text-to-SQL generation, there are still two
limitations. Firstly, The structure of AST is not
fully explored during the decoding process which
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is crucial for generating complex SQL queries cor-
rectly. They predict the next action only based on
the previous action sequence, without considering
the structural information of the AST and how it
changes dynamically. In addition, domain knowl-
edge required by different domains is not incorpo-
rated, which results in the model not being well
generalised to new domains. As shown in Table 1,
for the first sample, “target airport” does not appear
in the utterance and the model needs to understand
that “Arriving at Luton Airport” means “Luton Air-
port” is the target airport for generating the correct
SQL query. For the second sample, players should
be listed in ascending order of birth, as the younger
the birth date, the older the age. If the requirement
is changed to “the ages of all players are listed”,
then it should be in descending order. (Gan et al.,
2021b) has pointed out that understanding domain
knowledge is crucial for cross-domain Text-to-SQL
generalization.

To address the aforementioned limitations, this
paper proposes a Graph-Guided Generate-and-
Rerank Framework (G3R) for complex and cross-
domain Text-to-SQL generation. It consists of
a graph-guided SQL generator and a knowledge-
enhanced re-ranking mechanism. To make better
use of the structural information of AST, we con-
struct an AST-Grammar bipartite graph for both
the AST and grammar rules of the generated par-
tial SQL query. A graph-guided SQL generator is
proposed to capture structural changes of the bipar-
tite graph dynamically and fuse the heterogeneous
information from the encoder to predict the action
sequence.

Furthermore, we try to improve generalizabil-
ity to unseen domains from a different perspective,
by introducing a knowledge-enhanced re-ranking
mechanism to choose the best SQL query from
the beam output in the inference stage. PLM is
adopted as an SQL re-ranker and hybrid prompt
tuning is adopted to make the re-ranking task simi-
lar to language modelling, stimulating the knowl-
edge in PLMs to bridge the gap between different
domains. In addition, sometimes the differences
between candidate SQL queries are subtle and con-
trastive learning is adopted to push away the dis-
tance of candidate queries’ representations and thus
make them more distinguishable.

In summary, the main contributions of this paper
are listed as follows:

• A Graph-Guided Generate-and-Rerank

Framework (G3R) is proposed for complex
and cross-domain Text-to-SQL generation.
An AST-Grammar bipartite graph is con-
structed to model the AST and grammar rules
of the generated partial SQL query jointly
and a novel graph-guided SQL generator is
proposed to capture the structural information
and fuse heterogeneous information to
generate the SQL query.

• A knowledge-enhanced re-ranking mecha-
nism is proposed to introduce domain knowl-
edge to choose the best SQL query from the
beam output. PLM is adopted as an SQL re-
ranker and contrastive learning with hybrid
prompt tuning is incorporated to stimulate the
knowledge of PLMs and make it more dis-
criminative. As far as we know, we are the
first to leverage the abundant knowledge of
PLMs to re-rank SQL queries to mitigate per-
formance degradation in unseen domains.

• Comprehensive experiments were conducted
on Spider and Spider-DK. The results show
that the proposed approach achieves superior-
ity over some state-of-art approaches.

2 Related work

Our work is related to two lines of research, com-
plex and cross-domain Text-to-SQL generation and
prompt tuning.

2.1 Complex and cross-domain Text-to-SQL
generation

In order to improve cross-domain generalizability,
many approaches focus on the encoder part. (Bo-
gin et al., 2019a) adopts a graph neural network
(GNN) to deal with the graph structure of database
schema. (Cao et al., 2021; Wang et al., 2020a) con-
struct a heterogeneous graph for jointly encoding
natural language utterances and relational structure
in the database schema so that the network can gen-
eralise to unseen database schemas. In contrast,
our proposed approach tackles this problem from a
different perspective, by exploring the knowledge
of PLMs and re-ranking candidate SQL queries.

Most decoding approaches for complex and
cross-domain Text-to-SQL generation (Brunner
and Stockinger, 2021; Wang et al., 2020a; Guo
et al., 2019) consider the ASDL rules as the prior
knowledge and adopt a syntax-based SQL gener-
ator (Yin and Neubig, 2017) to output a sequence
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of actions based on a pre-defined fixed set of gram-
mar rules. Then an abstract syntactic tree (AST)
corresponding to the target SQL query is uniquely
constructed in pre-order depth-first traversal order.
However, they cast SQL generation into sequence-
to-sequence translation and ignore the structural in-
formation of AST and how it dynamically changes
during the decoding process.

2.2 Prompt Tuning

Fine-tuning PLMs with task-specific heads has
been widely applied to natural language processing
and achieved great success in many downstream
tasks (Radford et al., 2019; Zhou et al., 2021). How-
ever, the abundant knowledge in PLMs is not fully
exploited because there is a big gap between the
fine-tuning objectives and pre-training objectives.
Subsequently, GPT-3 (Brown et al., 2020) proposed
prompt tuning for downstream tasks. It is a new
paradigm that adopts natural language prompts to
make downstream tasks similar to language mod-
elling and does not require the addition of model
parameters.

A number of works defined hard templates man-
ually where each token is meaningful and under-
standable (Schick and Schütze, 2021; Gu et al.,
2022) and some approaches generated hard tem-
plates automatically (Gao et al., 2021; Shin et al.,
2020). However, there is no need to limit templates
to be human-interpretable because the aim is to find
a way to enable PLMs to perform downstream tasks
effectively. Soft prompts (Wu and Shi, 2022; Lester
et al., 2021) have been proposed and the tokens (i.e.
virtual tokens) in the template are continuous vec-
tors which can be learnt during the tuning stage. In
addition, (Han et al., 2022) proposed to insert some
tunable embeddings into a hard prompt template
which is called “Hybrid Prompt Tuning”.

3 Preliminaries

Autoregressive top-down SQL generation In
this paper, we tackle the SQL generation problem
by generating the AST through syntax-based au-
toregressive top-down decoding (Yin and Neubig,
2017; Krishnamurthy et al., 2017; Rabinovich et al.,
2017; Yin and Neubig, 2018), which guarantees to
decode of syntactically valid SQL queries. The gen-
eration process is considered to be the sequential
application of actions. We define three actions in-
cluding ApplyRule, SelectTable and SelectColumn.
The ApplyRule action applies a grammar rule to

R1:    sql → sql_unit

R2: sql_unit → (from, select)

sql

R1

sql_unit

R2

from select

AST node

Grammar rule node

Figure 1: An example of the AST-Grammar Bipartite
graph. The nodes in the dashed box represent the new
nodes and edges generated after the “sql_unit” node is
expanded using grammar rule 2.

expand a non-terminal node in the AST, while the
SelectTable and SelectColumn actions populate a
terminal node by appending a table or a column
name from the database schema.

In AST, non-terminal nodes sketch the general
structure of the target SQL query, while terminal
nodes correspond to operations, constants and vari-
ables. The decoding process does not end until all
leaf nodes are terminal nodes and the SQL genera-
tion is regarded as a sequence generation problem.

Problem Setting Given a natural language ques-
tion Q = {w1, w2, ..., wn} and a corresponding
database schema S = 〈C, T 〉, the goal is to
generate an action sequence â, which can con-
struct an AST and deterministically be converted
to a SQL query y. Here the database schema S
consists of tables T = {t1, t2, ..., t|T |}, columns
C = {c1, c2, ..., c|C|} and a set of foreign key,
primary key column pairs describing relations be-
tween columns.

AST-Grammar Bipartite Graph A bipartite
graph is a simple graph where the graph vertices
are decomposed into two disjoint sets such that
no two graph vertices within the same set are ad-
jacent. In order to represent the structure of the
partial AST and grammar rules that have been gen-
erated, we design an AST-Grammar Bipartite graph
G =

〈
Vast, E ,Vg

〉
. Vg is the set of grammar rule

nodes and Vast is the set of AST nodes, which
refers to the head and child nodes of all grammar
rule nodes. E is the set of edges. A grammar
rule node is considered an intermediate node be-
tween its head and child AST nodes, so a gram-
mar rule node is only adjacent to AST nodes and
vice versa. As shown in Figure 1, the grammar
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Figure 2: Overview of the architecture of the proposed G3R framework and the process of generating action
sequences and re-ranking SQL queries in the inference stage. The graph-guided SQL generator is in the left part
of the figure, and the SQL re-ranker is in the right part of the figure. The blue and orange boxes represent two
different action sequences in the beam and the maximum length of the sequence is t.

rule “2 : sql_unit → (from, select)” is composed
of one head AST node “sql_unit” and two child
AST nodes “from” and “select”. When a gram-
mar rule is generated, the graph will be expanded.
The dashed box in Figure 1 represents the nodes
and edges generated after the ‘sql_unit’ node is ex-
panded using the grammar rule 2. In the beginning,
the graph has only one root AST node “sql”. As the
actions are generated, this graph gradually expands
until the SQL is completely generated.

The AST-grammar bipartite graph jointly models
the generated partial AST and the corresponding
grammar rules. After graph representation learning,
the representation of a grammar rule node contains
not only the structural information of the AST, but
also more fine-grained information from its sur-
rounding AST nodes. Each AST node represents a
construct occurring in the SQL query and can guide
future SQL generation. For example, the AST node
“from” in Figure 1 means that the subtree with it
as the root node is the from clause of the SQL
query. Therefore, the next grammar rules generated
should be used to create the from clause. For exist-
ing grammar rule embedding approaches in code
generation, Grape (Zhu et al., 2022) creates a gram-
mar relation graph that only includes grammar rule
nodes, TreeGen (Sun et al., 2020a) enhances gram-
mar rules by adding position and depth embedding
and uses Tree Convolution to incorporate informa-
tion from their ancestors, GrammarCNN (Sun et al.,
2019) adopts three CNNs to capture the local fea-

ture of an AST node, features of AST sequences
and tree paths. However, They considered either
the structure of AST or the relationship between
grammar rules rather than modelling them jointly.

4 Method

4.1 Graph-Guided SQL Generator

As mentioned above, existing SQL generators lack
the ability to capture the structure of AST. We pro-
pose a graph-guided SQL generator based on the
Encoder-Decoder framework to solve this problem.
The architecture of the proposed graph-guided SQL
generator is shown in the left part of Figure 2.

We leverage LGESQL (Cao et al., 2021) (Please
refer to the Appendix A.1 for further details) en-
coder to embed the question and database schema
items into joint representations W = [w1, ...,wn],
T = [t1, ..., t|T |], C = [c1, ..., c|C|] for each
question token wi ∈ Q, table ti ∈ T , and col-
umn ci ∈ C respectively. Considering a generated
partial action sequence â′ = {a1, .., at−1} and the
corresponding AST-Grammar Bipartite graph Gbt−1,
the graph-guided SQL generator aims to learn the
structural information of Gbt−1 and fuse multiple
heterogeneous inputs to predict the next action at.
It consists of two parts: (1) Bipartite Graph Reader,
graph attention network (GAT) (Veličković et al.,
2017) is adopted to learn the node representation of
Gbt−1; (2) SQL Decoder, a neural network which is
similar to the decoder of Transformer is proposed
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to fuse heterogeneous input and predict the next
action.

Bipartite Graph Reader In the decoding pro-
cess, the AST-Grammar Bipartite graph will be
expanded gradually. As the graph structure will
change dynamically, we apply GAT which employs
multi-head attention for graph representation learn-
ing.

For the graph Gbt−1 that containsm grammar rule
nodes and h AST nodes, it has a node list N =
{ng1, ..., ngm, nast1 , ..., nasth }. Grammar rules and
AST elements are represented as trainable embed-
ding matrices Xg ∈ R|V g |×k, Xast ∈ R|V ast|×k

where |V g|, |V ast| are the sizes of grammar rule
dict and AST element dict respectively. k is the di-
mension of the embedding vector. We initialize the
representation of each node by looking up the table.
For the special AST node ‘tab_id’ and ‘col_id’,
which can generate tables and columns, we ini-
tialize it using the corresponding representation
from the encoder. In this way, we have node initial
embeddings X = [xg

1, ...,x
g
m,x

ast
1 , ...,xast

h ] ∈
R(m+h)×k. Then we use the GAT network to ob-
tain the final hidden vectors of grammar rule nodes
Hg = [hg

1, ...,h
g
m] ∈ Rm×k that incorporate the

structural information of AST.

SQL Decoder The SQL decoder considers het-
erogeneous information, including the question Q,
database schema S, generated actions â′ and the
structure of Gbt−1 to predict the next action at. The
neural structure of the SQL decoder is similar to
the decoder of Transformer (Vaswani et al., 2017)
because it can help alleviate long-dependency prob-
lem (Sun et al., 2020b). It is composed of a stack
of blocks (N blocks in total), and each block con-
tains three sub-layers (namely, the self-attention
sub-layer, the encoder attention sub-layer and the
feed-forward sub-layer). The residual connection
and layer normalization are incorporated into each
sub-layer. The input of the SQL decoder is Hg.

Encoder Attention Sub-layer The main dif-
ference with the decoder of Transformer is in the
encoder attention sub-layer. The decoder should
be aware of the question and the database schema
when predicting an action. The encoder attention
sub-layer adopts multi-head attention to incorpo-
rate the information from the encoding stage in a
way similar to the decoder’s attention to the en-
coder in Transformer (Vaswani et al., 2017). Con-
cretely speaking, we concatenate the representa-

tions of the questions with the representations of
the database schema items E = [W ,T ,C] which
are considered as key, value of the multi-head at-
tention layer.

Action Prediction The final representation H ∈
Rm×k is obtained through the stack of the blocks.
We apply self attention to construct a representation
Hr ∈ Rk for ApplyRule action:

Ar = softmax(tanh(WrH)) (1)

Hr = ArH (2)

where Wr is a parameter. Ht ∈ Rk and Hc ∈ Rk

are constructed for SelectTable and SelectColumn
action in the same way.

For ApplyRule Action, the probability distribu-
tion Pr over the grammar rule space is calculated
as follows:

Pr = softmax(tanh(WsHr)) (3)

Where Ws is a weight parameter of the fully con-
nected layer mapping Hr to the grammar rule
space.

For the SelectTable action (SelectColumn ac-
tion), we apply multi-head attention to calculate
the similarity matrix At ∈ R|T | where the query is
Ht, key and value are T . Then softmax activation
function is applied to calculate the probability for
all tables Pt ∈ R|T |:

Pt = softmax(At) (4)

The decoding process of generating a SQL query
is shown in Algorithm 1. The model is optimized
by minimizing the negative log-likelihood Lg of
the ground truth action sequence:

Lg = −
N∑

i=0

log

Ni∏

j=1

p(aj |a<j , Q, S) (5)

Where N denotes the number of samples in the
training set and Ni represents the length of the
action sequence for the i-th sample.

4.2 Knowledge-Enhanced Re-ranking
Mechanism with contrastive soft prompt
tuning

In the inference stage, we applied the beam search
decoding method which keeps M locally best can-
didates from the decoder output and generates the
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M most likely candidate action sequences. How-
ever, top-1 prediction does not necessarily corre-
spond to the best SQL query and (Kelkar et al.,
2020) first introduced a re-ranking algorithm on
complex Text-to-SQL generation and the re-ranker
is based on BERT (Devlin et al., 2019) with a linear
classification layer. The improvement of their pro-
posed re-ranking algorithm is unstable and highly
dependent on a threshold. And at certain threshold
settings, it even has a negative effect. The rea-
son is they don’t explore the knowledge of PLM
sufficiently. (Hui et al., 2021) proposed a feature-
enhanced re-ranker which is also based on PLM
with a linear layer. In order to introduce domain
knowledge, we propose a knowledge-enhanced re-
ranking mechanism. The SQL re-ranker is based
on a PLM and hybrid prompt tuning is adopted
to explore the knowledge in PLMs to bridge the
gap between different domains without introducing
extra parameters. Contrastive learning is applied
to push away distances of candidate queries’ repre-
sentations so that they are more distinguishable.

Hybrid prompt tuning PLM is adopted as the
SQL re-ranker and the template T is designed by
inserting some tunable embeddings into a hard
prompt:

{E([BES]), V, E(“it”), E(“is”), E([mask]),

E(Q), E(y), E([SEP])} (6)

Where V = [v1, ..., vx] is a learnable virtual tem-
plate word and x is the length. Q and y represent
the question and query respectively. The scoring
task can be formalized as a binary classification
task and transformed into a cloze-style objective
form, by predicting the masked position and map-
ping the predicted words to the corresponding class
labels. The label word set is defined as {“bad”,
“great”} and we can determine whether the candi-
date query is the selected answer or not based on
the PLM predicting “great” or “bad” at the mask
position. The probability distribution P ∈ R2 over
label space is calculated as follows:

Hv = MLMhead(T,Q, y) (7)

P = softmax(Hv(“bad”), Hv(“great”)) (8)

Contrastive Learning The differences between
the candidate queries sometimes are subtle, result-
ing in undifferentiated representations of the mask

position and similar scores for different queries.
We introduce contrastive learning to push away
the representation of each candidate query, thus
making them more distinguishable.

Given a question Q and all its candidate queries
Y = {y1, ..., yM}, we construct inputs I =
{iy11 , iy12 , ..., iyM1 , iyM2 } for SQL re-ranker by using
two different prompt template T1 and T2 where V1
and V2 are distinct and randomly initialised. For
a query yi, the inputs iyi1 and iyi2 constructed from
two templates form a positive pair while negative
pairs are formed with other 2(M−1) inputs. All in-
puts I for Q are in a mini-batch and the contrastive
learning loss (Oord et al., 2018; Chen et al., 2020)
Lcl is calculated as follows :

Lcl = −log
2M∑

i=1

exp(sim(zi, z+)/τ)

exp(
∑2M

j=1 1[j 6=i]sim(zi, zj)/τ)
(9)

where zi, z+ represent the hidden states of the
PLM output at the mask position of the i-th sample
and its corresponding positive sample respectively.
1[j 6=i] ∈ {0, 1} is a indicator function evaluating to
1 iff i 6= j. sim(·) is the cosine similarity function
and τ is a temperature hyper-parameter that con-
trols the sensitivity of the product. Further more,
we introduce a margin loss Ld to constrain the two
templates to be different:

Ld = max(0, cos(V1, V2)− d) (10)

where cos(·) is the cosine similarity and d is a
hyperparameter. Cross-entropy loss Lce is adopted
as the loss function for SQL re-ranker following
the same way as (Nam et al., 2014):

Lce =−
NQ×2M∑

i=1

2∑

j=1

(yij log(P j
i ))

+ (1− yij)(1− log(P j
i ))

(11)

where NQ represents the number of questions. The
total loss function Lr for SQL re-ranker is the sum
of the three loss functions:

Lr = Lce + λ1Lcl + λ2Ld (12)

where λ1 and λ2 are hyperparameters. In order to
fine-tune the SQL re-ranker, we construct a training
(dev) set containing abundant positive and negative
samples. For the training (dev) set, positive sam-
ples are the ground truth, while negative samples
are the wrong samples generated by the SQL gen-
erator on the training (dev) set.
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Knowledge-Enhanced Re-Ranking Mechanism
For each query yi ∈ Y , the log probability of a
positive label output by the SQL re-ranker is con-
sidered to be the semantic score. Two scores sT1

i ,
sT2
i can be obtained by using two templates. We

take into account the log-likelihood sgi of its cor-
responding action sequence produced by the SQL
generator and get the final score si:

si = sgi +
sT1
i + sT2

i

2
(13)

The candidate query with the highest score is con-
sidered the final result. The proposed SQL re-
ranker and knowledge-enhanced re-ranking mecha-
nism are general and model agnostic which can be
applied to any Text-to-SQL approach.

5 Experiments

5.1 Dataset

In order to evaluate the proposed Graph-Guided
Generate-and-Rerank framework, we conduct ex-
periments on Spider (Yu et al., 2018) and Spider-
DK (Gan et al., 2021b).

Spider It is a large-scale complex and cross-
domain Text-to-SQL generation dataset1. There
are 8659 samples in the training set across 146
databases and 1034 samples in the development set
across 20 databases distinct from those in the train-
ing set. The test set is not public and can only be
accessed through an evaluation server, we evaluate
the proposed approach mainly on the development
set.

Spider-DK It is a human-curated dataset based
on the dev set of Spider 2. The questions of the
dataset are selected from Spider with some domain
knowledge added. It focuses on evaluating the
ability to understand domain knowledge.

5.2 Implementations

For the Graph-Guided SQL generator, we use
GLOVE (Pennington et al., 2014) word embed-
dings of size 300 and ELECTRA (Clark et al.,
2020) to encode the input question and the database
schema, followed by 8 LGESQL encoder layers.
The number of GAT layers is 2 and the number
of parameters is about 385M (With ELECTRA).
The whole model is trained by the Adam optimizer

1Spider: https://yale-lily.github.io//spider.
2Spider-DK: https://github.com/ygan/Spider-DK

Model Dev Test

Without PLM

EditSQL (Zhang et al., 2019) 36.4 32.9
Global-GNN (Bogin et al., 2019b) 52.7 47.4
IRNet (Guo et al., 2019) 53.2 46.7
RAT-SQL (Wang et al., 2020a) 62.7 57.2
LGESQL (Cao et al., 2021) 67.6 62.8

G3R 71.4 64.5

With PLM

RAT-SQL+BERT-large 69.7 65.6
RAT-SQL+GAP (Shi et al., 2021a) 71.8 69.7
RAT-SQL+STRUG 72.6 68.4
RAT-SQL+GRAPPA 73.4 69.6
SmBoP (Rubin and Berant, 2021) 74.7 69.5
DT-Fixup SQL-up (Xu et al., 2020) 75.0 70.9
LGESQL+BERT 74.1 68.3
LGESQL+ELECTRA 75.1 72.0

G3R+ELECTRA 78.1 72.9

Table 2: Performance comparison with some state-of-
art methods without and with PLM on the dev set and
test set of Spider. G3 is short for the graph-guided SQL
generator and G3R incorporates the re-ranking mecha-
nism.

(Kingma and Ba, 2015) with a learning rate of 5e-5
and 2e-4 for with and without a pre-trained lan-
guage model (PLM) respectively. The mini-batch
size of the input is set to 10. In the inference stage,
the beam size is set to 5.

As for the SQL re-ranker, Grappa (Yu et al.,
2021) is adopted for complex and cross-domain
text-to-SQL generation because it is pre-trained for
table semantic parsing and contains rich knowledge
to bridge the gap between different domains. The
number of parameters is about 355M. The length
x of the learnable virtual template word for the
hybrid prompt is set to 10, and λ1 and λ2 are set
to 0.1 and 1 respectively. It is optimized by Adam
with a learning rate of 1e-5.

5.3 Evaluation Metrics

Following the previous work (Cao et al., 2021),
we adopt exact match accuracy as the evaluation
metric. It is calculated by decomposing SQL into
several clauses and conducting a set comparison in
each SQL clause.
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Model Easy Medium Hard Extra ALL

Without PLM

IRNet 70.1 49.2 39.5 19.1 53.2
RAT-SQL 80.4 63.9 55.7 40.6 62.7
LGESQL 86.3 69.5 61.5 41.0 67.6

G3 87.1 71.3 64.9 39.8 69.0
G3R 89.1 74.1 67.8 41.8 71.4

With ELECTRA

LGESQL 91.9 78.3 64.9 52.4 75.1

G3 89.5 80.9 69.5 53.0 76.6
G3R 89.5 82.7 73.0 54.9 78.1

Table 3: Exact match accuracy on the dev set of Spider
according to the level of difficulty.

5.4 Main Results

Table 2 shows the experimental results of several
Text-to-SQL methods without and with PLM. Re-
garding baseline models, LGESQL achieves the
best performance and our proposed G3R clearly
outperforms it by a substantial margin which shows
the superiority of our approach. With word vectors
GLOVE, G3R achieves an absolute improvement
of 3.8%, 1.7% over LGESQL on exact match accu-
racy on the dev set and test set respectively. With
PLM ELECTRA, G3R surpasses all the SOTA base-
lines and achieves an absolute improvement of 3%
and 0.9% over LGESQL on the dev set and test
set respectively. It achieves an accuracy of 78.1%,
and 72.9% on the dev and test set which is com-
petitive compared to some newly released T5-3B
based approaches (Li et al., 2023; Zhao et al., 2022).
However, the size of our model is only one-fifth of
theirs.

In addition, more fine-grained performances of
some approaches ordered by the level of difficulty
are shown in Table 3. We can observe that: (1) As
the difficulty increases, the syntactic structure of
SQL queries becomes more complex and the ac-
curacy of all approaches decreases. (2) With word
vectors GLOVE, compared with LGESQL, G3R
achieves improvements of 2.8%, 4.6%, 6.3% and
0.8% at the easy, medium, hard and extra hard lev-
els respectively. With PLM ELECTRA, G3R also
achieves improvements of 4.4%, 8.1% and 2.5%
over LGESQL at medium, hard, and extra hard
levels respectively. It demonstrates the effective-
ness of our proposed framework. (3) When the
re-ranking mechanism is removed, the accuracy of
G3 (with ELECTRA) is decreased by 1.5%, but it

still achieves an improvement of 1.5% compared
with LGESQL. Notably, G3 (with ELECTRA) has
a significant improvement in complex SQL query
generation, achieving improvements of 4.6% and
0.6% at the hard and extra hard levels. It demon-
strates that our proposed graph-guided SQL gen-
erator can exploit the structural information of the
AST and generate complex structured SQL queries
more accurately.

5.5 Re-Ranking Results

Spider

Model Name Acc

G3 69.0
+ Bertrand-DR (Kelkar et al., 2020) 70.7
+ KE-R 71.4
Beam accuracy 75.6

G3+ELECTRA 76.6
+ Bertrand-DR 77.2
+ KE-R 78.1
Beam accuracy 82.7

Table 4: Re-ranking results on the dev set of Spider.
“KE-R” represents the proposed knowledge-enhanced
re-ranking mechanism.

Spider-DK

Model Name Acc

RAT-SQL + GAP (Shi et al., 2021b) 44.1
LGESQL+ELECTRA 47.3

G3+ELECTRA 49.7
+ Bertrand-DR (Kelkar et al., 2020) 50.5
+ KE-R 51.6
w/o CL 50.8
w/o ML 51.0
w/o CL&ML 50.6

Beam accuracy 60.9

Table 5: Re-ranking results on Spider-DK. “CL” repre-
sents the contrastive learning and “ML” represents the
margin loss.

We construct the training set and dev set of
the SQL re-ranker in the manner mentioned in
Section 4.2. Bertrand-DR (Kelkar et al., 2020)
is adopted as a baseline for comparison with our
knowledge-enhanced re-ranking mechanism. To be
fair, it is also based on Grappa, with a linear layer

345



for binary classification. As shown in Table 4, the
beam accuracy is on average about 6% higher than
the top-1 accuracy. Our proposed KE-R can effec-
tively filter out the correct answer from the beam.
When it is applied, the exact match accuracy of
G3, G3+ELECTRA and are improved by 2.4% and
1.5% respectively. Compared with Bertrand-DR,
KE-R in combination with G3 and G3+ELECTRA
achieves improvements of 0.7% and 0.9% which
shows its superiority.

To further evaluate the ability of our proposed
SQL re-ranker to introduce domain knowledge, we
conduct experiments on Spider-DK and the results
are shown in Table 5. It is obvious that: (1) The
dataset is more challenging and the accuracy of
all approaches has decreased. However, our pro-
posed G3 still outperforms the other two baselines
and achieves an improvement of 2.4% compared
with LGESQL+ELECTRA. (2) With KE-R, the
accuracy of G3+ELECTRA is improved by 1.9%
compared to 0.8% with Bertrand-DR, indicating
that our proposed SQL re-ranker can effectively
incorporate domain knowledge. (3) When both
contrastive learning and margin loss are removed,
the accuracy drops to 50.6% and it still gains an im-
provement of 0.9% compared with G3+ELECTRA
which demonstrates the effectiveness of the hybrid
prompt tuning. (4) When contrastive learning and
margin loss are removed, the accuracy decreases by
0.8% and 0.6% respectively, suggesting that they
both contribute to the significant improvement.

6 Conclusion

In this paper, a novel Graph-Guided Generated-and-
Rerank framework is proposed for complex and
cross-domain Text-to-SQL generation. In specific,
we design the AST-Grammar Bipartite graph and
propose a Graph-Guided SQL generator to capture
the structural information of the generated complex
SQL query. A knowledge-enhanced re-ranking
mechanism is proposed to introduce domain knowl-
edge to bridge the gap between different domains
and re-rank candidate SQL queries generated from
top-ranked action sequences. Experimental results
on the Spider and Spider-DK benchmark datasets
show that the proposed method outperforms other
competitive Test-to-SQL baselines.

7 Limitation

Our proposed graph-guided SQL generators are
superior in generating complex SQL queries. How-

ever, the model has a large number of parameters
and requires more computational resources, which
is a common problem with current methods of gen-
erating complex SQL queries.

In addition, the proposed knowledge-enhanced
re-ranking mechanism is proposed to leverage the
knowledge in PLM to choose the best SQL query
from the beam output. However, it does not take
into account the database schema which can be the
source of domain knowledge.

In the future, we will design lighter models for
complex and cross-domain text-to-SQL generation
and explore some other re-ranking mechanisms
to incorporate the prior knowledge of database
schema.
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A Appendix

A.1 LGESQL Encoder

Source x Target y Relation

Column Table
x belongs to y.
x is the primary key of y.

Question Question x is the next token of y.

Column Column x is the foreign key of y.

Question Column

x and y do not overlap.
x is part of y, y is (not) a
span of the question
(Exact/Partial Match).

Question Table

x and y do not overlap.
x is part of y, y is (not) a
span of the question
(Exact/Partial Match).

Table 6: Description of relations types in the heteroge-
neous graph Gn between different types of nodes.

Unlike other code generation tasks, Text-to-SQL
generation needs to consider not only the natural
language question but also the database schema. It
is a daunting problem how to jointly encode the

Algorithm 1 The process of generating a complex
SQL query.

Input: Question q, Database schema S, Maximum
decoding steps Md.

Output: The action sequence â corresponding to
the SQL query.

1: â← (“[BES]” ), Gb0 ← “sql”
2: W ,T ,C ← Encoder(Q,S)
3: for i← 1; i ≤Md; i++ do
4: Bipartite Graph Reader captures the struc-

ture information of Gbi−1 and Hg is obtained
(4.1).

5: ai ← Decoder(Hg,W ,T ,C)
6: if ai = “[EOS]” then
7: â← â+ ai
8: Break
9: else

10: Gbi ← Update the graph structure of Gbi−1
by applying the predicted action ai.

11: â← â+ ai
12: end if
13: end for
14: return â

question and database schema, as there exist vari-
ous relations between these heterogeneous inputs.
In order to address the problem, LGESQL con-
structs a node-centric heterogeneous graph Gn. It
consists of three kinds of nodes: tables, columns
and question tokens. The relations between differ-
ent types of nodes are shown in Table 6.

Besides, there exist many meta-paths between
the nodes. Meta-path is defined as a compos-
ite relation linking two nodes, that can capture
multi-hop semantics. For example, a meta-path
<Question, “Question-ExactMatch-Column”, Col-
umn, “Column-BelongsTo-Table”, Table> means
the question mentions a column in the table. As
the length of the path increases, the number of
possible meta-paths increases exponentially. In or-
der to tackle this problem, LGESQL proposes to
utilize a line graph to capture the topological struc-
ture of edges explicitly. An edge-centric graph
Ge is constructed from the original node-centric
heterogeneous graph Gn and a dual relational at-
tention network (Dual RGAT) (Wang et al., 2020b)
is adopted to capture the structure of the original
graph and the line graph iteratively. Finally, the
representations of the nodes are obtained through
the LGESQL encoder.
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A.2 Decoding Process
The decoding process is shown in Algorithm 1.
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